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We investigated the transport properties of diluted magnetic semiconductors (DMSs) theoretically by using the Heisenberg and
Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange interaction models by considering both spin and charge disorder. The formal-
ism is applied to the specific case of Ga1−xMnxAs. Using the Heisenberg model and the Green function formalism the total thermal
excitation of the magnon is calculated. The magnetization and Curie temperature of Mn-doped GaAs is calculated. The theoretical
calculation of TC of Ga1−xMnxAs at x= 0.08 has a good agreement with the experimental calculation at x= 0.08 (i.e., 162 k). The
exchange interaction constant and spin-dependent relaxation time is calculated by using RKKY interaction. The electrical conduc-
tivity and hole mobility are calculated by using the Boltzmann transport equation and the spin-dependent relaxation time. The
electrical conductivity of Mn-doped III–V DMS is exponentially increased with temperature and magnetic impurity concentration.
Hole mobility of Mn-doped III–V diluted magnetic semiconductor is increased with the magnetic impurity concentration.

1. Introduction

The modern electronic industry heavily relies on diluted
magnetic semiconductors (DMSs). In DMSs, semiconduct-
ing andmagnetic properties coexist. The semiconductor prop-
erty processes information using the charge of electrons and
holes, while the magnetic property stores information using
the spin of magnetic ions/atoms. Since magnetic materials and
semiconductor applications have developed independently, it
makes sense to integrate their capabilities to create spintro-
nics, which have greater functionality [1, 2]. The fundamental
goal is to regulate the electrons’ degree of spin freedom in
specific semiconducting materials. The most practical way to
add spin degrees of freedom to semiconductors is to incorpo-
rate magnetic ions into them. These semiconductors can be
defined as semimagnetic or DMSs [3, pp. 20–22].

According to the current studies on DMSs, the presence
of magnetic ions significantly alters the electron transport
phenomenon [3, pp. 20–22]. Beginning in the 1970s, it was
realized that one material (DMS)might have both magnetic and
semiconducting properties. The antiferromagnetic exchange

between the magnetic ions (Mn) spins regulates the magnetic
interaction in II–VI-based DMSs, leading to paramagnetic, spin
glass, and finally long-range antiferromagnetic behavior. Nowa-
days, ferromagnetic properties are found in p-type II–VI DMS
heterostructures, but they only exist at Curie temperatures
(TC), which are typically below 2.0K. As a result, installing
ferromagnetic-based III–V semiconductors with magnetic ion,
Mn, which stay ferromagnetic to significantly higher TC, has
made very substantial progress [1]. The recent discovery that
ferromagnetic ordering in III–V DMSs with phase transition
temperatures of annealed DMS Ga1−xMnxAs could exceed
110K; roughly approaching 170K has greatly increased interest
in thosematerials [4, p. 356; 5]. Although encouraging, the great-
est temperature (173K) inMn-doped GaAs for 0:08 ≤ x ≥ 0:01
obtained utilizing low-temperature annealing procedures is still
too low for the practical applications [6].

A lot of theoretical and experimental work has been done
on raising TC. Currently, the highest reported value is just
about 190K. There are numerous ways to calculate this tem-
perature. According to Vašek et al. [7], measuring magneti-
zation as a function of temperature is the most suitable
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approach. It is much easier to measure conductivity (resistiv-
ity) than magnetization, and TC can also be found by looking
at how resistance changes with temperature. Studying these
transport characteristics theoretically is fairly difficult. Since
the exchange interaction between the carriers and the local-
ized moments, which results in the ferromagnetic transition,
affects these features, it is necessary to take this into nonper-
turbative consideration [6, 8]. The magnetic impurity concen-
tration and temperature have a significant impact on the
experimentally determined dc resistivity in the DMS materials,
which exhibits interesting characteristics. According to Hwang
and Sarma [8], there is a metal–insulator transition in the
material (Ga, Mn)As between insulating samples with low-
manganese concentrations and metallic samples with higher
concentrations. In this study, the theoretical computation of
the DMS transport properties was carried out using the Ruder-
man–Kittel–Kasuya–Yosida (RKKY) interaction, the Heisen-
berg model, and the Green Function formalism.

