Test anitestructured ZnAg$_2$SnS$_4$ was developed from its parent composition ZnAg$_2$GeS$_4$, which is considered to be an excellent photocatalytic material, as the demands for photocatalytic effect on organic and wastewater treatment have been increasing around the globe. First and foremost, the geometry optimization was performed by density functional theory (DFT) of the generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE)-ballpark figured as the successful candidate for computational screening containing heavy metal complexes. Test structural geometry parameters were determined along with the electronic band structure, density of state (DOS), partial density of state (PDOS), Mulliken charge population, elastic constant, and optical characteristics. When the Ge (ZnAg$_2$GeS$_4$) atom has been swapped out by a Sn (ZnAg$_2$SnS$_4$) atom, the changes in band gap is noticeable, which rises from 0.94 eV to 1.15 eV with the same geometry and surface area. But, after 7% Fe doping, it has decreased to 0.32 eV. The PDOS demonstrates that the production of hydrogen for photocatalytic influence on wastewater treatment is dependent on the Fe atom’s ability to induce and boost the electron density in both the conduction band and the valence band. The study of the elastic constant and mechanical constant revealed that these crystals are extremely stable in any environment. The dielectric constant and optical absorptions illustrate the superior evidence for photocatalytic activity. To sum up, it could be said that after doping of Fe, the elastic constant and mechanical constant show all universal anisotropic index crystals and ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ can absorb a variety of UV radiation, which raises the possibility that it could function as a photocatalyst.

1. Introduction

For the last two decades, the photocatalytic degradation process has been used as a promising wastewater treatment method for the mitigation of organic wastewater pollutants due to its numerous merits [1]. As water contamination has inauspicious effects on both human living life and ecosystems, it is a drastic biodegradable problem and impossible to avoid the water pollution system or even stop this industrialization, a major source of water pollution and the backbone of the modern civilization of every country. This issue has become a pressing problem in certain countries, including Bangladesh, India, Pakistan, China, Indonesia, and some African nation, where a number of industries,
including those producing ready-to-wear garments, industries, pharmaceuticals, paint industries, and household waste, have been expanding while disregarding the apex of environmental sustainability [2, 3]. Additionally, the human population, as well as the unexpected growth in industry both rise and create the greatest demand for clean water resources, while wastewater is generated by several processes and endangers the quality of these resources. The availability and quality of pure water support sustainable development, human and biodegradation environmental health, and food and energy security [4]. On that account, it is therefore highly imperative that wastewater is adequately managed prior to release from the industry to reduce the ghastly impact on the human body and ecosystems unless it poses threatening and alarming hazard to both developed and developing nation. It is reported that roughly 30% of the naturalistic ambiance has been destroyed after the Second World War, despite the hazardous organic-inorganic contamination has been purified by biological and conventional processes [5, 6]. However, it has been reported that some organic adulterants were not eliminated in these procedures. In this case, the researcher chose photocatalytic and photocatalysis methods as an emerging technique for the mitigation of organic pollutants using a sustainable oxidation process due to its efficiency of photoactivity [7], high stability [8], low cost [9,10], low toxic [11], and safety to human health and environment [12,13]. Moreover, the oxidation process has a great impact on removing the toxic organic pollutants in wastewater and turning them into carbon dioxide and water. Additionally, its process has several advantages, including quick processing, a simple reaction system, recyclable materials, self-regenerated, non-consumption of oxygen, and producing a high level of UV or visible light absorption [14]. Photocatalytic semiconductors, as well as other optoelectronic devices [15, 16], are employed in the degradation process for many industrial dyes and antibiotics from pharmaceutical and other industries [17–21] because photocatalysis manipulated a variety of fundamental features, including maximum photocatalytic efficiency, a large surface area, light harvesting, reusable, and facilitates the charge carrier separation or enhances the surface reaction of material [22–26]. The method of photocatalysis produces the electron-hole pair due to induced phot-generation, which leads to the production of superoxide free radicals, and by reacting with oxygen, water molecules, and organic pollutants, causes OH, a free radical. Researchers have discovered some photocatalysts for the photocatalytic destruction of pollutants, such as TiO2, ZnO, BaTiO3, KNO3, SrBi4, TiO2, and WO3 [27–31]; these materials can be used to exploit UV or visible light as an endless supply of energy [32]. In general, the following materials can be used in rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders: AFe2O4 (A = Co, Mg, and Mn) complexes for showing magnetostuctural properties; Mn-doped LaFeO3; and nanocrystalline zinc ferrite particles as perovskite materials, which have not been seen to be photocatalytic but have good opto-electric properties [34]. There has been considerable theoretical, experimental, and synthetic research on the probable environmental and energy applications of stannite-type quarterly crystals such as BAg2CX4 (B = Zn, Cd, Pb, Fe, Mn, Hg; C = Si, Ge, Sn; X = S, Se, Te). [37–39] Metal nanophotocatalysts are easily reusable due to their magnetic function and are strongly associated to organic pollutant mitigation. It is reported that the energy gap value was 2.2 eV for ZnAg2GeS4 materials did not utilize all the range of visible light in order to achieve a wider band gap [17, 26]. Additionally, ZnCu2SnS4 semiconductor has been used as an ambulance-friendly photocatalyst as well as a photovoltaic solar cell, and perovskites implications have a straight band gap of 1.5 eV [40–44].