2. Theoretical Models

2.1. RKKY Model Interaction Approaches for Spin Dependent
Relaxation Time. In this case, the RKKY model, character-
ized by the energy Jij of exchange coupling, is typically used
to describe spin–spin interactions [9]. This interaction at the
localized moment is determined by the spin density of the
electrons [10, pp. 213–218]. Formulation of the spin density
of electrons in terms of the given field operators, the coupling
between the spin Sj at rj and the conduction electron is

Hp−d ¼ −2J Sj : Si rj
À Á ¼ −J ∑

αβ
Sj : σαβ bψþ

α rj
À Ábψ β rj

À ÁÀ Á
;

ð1Þ

where bψ is the field operator states expanded in terms of the
block states. By using the Fourier transform of field opera-
tors, the number density operator is expressed by

n qð Þ ¼ 1
V

∑
kk0σ

Z
e−i kþq−k0ð Þ:ru×k rð Þuk0 rð Þcþkσck0σdr; ð2Þ

where ckσ and cþkσ are the annihilation and creation operators
of electrons, respectively. If we translate Equation (2) into
terms of the spin density, the overall spin is conserved in
the interaction, although conduction electrons and localized
spins may exchange positions. The electron of wave vector k is
scattered in state k’, and this state determines the coupling
strength. Assume that the k dependance may be ignored. The
interaction with conduction electrons is determined by

Hp−d ¼ −
J
V

∑
Ni

l¼ 1
∑
k;k0

∑
k;k0

ei k−k
0ð Þ:r

Sþl c
þ
k0↓ck↑ þ S−l c

þ
k0↑ck↓ þ Szl cþk0↑ck↑ þ cþk0↓ck↓

� �n o
:

ð3Þ

The interaction of localized spin Mn ions with electrons
rises to the creation or annihilation of an electron–hole pair.

By considering elastic transitions and the common energy
Ei ¼ Ef , denoted by E0, the Hamiltonian is written as fol-
lows:

f Heffj jih i ¼ −∑
j

f λHeffj jjh i j λHeffj jih i
Ej − E0

; ð4Þ

where ij i is the ground state, fj i the state of the scattering of
the electron, λ is the coupling constant, and Heff is the effec-
tive Hamiltonian which is equal to Hp−d . Since the flip of the
impurity spin is accompanied by the flip of an electron spin,
the collision term of the distribution function of spin-up and
spin-down electrons is

∂f kð Þ
∂t

� �
coll

¼ ∑
k0
Wk↑;k0↑ f↑ k0ð Þ 1 − f↑ kð ÞÂ Ã

− f↑ kð Þ 1 − f↑ k0ð ÞÂ ÃÈ É
þ∑

k0
Wk↑;k0↓ f↓ k0ð Þ 1 − f↑ kð ÞÂ Ã

− f↑ kð Þ 1 − f↓ k0ð ÞÂ ÃÈ É
;

ð5Þ

where Wk; k0 is the transition probability, f kð Þ and f k0ð Þ are
the distribution function of the initial states and the scattered
states, respectively. Then by substituting and using the dis-
tribution function for the spin of the electron–hole pair, the
matrix element of the operator H is H ¼ −∑ij J ri −ð rjÞSi:Sj:
With the help of some integral notation, the quadratic dis-
persion relation that holds true for free electrons, and the
notations, we can calculate the exchange coupling strength
between magnetic impurities and delocalized charge carriers.
This exchange interaction constant, also known as the effec-
tive exchange interaction, is given by

J rð Þ ¼ meJ2k4F
ℏ2π3

F 2kFrð Þ; ð6Þ

where kF is the Fermi wave vector, and F xð Þ¼ xcosx−
sinx=x, x ¼ 2kFr: The well-known RKKY interaction is pro-
vided by Equation (6). The interaction in the system can be
either ferromagnetic or antiferromagnetic depending on the
value of the oscillation function F 2kFrð Þ. Jij is used to calculate
different temperature properties such as Curie temperature,
spin-dependent relaxation time, spin stiffness constants, and
magnon energies. Then, by adding up all possible spin orien-
tations, the transition probability in J is given by:

W k↑; k0↑ð Þ ¼ W k↑; k0↓ð Þ
¼ Ni2πJ2S Sþ 1ð Þ

3ℏ
1þ 4Jg Ekð Þ½ �δ Ek − Ek00ð Þ;

ð7Þ

where Ni is the concentration of magnetic impurities and
g Ekð Þ is the singular function in the third-order correction.
By using Fermi–Dirac distribution and for electron close to
the Fermi surface at low temperature (i.e., Ek>kBT) and
substituting this into collision integral, the spin-dependent
relaxation time τ is the inverse of the transition probability
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which is written as follows:

τs EFð Þ ¼ τ0eℏβΔEk ; ð8Þ

where τ0 ¼ 3EF=2πNiJ2pds sþð 1Þβ is constant, ΔE is the
energy gap between the impurity band and valence band.
It is also known as activation energy. The thermal excitation
of holes from the impurity band to the significantly more
conductive valence band is used to compute this energy. The
maximum and minimum energy positions of the Fermi level
are observed to commonly differ by no more than 1 EV in
III–V semiconductors. In the case of GaAs specifically, the
conduction band is found at EFS þ 0:9eV and the valence
band at EFS − 0:5eV [1].

2.2. Heisenberg Model Approaches for Thermal Excitation of
Magnon. The energy difference ΔE is the central parameter
for estimating magnetic transition temperature in the Hei-
senberg model [2]. If the Heisenberg exchange interaction
term Si:Sj describes the interaction between the atomic spins
at lattice locations ri and rj and the exchange coupling, which
depends on spin separation, may be used to describe the
strength of the interaction, then the Heisenberg Hamiltonian
is H ¼ −∑i; j jijSi:Sj. Atomic spins tend to align themselves
in a preferred direction and take on an ordered structure at
low temperatures, where the exchange interaction typically
does not leave them independent [11]. The simplest of
them is ferromagnetic order, where J is a positive sign in
the exchange interaction. Heisenberg Hamiltonian H has the
following notation if the external field is applied in the
z-direction:

H ¼ −∑
ij
JijSi:Sj − gμBB∑

i
Szi − gμBB∑

j
Szj ; ð9Þ

where g is the lande g-factor of the localized moment, μB is
the Bohr magneton, and B is the applied magnetic field. If we
denote the ground state by 0j i, an excited state is obtained by
the series of raising Sþ and lowering S− operators to the
ground states. Then the eigenstate of the Hamiltonian pos-
sessing translational symmetry may be characterized by a
wave vector k, we shall seek the proper eigenstate in the form
nkj i ¼ 1=

ffiffiffiffiffi
2S

pÀ Á ffiffiffiffi
N

pÀ Á
∑l e

ik:rl Sþl 0j i.Where N is the number
of spins and S is the spins of localized magnetic ions. To
transform spin operators to the deviation of creation and

annihilation operators aþi and ai, respectively, the wave func-
tions of the spin–wave are created and annihilated by

aþk ¼ 1ffiffiffiffiffiffiffiffiffi
2SN

p ∑
l
eik:rl Sþl

ak ¼
1ffiffiffiffiffiffiffiffiffi
2SN

p ∑
l
eik:rl S−l ;

ð10Þ

where Sþl and S−l are spin-raising and lowering operators,
respectively. If the operators aþi and ai were boson operators,
the operators in the lattice representation would also behave
as boson operators. At low temperatures, the z-components
of the spins can be well approximated by − S. By using the
lattice representation of bosons inverse Fourier transforms,
the spin operators are written as follows:

Sþia ¼
ffiffiffiffiffi
2S

p
aþi ; S

−

ia ¼
ffiffiffiffiffi
2S

p
ai; Szia ¼ −Sþ aþi ai

Sþjb ¼
ffiffiffiffiffi
2S

p
bþj ; S

z
Jb ¼ −Sþ bþj bj; S

−

jb ¼
ffiffiffiffiffi
2S

p
bj;

ð11Þ

where aþi ; ai and bþj ; bj are creation and annihilation opera-
tors of ith and jthatom on sublattice i and j, respectively. It is
convenient to make a transition from the atomic, aþi ; ai and
bþj ; bj to the magnon variables cþk ; ck and dþk ; dk for two
sublattices, respectively. These magnon variables, for two
sublattices are defined as follows:

cþkσ ¼ cþk ¼ 1ffiffiffiffi
N

p ∑
i
aþiσe

ik:Ri ; ck ¼
1ffiffiffiffi
N

p ∑
i
aiσe−ik

0:Ri

dþk0 ¼
1ffiffiffiffi
N

p ∑
j
bþjσe

ik0:Rj ; dk0 ¼
1ffiffiffiffi
N

p ∑
j
bjσe

−ik0:Rj ;
ð12Þ

where σ is the spin of the atoms, Ri and Rj are the position
vectors of atoms i and j. Then using an inverse Fourier trans-
form of these new magnon variables ~si:~sj is calculated as
follows:

~si:~sj ¼ ~sai:~sbj ¼
1
2

sþais
−

b j þ s−ais
þ
b j

� �
þ saizs

b
jz: ð13Þ

Then by substituting Equation (13) into Equation (9),
and using the Dirac delta function, the Hamiltonian of
excited state Hmag becomes