In this work, the new stannite type quarterly crystals, ZnAg2SnS4, have been designed and investigated their electronic structure and optical properties, and mechanical or electric properties have been calculated which were compared with established photocatalytic ZnAg2GeS4 materials. Secondly, Fe atom has doped into Sn on ZnAg2SnS4 and made a comparative study on how the photocatalytic nature can be changed. Next, the optical properties such as conductivity and absorption show how much of light can be absorbed by the materials, that is, the vital factor acting as the photocatalytic behavior even loss function which says how energy or system be suitable for the study. Finally, calculating the elastic properties can give the evidence of molecular and physical stability of designed crystal.

2. Computational Methods

According to the basis principle, generalized gradient approximation (GGA) is more physically consistent than a local-density approximations (LDA), which depends on the gradient of the density, and it is a true exchange-correlation functional of DFT. In addition, the Perdew–Burke–Ernzerhof (PBE) function is very popular because it is a nonempirical function with reasonable accuracy over a wide range of systems. As a result, the PBE techniques were used for optimization for Cu2ZnSnS4, and ZnAg2GeS4 crystal’s structure at first [45]. The tetragonal type and space group I4 were chosen for theoretical calculation since it described identical experimental data in Table 1. As a first step of the process, the electronic structures of ZnAg2GeS4, ZnAg2SnS4, and ZnAg2Sn0.93Fe0.07S4 crystals were calculated using the GGA with PBE method, which was implemented in the CASTEP code [46] in Material Studio 8.0 [47]. For ZnAg2GeS4 and ZnAg2Sn0.93Fe0.07S4 simulations, the cutoff was maintained at 523, the k point was fixed at 4 × 4 × 2, and the total energy was set to 1 × 10−6 eV/atom with the norm-conserving pseudopotentials functional. Both the density of states and the optical characteristics were determined under these conditions. After simulation, the elastic stiffness constants of ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 at atmospheric pressure by employing the stress-strain technique were calculated. On the other hand, band gap analyzed using GGA and PBE showed that GGA works on all crystals under the similar conditions, which implies that additional study in this area is possible. Finally, for the purpose of forecasting the structural, electrical, elastic, mechanical,
and optical properties of ZnAg₂GeS₄, ZnAg₂SnS₄, and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ as depicted in Figures 1(a)–1(c), the 2×1×1 supercell types were to be accounted.

3. Results and Discussion

3.1. Structural Properties. The lattice parameter values of ZnAg₂GeS₄, ZnAg₂SnS₄, and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ were calculated by the material studio after optimizing their crystal structures, which are listed in Table 1. Furthermore, it should be noted that the optimization structure shown in Figures 1(a)–1(c) was obtained after simulation of GGA with PBE, which has been considered as the standard functional of DFT in the presence of heavy metal atoms in the crystal.

The Mulliken bond populations (Pμ) have been utilized to find significant information about the chemical bonding nature of crystal materials in detail. The values of the Mulliken bond populations of ZnAg₂SnS₄ and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ are listed in Table 2. The bonding and antibonding states are indicated by the negative value and positive value of Pμ, respectively. From Table 2, it evidences that all bonds including S-Zn, Ag-S, S-Sn, S-Sn, and Fe-S indicate the bonding nature due to the positive value of Pμ for both the compounds, ZnAg₂SnS₄ and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄.