Hmag ¼ ∑
ij
SzJij ∑

k
cþk ck þ dþk dk − cþk dkexp ik:lð Þ − dþk ck ∑

l
exp −ik:lð Þ Þ

� �� �
− gμBB= Nð Þ ∑

k
cþk ck þ dþk dk

� �
: ð14Þ

By considering exchange interactions of strength J
between nearest neighbors only and taking the average of
this equation over J and substituting into Equation (14) we
obtain:

Hmag ¼ 2SzxJ ∑
k

cþk ck þ dþk dk − γk cþk
À

dk þ dþk ck
Â Ã� �

−gμBB= Nð Þ ∑
k
cþk ck þ dþk dk

� �
;

ð15Þ
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where x is the concentrations of the impurity added to the
semiconductors, z is the number of nearest neighbors, and
γk ¼ 1=z∑l exp ik:lð Þ. According to Solyam [12], the leading
correction of γk in the long wavelength limit is of the order
k2; which puts it extremely close to the unity. When using
the simple cubic lattice with the lattice constant α and small
values of the wave numbers k, along with two new creation
and annihilation operators that combine the operators of the
two sublattices, along with the inverse transform of these two
operators in Equation (15), the excitation energy ћωk for
ferromagnetic materials is

ћωk ¼ 2SxJk2a2 − gμBB: ð16Þ

The ground state of a simple ferromagnetic has all spins
parallel. At long wavelengths, ka <<1 so that, the frequency
of magnon ωk is proportional to k2, in the same limit the
frequency of a phonon is proportional to k. The second term
in Equation (16) is small, for B→ 0, the excitation energy for
ferromagnetic material is expressed as follows:

ћωk ¼ 2SxJk2a2: ð17Þ

2.3. The Green’s Function Formalism for the Heisenberg
Model. To answer the question of how a quantum mechani-
cal system reacts to an external perturbation, such as an
electrical or magnetic field, Green’s functions naturally

appear as response functions; the corresponding response
functions would then describe the electrical conductivity of
a system. For the quasiparticle spectrum of the system
described by the Hamiltonian in Equation (15), we consider
the following retarded Green’s function, at τ0 ¼ 0; τ ¼ t

Gk tð Þ ¼ ak tð Þ; ak 0ð Þh ih i ¼ −iθ tð Þ ak tð Þ; aþk0
Â Ã
 �

: ð18Þ

By using the momentum space creation and annihilation
operators and differentiating Equation (18) with respect to t
and by taking its Fourier transform we get

−iω
Z

dt aq tð Þ; aþq0
D ED E

ωþ

¼ −i aq tð Þ; aþq
Â Ã

∓

D E
− i aq tð Þ;HÂ Ã

; aþq
Â Ã

∓

D ED E
ωþ:

ð19Þ

Therefore, the equation of motion for fermions and
bosons for finite temperature (T>0) is

iω ak tð Þ; aþk0

 �
 � ¼ ak tð Þ; aþk0

Â Ã
∓


 �þ ak tð Þ;H0½ �; aþk Þ ∓

 �
 �

;

ð20Þ

where H ¼ Hmagnon


 �¼ ωk ak tð Þaþk0 tð Þ

 �

and ω is the fre-
quency of excitation energy. The correlation function
ak tð Þ;h aþk0 tð Þi is related to the analytic property of Green’s
function by

aþk tð Þ; ak0 t0ð Þ
 �
 � ¼ lim
δ→0

i

Z 1

−1
aþk tð Þ; ak0 t0ð Þ
 �
 �

ωþ iδ − aþk tð Þ; ak0 t0ð Þ
 �
 �
ω − iδ

Â Ã
ei ωt−t

0ð Þ

eβω − 1
:

ð21Þ

By using Schrodinger picture, taking the Fourier trans-
formation of Equation (24), and for k ¼ k0 and δkk0 ¼ 1;
Equation (21) becomes Gkk0 ωð Þ ¼ 1

2π ω−ωkð Þ. Again by consid-
ering this equation and taking t ¼ t0 equal time correlation
gives the number operator which is

aka
þ
k 0


 �
 � ¼ limδ→0i
Z

δ ω − ωkð Þdω
eβω − 1

:
ð22Þ

By using Dirac delta function in Equation (22), the total
number of magnons in all modes excited at temperature T
can be calculated as follows:

∑
k

nkh i ¼ 1
V
∑
k

1

eβω − 1
: ð23Þ

Then by using the integral function, the relation between
the volume of the primitive cell and its wave function k
which is V ¼ 4π=3k3, the long magnon dispersion in

ferromagnetic materials which is ω ¼ 2Jsxa2k2, and by
assuming ћ ¼ 1, the total excitation number of magnon is

∑
k

nkh i ¼ 1
π2

Z 1

0

k2

eβ2Jsxa
2k2

− 1
dk: ð24Þ

To solve Equation (24) let’s take, y ¼ 2Jxsa2k2β, k2 ¼
y=jxsa2βð Þ, and dk ¼ dy=2y1=2 2jsxa2βð Þ1=2 gives

∑
k

nkh i ¼ 0:050661

2jsxa2βð Þ32
Z 1

0

y1=2

ey − 1
dy ¼ 0:0468

Jsxa2ð Þ32 kBTð Þ32:

ð25Þ

Equation (25) is the total excitation number of magnon
which is obtained by introducing zeta and gamma function
ζ zð Þ¼ 1=Γ zð ÞR1

0 yz−1dy=ey − 1 where Γ zð Þ¼ z−ð 1Þ!,R1
0

ffiffiffi
y

p
dy=ey − 1 ¼ ζ 3=2ð Þ¼ 2:612. Then the total excitation

energy of magnons U ¼ ΔE becomes
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Hmag ¼ U ¼ ∑
k
ωk nkh i ¼ V

2π2

Z 1

0

2jsxa2k4

e2βjsxa
2k2

− 1
dk:

ð26Þ

To solve Equation (26) let us introduce variable
y ¼ βAk2, dy ¼ 2βAkdk ¼ 2 βAyð Þ1=2À Á

dk; k ¼ y=βAð Þ1=2.
Then by substituting these values in Equation (26), the total
excitation energy is

U ¼ V

2π2β
5
2 A

3
2

Z 1

0

y
3
2

ey − 1
dy: ð27Þ

By introducing zeta and gamma function
R1
0 y3=2dy=ey −

1ζ 5=2ð Þ¼ 1:341, then the total excitation energy (activation
energy) of magnon becomes

U ¼ 1:341
V

2π2 A
3
2

k
5
2
BT

5
2 ¼ 0:06793a3

k5B
A3

� �1
2

T
5
2; ð28Þ

where A ¼ 2jsxa2 and a is the lattice constant which is given
by Vegard’s law, a ¼ 0:566 1 − xð Þþð 0:598xÞnm [13]. Equa-
tion (28) indicates the relation between temperature, concen-
tration, and energy gap of the DMSs. As the concentration of
magnetic impurity, x, increases the total excitation energy
decreases. That means the energy gap is decreased and the charge
carriers are moved simply. The electrical properties of the semi-
conductors are changed. This total excitation energy, Equation
(28), is used to calculate the transport properties of DMSs.

2.3.1. Magnetization. Several methods have been developed
to precisely determine TC, the temperature at which a mate-
rial changes from a ferromagnetic state to a paramagnetic
one. Measuring of magnetization as a function of tempera-
ture is the most effective technique. To calculate the magne-
tization of ferromagnetic material and its alignment in the
z-direction at a temperature T, we use the relation between
magnetic moment and magnetization as follows:

M Tð Þ ¼ N
V μzh i ¼

N
V
gμB Szh i; ð29Þ

where N , V , g; and μB are the total number of particles, the
volume, the Lande g-Factor and the Bohr magneton, respec-
tively. Then by using Szi ¼ S− aþi ai and Equation (25), Equa-
tion (29) becomes

M Tð Þ
M 0ð Þ ¼ 1 − fT

3
2; ð30Þ

where f ¼ 0:0468ð Þ V=NSð Þ kB=JSxa2ð Þ3=2 is constant, M 0ð Þ
is the magnetization at absolute zero where all spins are
parallel and V is the volume of the unit cell. The ratio of
magnetization at temperature T and magnetization at abso-
lute zero is called reduced magnetization. Equation (30) indi-
cates that the total magnetization decreases by one unit of
spin with the excitation (or creation) of a magnon and the

temperature dependance of decrease in magnetization. Mn-
doped GaAs has an FCC lattice structure with n ¼ 4=a3 with
a lattice constant of about a ¼ 5:65A0 and s ¼ 5=2 spin
of Mnþ2.

2.3.2. Critical Temperature. By the limit of M Tð Þ=M 0ð Þ
approaches zero, T → Tc; then the critical temperature for
ferromagnetic material is

Tc ¼ Ns
0:0468V

À Á2
3

jxsa2

kB

� �
: ð31Þ

The critical temperature of ferromagnetic GaMnAs
increases as the concentration of magnetic ions impurity
increases. Equation (31) indicates the relation between the
transition temperatures and the concentration of magnetic
ions in ferromagnetic materials.