3.2. Electronic Structure. The electronic structure has been used to calculate the electronic properties of ZnAg₂GeS₄, ZnAg₂SnS₄, and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄. The Fermi level (EF) between the valence and conduction band was indicated at 0 eV. The energy gap between the maximum valence band and the lowest energy state of the conduction band is closely related to the LUMO–HOMO gap [48–51]. The crystal materials have two types of energy bands, either direct or indirect band gaps. In Figures 2(a) and 2(b), it was observed that the momentum of the lowest energy state of the conduction band and maximum valence band was found at the same symmetry point G and it reacts as a direct band gap. Therefore, an electron can shift from the maximum energy state of the valence band to the lowest energy state of the conduction band without altering momentum for both ZnAg₂GeS₄ and ZnAg₂SnS₄ compounds. The calculated band gap has been observed at 0.93 eV for the ZnAg₂GeS₄ crystal. Figure 2(a) shows the electronic band gap, which has been reported to be 1.15 eV for ZnAg₂SnS₄ crystal. After doping 7% of Fe atoms, the band started to decrease significantly, which has been recorded at 0.32 eV, as shown in Figure 2(c). It can be observed that this material follows an indirect band gap by revealing minimum conduction band and maximum valence band, which are completely different symmetry points for ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄. The electron cannot readily transit from the greatest energy level of the conduction band to the lowest energy state of the valence band without experiencing a change in momentum because of the indirect band gap. The values of the electronic band gaps for ZnAg₂GeS₄, ZnAg₂SnS₄, and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ semiconductors are listed in Table 3.

3.3. Density of States and Partial Density of States. The density of states plays a crucial role in demonstrating the nature of electronic band structures and the scattering orbitals. The suitable method GGA with PBE has been used to interpret total density of states (TDOS) and partial density of states (PDOS) of Zn, Ag, Sn, Fe, and S atoms for ZnAg₂SnS₄ and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ compounds. Figure 3(a) depicts the comparative study of TDOS between ZnAg₂SnS₄ and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ crystals. It can be observed that the ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ crystal has higher electron densities in both the valence and conduction bands compared to ZnAg₂SnS₄. Figure 3(b) illustrates the PDOS of ZnAg₂SnS₄ which reveals that the nature of s and d orbitals for Zn; s and d for Ag; s, d, and p for Sn; and s and p for S elements have been examined for exploring electron transitions owing to hybridization by transferring from the highest energy state of the valence band to the lowest energy state of the conduction band. From Figures 3(b) and 3(c), it is also observed that robust hybridization is significantly affected by the d orbital in the valence band (VB) and that strong hybridization of the conduction band (CB) is responsible for the s orbital for both ZnAg₂SnS₄ and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ crystals. Figures 3(d)–3(j) depict the contribution of individual atoms to the production of total density of states (TDOS) and partial density of states (PDOS), with Fe atoms responsible for decreasing the band gap between VB and CB. As can be seen, the Fe atom contributes to higher below-Fermi and above-Fermi energy levels, raising the valence band level while decreasing the conduction band level. For this reason, the band gap was declined by 7% due to Fe atom doping on ZnAg₂SnS₄.

3.4. Elastic Constants and Mechanical Properties. A solid's mechanical characteristics and elastic constants, which affect things such as debye temperature, dislocation motion, and stress-strain behavior, are important parameters. In a tetragonal crystal system, there are six independent elastic constants, namely, C₁₁, C₁₂, C₁₃, C₃₃, C₄₄, and C₆₆. Some mechanical and dynamical properties of the material can be determined by its elastic constants. The traditional mechanical stability conditions under isotropic pressure for a tetragonal crystal are given by the following equation:

Table 1: Structural calculation by four methods of ZnAg₂GeS₄, ZnAg₂SnS₄, and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>α (°)</th>
<th>β (°)</th>
<th>γ (°)</th>
<th>Crystal type</th>
<th>Space group</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnAg₂GeS₄</td>
<td>6.671</td>
<td>6.671</td>
<td>6.671</td>
<td>128.48</td>
<td>128.48</td>
<td>75.849</td>
<td>Tetragonal</td>
<td>I 4</td>
<td>4.52</td>
</tr>
<tr>
<td>ZnAg₂SnS₄</td>
<td>6.671</td>
<td>6.671</td>
<td>6.671</td>
<td>128.48</td>
<td>128.48</td>
<td>75.849</td>
<td>Tetragonal</td>
<td>I 4</td>
<td>4.52</td>
</tr>
<tr>
<td>ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄</td>
<td>6.671</td>
<td>6.671</td>
<td>6.671</td>
<td>128.48</td>
<td>128.48</td>
<td>75.849</td>
<td>Tetragonal</td>
<td>I 4</td>
<td>4.52</td>
</tr>
</tbody>
</table>
Figure 1: Optimized structure of (a) ZnAg₂GeS₄, (b) ZnAg₂SnS₄, and (c) ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄.

Table 2: Mulliken population analysis of ZnAg₂SnS₄ and ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄ from the GGA method.

<table>
<thead>
<tr>
<th>Species</th>
<th>s</th>
<th>p</th>
<th>d</th>
<th>f</th>
<th>Total</th>
<th>Charge</th>
<th>Bond</th>
<th>Population</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnAg₂SnS₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.24</td>
<td>0.89</td>
<td>9.98</td>
<td>0.00</td>
<td>11.11</td>
<td>0.89</td>
<td>S-Zn</td>
<td>0.29</td>
<td>2.36</td>
</tr>
<tr>
<td>Ag</td>
<td>2.54</td>
<td>6.42</td>
<td>9.92</td>
<td>0.00</td>
<td>18.87</td>
<td>0.13</td>
<td>Ag-S</td>
<td>0.30</td>
<td>2.55</td>
</tr>
<tr>
<td>Sn</td>
<td>1.26</td>
<td>1.86</td>
<td>9.99</td>
<td>0.00</td>
<td>13.12</td>
<td>0.88</td>
<td>S-Sn</td>
<td>0.64</td>
<td>2.25</td>
</tr>
<tr>
<td>S</td>
<td>1.83</td>
<td>4.66</td>
<td>0.00</td>
<td>0.00</td>
<td>6.49</td>
<td>-0.49</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.19</td>
<td>0.92</td>
<td>9.97</td>
<td>0.00</td>
<td>11.08</td>
<td>0.92</td>
<td>S-Zn</td>
<td>0.31</td>
<td>2.36</td>
</tr>
<tr>
<td>Ag</td>
<td>2.57</td>
<td>6.51</td>
<td>9.85</td>
<td>0.00</td>
<td>18.94</td>
<td>0.06</td>
<td>Ag-S</td>
<td>0.29</td>
<td>2.55</td>
</tr>
<tr>
<td>Sn</td>
<td>1.28</td>
<td>1.86</td>
<td>9.99</td>
<td>0.00</td>
<td>13.13</td>
<td>0.87</td>
<td>S-Sn</td>
<td>0.65</td>
<td>2.25</td>
</tr>
<tr>
<td>Fe</td>
<td>0.58</td>
<td>0.56</td>
<td>6.72</td>
<td>0.00</td>
<td>7.86</td>
<td>0.14</td>
<td>Fe-S</td>
<td>0.61</td>
<td>2.25</td>
</tr>
<tr>
<td>S</td>
<td>11.85</td>
<td>4.48</td>
<td>0.00</td>
<td>0.00</td>
<td>6.32</td>
<td>-0.32</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Figure 2: Electronic structure of (a) ZnAg₂GeS₄, (b) ZnAg₂SnS₄, and (c) ZnAg₂Sn₀.₉₃Fe₀.₀₇S₄.
Specifically, electron-hole pairs are activated by UV light. When the photogenerated electrons come into contact with O_2, they form reactive anion radicals, such as O_2^-. Appropriate photon irradiation initiates the creation of photogenerated electron-hole pairs on the photocatalyst surface. Active OH free radicals react with water to form holes, which can subsequently be used to degrade organic pollutants. The hydrogen ions can be converted to hydrogen molecules by photoexcited electrons once they are in the conduction band. The band gap is directly related to the amount of ultraviolet light that can pass through it. Most of the photocatalysts has a band gap of 3.2–2.8 eV, which is approximately 387.45–442.80 nm in wavelength. However, it was found that the excellent photocatalyst corresponds to 688.80 nm wavelengths, indicating a band gap of 1.8 eV or less. $ZnAg_2SnS_4$ and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ were explored for their 1.15 eV and 0.32 eV band gaps, respectively. Further research has revealed that $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ can absorb a variety of UV radiation, which raises the possibility that it could function as a photocatalyst.

Table 3: Band gap for $ZnAg_2GeS_4$, $ZnAg_2SnS_4$, and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$

<table>
<thead>
<tr>
<th>Crystals/functional</th>
<th>GGA with PBE (eV)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ZnAg_2GeS_4$ (parent crystal)</td>
<td>0.93</td>
<td>0.942 eV [17, 26, 52]</td>
</tr>
<tr>
<td>Ag_2ZnSnS_4</td>
<td>1.15</td>
<td>Newly predicted</td>
</tr>
<tr>
<td>$ZnAg_2Sn_{0.93}Fe_{0.07}S_4$</td>
<td>0.32</td>
<td>Newly predicted</td>
</tr>
</tbody>
</table>

$$C_{11} > 0, C_{33} > 0, C_{44} > 0, C_{66} > 0, C_{11} - C_{12} > 0;$$

$$C_{13} + C_{11} - 2C_{13} > 0;$$

$$2C_{11} + 2C_{12} + C_{33} + 4C_{13} > 0.$$

Table 4 depicts that the elastic constants are positive for $ZnAg_2SnS_4$ and satisfy all the born stability conditions, which further confirms that it is indeed a mechanically stable material. But, $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ crystal is elastically unstable due to one of the elastic constants showing negative values that do not satisfy born stability criteria. The values of bulk modulus (B) and shear modulus (G) for $ZnAg_2SnS_4$ and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ tetragonal crystals have been calculated with the help of elastic constants C_{ij} using the expressions built up by Ghebouli et al. [53] for B and G in their literature and listed in Table 5. Table 5, it can be seen that $C_{12} < B < C_{11}$ satisfies the bulk modulus criteria for $ZnAg_2SnS_4$ and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$. The values of Young’s modulus (E) and Poisson’s ratio (n) have been evaluated by using the equation developed by Panda and Ravi Chandran [54] and Ravindran et al. [55] for E and n, respectively. The higher values of Young’s modulus for $ZnAg_2SnS_4$ and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ depict the stiffer nature. Three different methods have been used to estimate the ductility and brittleness of $ZnAg_2SnS_4$ and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ crystal materials, which are related to the method of Cauchy pressure, Pugh’s ratio, and Poisson’s ratio, respectively. The positive value of CP reveals the ductile and ionic bonding nature of the materials, while the negative indicates the brittle and covalent bonding nature of the materials. The values of Pugh’s ratio defined by B/G shows greater than 1.75 which indicates a ductile nature, while values below 1.75 indicate the brittle nature of the compound. Finally, the value of Poisson’s ratio above 0.26 depicts the ductile nature of the compound. If it is significantly brittle, it can be said from Table 5 that all three methods suggest the ductile nature of both $ZnAg_2SnS_4$ and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ materials. The values of the universal anisotropic index, AU, are not zero, which indicates both materials are anisotropic as listed in Table 5.

3.5. Photocatalytic Activity

As a result of the metal oxide’s or metal crystal’s catalytic action, the photocatalytic reaction proceeds via oxidation and reduction processes. Negative electrons are responsible for reduction, but positive holes join with water molecules from moisture to generate hydroxyl radicals, which are the byproduct of an oxidative reaction. The operation is described in detail below.

3.6. Optical Properties

The photocatalyst is dependent on a number of active sites, including light absorption, charge mobility, and the magnitude of band gap and electron-hole transportation in terms of conductivity, reflectivity, refractive index, and loss function. Furthermore, a material with a wide surface area is more effective at absorbing pollutants because it creates a greater number of active surface sites, which in turn speeds up the degradation or oxidation of the pollutant.