2.3.3. Electrical Conductivity. For Mn-doped GaAs, the scat-
tering mechanism is the ionized magnetic impurity scatter-
ing. The Boltzmann transport theory is used to determine the
electrical conductivity of the carriers when the predominant
scattering mechanism is the scattering by ionized impurities
because it is effective in treating along-range disorder [14].
According to Shinjo [3], the density of spin-up and spin-
down in ferromagnetic materials is almost similar (i.e.,
nþ ∼ n−). Supposing the electric field lies along the z-
directionE ¼ 0;ð 0; EzÞ and the magnetic field is zero, then
using Equation (8), the rate of change of the probability f Æk ,
Equation (5), with which the state KÆ is occupied due to the
collision with the localized spins becomes f kð Þ¼ f0 − e=m×ð Þ
τ∂f0=∂EEx. Then using the hole density of particles nkh i with
spin σ, the Fermi Dirac distribution function and parabolic
energy, the current density is given by

jÆ ¼ 2e2nEx
3kBTm∗

� � Z 1

0
E

3
2τf0 1 − f0ð ÞdEZ 1

0
E

1
2f0 Eð ÞdE

0
BB@

1
CCA: ð32Þ

If Fermi energy is located in the valence band, the term
∂f0=∂E ¼ − 1=kBTf0 1−ð f0Þ has a large value near the Fermi
energy only; it may be approximated by Dirac delta function
δ E−ð EFÞ. Then the total current density becomes
jÆ ¼ e2nτ EFð ÞE=m∗. Where τ EFð Þ is the relaxation time at
E ¼ EF . Then the electrical conductivity of spin-up and spin-
down electrons is expressed as follows:

σÆ ¼ e2n
τ EFð Þ
m∗ : ð33Þ

Since Mn-doped GaAs has a zinc blende crystal structure
similar to GaAs, the optical thresh hold at ω ¼ Eg=ћ directly
gives the band gap [11]. Where ω is the thermal energy
excitation of a single magnon. Then the total thermal energy
excitation is related to the energy gap by the relation
U ¼ Eg=ћ. Where in our case by assuming ћ ¼ 1, ΔE ≈
Eg ¼ U , which is the total excitation energy of magnon. As
the concentration of magnetic impurity increases the energy
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gap is reduced. By substituting the spin-dependent relaxation
time Equations (8) and (28) in Equation (33), the tempera-
ture dependance electrical conductivity becomes

σ Tð Þ ¼ σ0e
0:0679a3

k3
B

A3

� �1
2
T
3
2

� �
:

ð34Þ

Where σ0 ¼ e2pτ0=m×
h , A ¼ 2JxSa2. Ga1−xMnxAs is a p-

type semiconductor, thus we utilize the hole concentration
p ¼ N=V rather than n. According to Dietl et al. [1], the
optimal formula for the hole concentration, p, is p ¼ xN0,
where N0 is the concentration of Ga sites in GaAs, which is
equal to 2:2x1022cm−3, and x is the concentration of the
impurity. According to Blakemore [15], for (Ga,Mn)As, the
hole effective mass is m×

h ¼ 0:5m0, where m0 ¼ me is the
electron mass.

2.3.4. Hole Mobility. Since Mn-doped GaAs is a p-type semi-
conductor, the mobility we calculated is hole mobility. By
using the relation between electrical conductivity and mobil-
ity, the mobility of impurity is:

μ Tð Þ ¼ e
mh

× τ0e
0:0679a3

k3
B

4π4A3

� �1
2
T
3
2

; ð35Þ

where A ¼ 2JxSa2. From the relation of spin-dependent
relaxation time, we have μ Tð Þ∝1=NMn: Where NMn is the
impurity density, J is the p–d exchange interaction constant
and s is the spin of magnetic impurity. The hole mobility is
exponentially proportional to T3=2.

3. Results and Discussion

Different transport properties of DMSs are computed in this
work. The transport properties of p-type Mn-doped GaAs
have been investigated theoretically. The theoretical calcula-
tion is done using different methods and models. Through-
out this study, for better numerical estimations, we use the
exchange integral of local magnetic moments, at different
sites separated approximately by a distance of GaAs lattice con-
stant (a ¼ 5:65A0), Jp−d ¼ 31:195x10−23 J , the spin of the Mn
atom S= 5/2, the Boltzmann constant kB ¼ 1:38x 10−23J=K ,
reduced Plank’s constant ћ= 1, hole effective mass mh ¼
0:5m0, electron charge e ¼ 1:6022x1019c, and mass of an elec-
tronm0 ¼ 9:1094x10−31kg. The Curie temperature for this arti-
cle, as determined theoretically, is around 162K. Using this
value, the transport properties of ferromagnetic GaMnAs are
discussed as follows:

At x= 0.08, the magnetization of the the Ga1−xMnxAs
decreased with the temperature of T

3
2, as seen in Equation

(30) and Figure 1. This demonstrates that the magnetization
of this material reduces to zero as the temperature rises.
When there is no applied external field, the spontaneous
magnetization of ferromagnetic GaMnAs occurs in the
ground state. This indicates that the spins are positioned
parallel to one another. The orientations of these spins are
altered in the presence of an external field. At high

temperatures, this disruption in spin orientation results in
a reduction in spontaneous magnetization. As a result, the
spontaneous magnetization is zero above the Curie temper-
ature. There is no spontaneous magnetization at high
temperatures.

In Equation (31), we determine the concentration depen-
dance of the Curie temperature for Mn-doped GaAs DMS.
As shown in Figure 2, the transition temperature rises as
magnetic ion concentration does. We determine the
GaMnAsTc value for 0:08 ≤ x ≥ 0:01. The estimated curie
temperature in accord well when compared to experimental
and theoretical expectations. While our calculation places the
Curie temperature of Ga1−xMnxAs at x= 0.08 around 162 k,
the experimental result for this value is 173 k [6]. Within a
reasonable concentration range (about 10%), high Tc is very
challenging to achieve for homogeneous DMS systems.
Therefore, as the Mn content x increases, the concentration
of Mn occupying the Ga sites (MnGa) increases, leading to
higher TC for Ga1−xMnxAs. By increasing the Mn content
and/or the free hole concentration in the alloy, the varied
values of Tc in GaMnAs might be enhanced. It has
been demonstrated experimentally that TC in Ga1−xMnxAs
rises with increasing hole concentration. Due to the
fact that TC goes to zero when holes are compensated and
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FIGURE 1: Reduced magnetization versus temperature of
Ga0:92Mn0:08As.
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FIGURE 2: Curie temperature versus concentration of magnetic
impurity of Ga0:92Mn0:08As.

6 Advances in Condensed Matter Physics



that TC of ðGa;MnÞAs increases with the increasing hole
concentrations.

Using Equation (34), Figure 3 illustrates the electrical
conductivity of Ga1−xMnxAs for x= 0.035, x= 0.05, and
x= 0.08. A doped or extrinsic semiconductor’s electrical con-
ductivity increases with increased temperatures and mag-
netic impurity concentration.

According to this idea, the electrical conductivity of
DMSs, which are semiconductors with magnetic impurities
added into them, increases exponentially with both temper-
ature and magnetic ion concentration [11]. A small addition
of a magnetic impurity has a significant impact on the electri-
cal conductivity, as shown in Figure 3. We can see from the
graph that electrical conductivity increases as magnetic impu-
rity concentration does. Due to the fact that modern electron-
ics are made by adding magnetic impurities (introducing
spin) to semiconductors, or “Spintronics,” the electrical con-
ductivity of semiconductors is altered by the presence of mag-
netic ions. The conductivity is high at x= 0.08, which
corresponds to a high concentration, and low at x= 0.035.
Electrical conductivity increases along with the magnon’s
thermal excitation.

Since GaMnAs is a p-type semiconductor we discuss the
hole mobility. From the relation of mobility and relaxation
time in Equation (35) we can find the hole mobility of
Ga1−xMnxAs for 0:08 ≤ x ≥ 0:01. The hole mobility is expo-
nentially increased with temperature as shown in the Figure 4.
This can be understood qualitatively by considering that with
increasing temperature, electrons can travel faster and this
makes it easier to escape the ionized impurities. Figure 4
shows the hole mobility at x= 0.05. Holes are more mobile
when they experience less scattering, i.e., the time between
collision (relaxation time) is larger and the effective mass is
smaller. As the temperature increase the hole mobility is also
increase.

4. Conclusion

In this study, we studied the theoretical transport properties
of DMS with a focus on Ga1−xMnxAs. The III1−xMnxV

ferromagnetic semiconductor known as Ga1−xMnxAs has
undergone the most extensive study to date. The concentra-
tion of magnetic dopants and temperature have a significant
impact on the interesting transport characteristics of DMSs.
Since the transport properties are depend on the density of
states, the impurity added to the semiconductor increases
this density of state. Magnons are thermally excited when
an electromagnetic field is applied. We investigated the Curie
temperature, magnetization, electrical conductivity, and hole
mobility of Ga1−xMnxAs using this thermal excitation of a
magnon.