3.6.1. Optical Reflectivity

Reflectivity is a significant optical property that describes the amount of light that strikes the surface of the photocatalytic material. This can be examined from the reflectivity data, which is related to the absorbance of that material. In previous research examined, the higher absorption spectrum of UV or visible light indicates a lower reflectivity. Figure 4(a) depicts the reflectivity values of $ZnAg_2SnS_4$ and $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ that have been observed in the range of photon energy from 0 eV to 5 eV. Initially, the reflectivity value of $ZnAg_2SnS_4$ near Fermi energy at 0 eV is around 0.2, whereas the reflectivity of $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ is about 0.4. The reflectivity value of $ZnAg_2SnS_4$ then gradually increased with rising photon energy and reached about 0.3, while the reflectivity value of $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ decreased rapidly and reached around 0.2 at 2.7 eV. Because of its lower reflectivity value at higher photon energy, $ZnAg_2Sn_{0.93}Fe_{0.07}S_4$ semiconductor may be a better photocatalytic material compared to $ZnAg_2SnS_4$.

3.6.2. Absorption

The optical spectrum is an impactful process where light energy is converted to other forms of energy depending on the nature of the energy band gap. For direct band gap semiconductors, optical absorption occurs at a higher photon energy than the energy gap (E_g) between VB and CB. The absorption spectrum is modest for indirect band gap semiconductors without exceeding the direct gap.

...
Figure 3: Continued.
Figure 3: Continued.
The calculated absorption spectrum values of ZnAg$_2$SnS$_4$ and ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ materials are depicted in Figure 4(b). It is found that absorption peaks are attributed to the transition of energy from the highest energy states of the valence band to the lowest energy state of the conduction band under UV or visible light illumination, which implies that materials can absorb photons in the visible range. In earlier studies, the acceptable photocatalytic material was tested using greater values of absorption peaks. The absorption peaks start from zero near photon energy at 0 eV for both ZnAg$_2$SnS$_4$ and ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$. The absorption of ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ is much higher than ZnAg$_2$SnS$_4$ within photon energy around 3.5 eV; following that both materials exhibit an essentially identical trend with increasing temperature.

3.6.3. Refractive Index. The index of refraction is an important parameter for defining the characteristics of an optical material that reveals how quick visible light travels...
through the material. In previous exploration, it was shown that a higher refractive index is associated with a larger and denser medium of material. Additionally, higher refractive index values meant that more light was slowed down as a result of being bent or refracted to a greater extent. It can be expressed in the following expression:

\[n = \frac{c}{v}, \]

where \(c \) represent the speed of light in vacuum and \(v \) represent the speed of light in another medium. The refractive index has two portions, namely, the real part, which indicates the phase velocity, and the imaginary part, which indicates the mass attenuation coefficient. The comparative study of refractive index as a function of photon energy for ZnAg\(_2\)SnS\(_4\) and ZnAg\(_2\)Sn\(0.93\)Fe\(0.07\)S\(_4\) is illustrated in Figure 5(a). The magnitudes of the refractive index for the real part are significantly higher at the initial state, while the imaginary part is reported to be almost zero for both doped and undoped. After that, the real part of ZnAg\(_2\)Sn\(0.93\)Fe\(0.07\)S\(_4\) declined moderately and ZnAg\(_2\)SnS\(_4\) increased slowly, whereas the imaginary part of ZnAg\(_2\)Sn\(0.93\)Fe\(0.07\)S\(_4\) increased gradually at 2.5 eV. After 3 eV, however, both materials increased in a similar trend.

3.6.5. Conductivity

The conduction process of photocatalytic semiconductors takes place on the basis of the energy band and free electrons, which are closely related to the discrete space of orbital electrons. It is also produced owing to the presence of free electrons and holes and the transition of free electrons from the valence band to the conduction band in the crystal materials. Optical conductivity has two segments, first, the real part, and second, the imaginary part. The real part of conductivity attains the same information as the imaginary part of the dielectric function, which describes the convective current, and the imaginary part of conductivity indicates the displacement current. Figure 6(a) depicts the comparative study of the conductivity values of doped and undoped crystals. The conductivity values of both real and imaginary parts start from almost zero at 0.0 eV. The real part of conductivity increased with a similar trend for both ZnAg\(_2\)SnS\(_4\) and ZnAg\(_2\)Sn\(0.93\)Fe\(0.07\)S\(_4\) in the energy range from 3 eV to 5 eV and reached 4, but the conductivity value of ZnAg\(_2\)Sn\(0.93\)Fe\(0.07\)S\(_4\) within the energy range of 3 eV is higher than ZnAg\(_2\)SnS\(_4\). On the other hand, the imaginary
part values of ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 went down gradually after the Fermi energy and reached −2 at 5 eV.