By using these theoretical work TC of Ga1−xMnxAs at
x= 0.08 is 162K. From experimental work, TC of
Ga1−xMnxAs at x= 0.08 is 173K. Therefore, the theoretical
calculation is more approximated to the experimental work.
The Curie temperature of Ga1−xMnxAs is increasing with
increasing concentration. Since it is a ferromagnetic material,
it has spontaneous magnetization at low temperatures. The
magnetization of this material is reduced to zero as T → TC.
The electrical conductivity of Ga1−xMnxAs is exponentially
increased with an increase in temperature from 0 to 300 K
and concentration of magnetic ions in the range of
0:08 ≤ x ≥ 0:01. Since hole mobility is directly proportional
to the relaxation time (i.e., μh∝τ) it exponentially increases
with increasing temperature.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are deeply indebted to Dilla University, School
of Graduate Studies for the financial support.

References

[1] T. Dietl, D. D. Awschalom, M. Kaminska, and H. Ohno,
Semiconductor and Semimetals, Elseiver, 2008.

0 50 100 150
Temperature (K)

200 250 300
2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

El
ec

tr
ic

al
 co

nd
uc

tiv
ity

 (o
hm

–1
.m

–1
) 6,000

x = 0.08
x = 0.05

x = 0.035

FIGURE 3: Electrical conductivity of Ga0:92Mn0:08As versus
temperature.

0 50 100 150
Temperature (K)

200 250 300
340

360

380

400

420

440

460

H
ol

e m
ob

ili
ty

480

FIGURE 4: Hole mobility of Ga0:95Mn0:05As versus temperature.

Advances in Condensed Matter Physics 7



[2] M. Shahjahan, I. M. Razzakul, and M. M. Rahman, “First-
principles calculation of stable magnetic state and Curie
temperature in transition metal doped III–V semiconductors,”
Computational Condensed Matter, vol. 9, pp. 67–71, 2016.

[3] T. Shinjo, Nanomagnetism and Spintronics, Elsevier, 1st
edition, 2009.

[4] J. Kossut and J. A. Gaj, Introduction to the Physics of Diluted
Magnetic Semiconductors, vol. 144 of Springer Series in
Materials Science, Springer Berlin, Heidelberg, 2010.

[5] A. H. MacDonald, P. Schiffer, and N. Samarth, “Ferromagnetic
semiconductors: moving beyond (Ga, Mn)As,” Nature
Materials, vol. 4, pp. 195–202, 2005.

[6] A. Kaminski and S. D. Sarma, “Magnetic and transport
percolation in diluted magnetic semiconductors,” Physical
Review B, vol. 68, Article ID 235210, 2003.

[7] P. Vašek, P. Svoboda, V. Novák, Z. Výborný, V. Jurka, and
L. Smrčka, “Experimental determination of the Curie temperature
for Ga(Mn)As,” Journal of Superconductivity and Novel
Magnetism, vol. 24, pp. 805–808, 2011.

[8] E. H. Hwang and S. D. Sarma, “Transport properties of diluted
magnetic semiconductors: dynamical mean-field theory and
Boltzmann theory,” Physical Review B, vol. 72, no. 3, Article ID
035210, 2005.

[9] T. Dietl, “Ferromagnetic transition in diluted magnetic
semiconductors,” Condensed Matter Physics, vol. 2, no. 3,
pp. 495–508, 1999.

[10] J. Sólyom, Fundamentals of the Physics of Solids. Volume II:
Electronic Properties, Springer Berlin, Heidelberg, 2009.

[11] J. P. Srivastava, Elements of Solid State Physics, PHI Learning,
New Delhi, 2nd edition, 2009.

[12] J. Sólyom, Fundamentals of the Physics of Solids. Volume 1:
Structure and Dynamics, Springer Berlin, Heidelberg, 2007.

[13] L. Chen, X. Yang, F. Yang et al., “Enhancing the Curie
temperature of ferromagnetic semiconductor (Ga, Mn) as to
200K via nanostructure engineering,” Nano Letters, vol. 11,
no. 7, pp. 2584–2589, 2011.

[14] Y. Y. Peter and C. Manuel, Fundamentals of Semiconductors,
Springer Berlin, Heidelberg, 2010.

[15] J. S. Blakemore, “Semiconducting and other major properties
of gallium arsenide,” Journal of Applied Physics, vol. 53,
no. 10, pp. R123–R181, 1982.

8 Advances in Condensed Matter Physics