3.6.6. Loss Function. The loss function is a fundamental aspect of optical characteristics and consists of two photon energy zones for crystal materials. Inside the dielectric theory validation range, the energy loss function is strongly aligned with the photocatalyst dielectric function. The dielectric function reflects the response of a semiconductor to an external electromagnetic perturbation. This response is accounted for in the energy loss function. The calculated exploration of loss function values for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 is illustrated in Figure 5. It can be observed that the loss function of ZnAg2Sn0.93Fe0.07S4 increased rapidly from 0 eV to 2.5 eV and peaked at 0.125 due to the splitting of the orbital. After 2.5 eV, it fell down again.

Figure 5: (a) Refractive index for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 and (b) dielectric function for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4.

Figure 6: (a) Conductivity for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4 and (b) loss function for ZnAg2SnS4 and ZnAg2Sn0.93Fe0.07S4.
On the other hand, the loss function value for 7% doped Fe atom material increased gradually and reached by 0.075 at 5 eV.

4. Conclusion

Overall, first-principle calculations using a suitable DFT functional have been used to explore the elastic, electronic, structural, mechanical, and optical properties of the stannite type quarterly crystals of ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ and ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$. The Mulliken bond population analysis, which reveals the bonding nature of Zn-S, Ag-S, S-Sn, S-Sn, and Fe-S was calculated and used to investigate the obtained lattice parameters value and chemical bonding of ZnAg$_2$SnS$_4$ and ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ and confirmed the optimized structures. Secondly, the calculated band gaps of ZnAg$_2$GeS$_4$, ZnAg$_2$SnS$_4$, and ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ were found at 0.93 eV, 1.15 eV, and 0.32 eV, respectively, using GGA with PBE function. In addition, the experimental band gap of the ZnAg$_2$GeS$_4$ is 0.94 eV that is almost same to the calculated band gap (0.93 eV) in this study which indicates the accuracy of this study for all crystals. Another objective of this study is the doping on ZnAg$_2$SnS$_4$ by the most available metals replacing Sn, where 7% Fe atoms were doped and found a very lower band gap, 0.32 eV, indicating the material is well-suited for absorbing all UV or visible light in the higher wavelength region and displaying enhanced photocatalyst performance in comparison to the ZnAg$_2$SnS$_4$ crystal. The extension for the other properties of designed crystals were evaluated by mechanical and elastic properties, which have shown to be ductile, stiffer, and anisotropic, indicating that both semiconductors-based photocatalysts are ductile. The mechanical and elastic properties have been shown to be ductile, stiffer, and anisotropic, indicating that both semiconductors are ductile. To foretell efficient semiconduction in photocatalysts, we have computed their optical properties such as reflectivity, absorption, refractive index, dielectric function, conductivity, and loss function. For Fe doped of ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ with its increased absorption spectrum in the UV visible region, it is found to be superior to ZnAg$_2$SnS$_4$ as a photocatalyst for use in waste water treatment. Therefore, it is evident to conclude that semiconductor-based ZnAg$_2$Sn$_{0.93}$Fe$_{0.07}$S$_4$ after being doped with 7% Fe atoms, has enhanced photocatalytic performance to that of undoped ZnAg$_2$SnS$_4$.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Advances in Condensed Matter Physics

[17] A. Kumer and U. Chakma, "Developing the amazing photocatalyst of ZnAg2GeSe4, ZnAg2Ge0.93Fe0.07Se4 and ZnAg2Ge0.6Fe0.4Se4 through the computational explorations by four DFT functionals," Heliyon, vol. 7, no. 7, 2021.

U. Chakma, "Investigation of electronic structure, optical properties, map of electrostatic potential, and toxicity of HfO2, Hf0.88Sn0.12O2, Hf0.88Sn0.12O2 and Hf0.88Sn0.12O2 by computational and virtual screening," *Journal of Computational Electronics*, vol. 22, no. 1, pp. 1–16, 2023.

