Research Article

Theoretical Investigation of the Interplay of Superconductivity and Magnetism in $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ Superconductor in a Two-Band Model by Using the Bogoliubov Transformation Formalism

Gedefaw Mebratie 1 and Tigabu Bekele 2

1Department of Physics, College of Natural and Computational Sciences, Mekela Amba University, Tulu Awuliya, Ethiopia
2Department of Chemistry, College of Natural and Computational Sciences, Mekela Amba University, Tulu Awuliya, Ethiopia

Correspondence should be addressed to Tigabu Bekele; tgbekele19@gmail.com

Received 2 December 2022; Revised 1 March 2023; Accepted 28 July 2023; Published 29 August 2023

The main focus of this article is to investigate the theoretical interplay of magnetism and superconductivity in a two-band model for the iron-based superconductor $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$. On the basis of experimental results, the two-band model Hamiltonian was considered. We obtained mathematical statements for the superconductor $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ superconducting (SC) transition temperature, spin-density-wave (SDW) transition temperature, superconductivity order parameter, and SDW order parameter from the Bogoliubov transformation formalism and the model Hamiltonian. Furthermore, an expression for the dependence of the SDW transition temperature on the SDW order parameter and the dependence of the SC transition temperature on the SDW order parameter was obtained for $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$. By substituting the experimental and theoretical values of the parameters in the derived statements, phase diagrams of the SC transition temperature versus the SDW order parameter and the SDW transition temperature versus the SDW order parameter have been plotted to demonstrate the dependence of the SDW order parameter on transition temperatures. By combining the two-phase diagrams, we depicted the possible coexistence of superconductivity and magnetism for the $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ superconductor. The phase diagrams of temperature versus SC order parameter and temperature versus SDW order parameter were also plotted to show the dependence of order parameters on temperature for the $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$ superconductor.

1. Introduction

Fe-based superconductors (FeBS), which greatly build up the family of unconventional superconductors, have many different systems. The major FeBS systems are 1111, 122, 111, 1245, 42622, 1144, and 12442 (e.g., LaFeAsO, $\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2$, LiFeAs, FeSe$_{1-x}Te_x$, $\text{Rb}_2\text{Fe}_2\text{Se}_3$, $\text{Sr}_2\text{V}_2\text{O}_5\text{Fe}_2\text{As}_2$, $\text{RbEuFe}_4\text{As}_4$, and $\text{KCa}_2\text{Fe}_3\text{As}_2\text{F}_3$) [1–5]. Iron-based square-planar sheets, which are essential for the unconventional superconductivity of all FeBS systems, represent their shared structural component [6]. The parent compounds of FeBS systems are antiferromagnets, spin-density-wave (SDW) metals, and they are magnetic bad metals. Increasing doping in 122 systems can destroy antiferromagnetism and lead to superconductivity [7]. Superconductivity occurs in specific planes, Fe-As plane [8]. The iron-containing plane of the superconductor, in which pnictogen or chalcogen atoms protrude above and below the plane, is not flat because the pnictogen and chalcogen atoms are much larger than iron atoms [9]. The pnictogen and chalcogen atoms are tightly grouped in a tetrahedral structure [10]. Due to the close packing of the Fe atoms, the five Fe 3d orbitals serve as charge carriers in superconductivity [11]. The sign-changing s-wave symmetry characterizes the FeBS symmetry [12].

Most of the iron-pnictides become superconductors only when doped (added an impurity) with holes or electrons. T_c depends on doping concentration [13]. For the 122 iron-based superconductors family, AFe_2An_2, where (A indicates alkaline earth metals such as Ba, Sr or Ca and Eu) and An is a
pnictide (As, P), superconductivity can be achieved with the introduction of dopants [14]. There are several ways to introduce dopants [15]. These are (1) hole doping is achieved with substituting A for monovalent B+ (B = Cs, K, Na) atoms partially in the blocking layer, and this substitution should add an excess hole into the system, for example, Ba1−xKxFe2As2 [16, 17] (2) partially substitute Fe for transition metals (Co, Ni, Pd, Rh) into FeAs layers and yields electrons into the system. In this method, dopants are directly doped into the Fe layer, which can stabilize the system; for example, Co (A(Fe1−xCo)x)2As2, Rh (A(Fe1−xRh)x)2As2, Ni (A(Fe1−xNi)x)2As2 [18–20] and we get electron-doped pnictides that form an abundant phase diagram where superconductivity and magnetism exist together, and (3) replacing arsenic partially with phosphorus, and phosphorus generates a chemical pressure effect that suppress SDW and emerges superconductivity at the corresponding unit cell volume [21, 22].

The parent compound BaFe2As2 is an iron arsenide compound and crystalizes with the tetragonal ThCrSi2 type structure, space group I4/mmm [23]. Its crystal structure and SDW transition are strongly affected by hole doping with potassium [24]. The compound BaFe2As2 changes structural and magnetic transitions simultaneously at Tc = TN ≈ 140 K [25]. Magnetic transition is strongly coupled with structural distortion. Potassium substitutions with hole doping suppress the SDW state of BaFe2As2, resulting in the befall of superconductivity [26]. The suppression of long-range magnetic ordering and the emergence of the superconducting (SC) state at the same time are correlated, suggesting that the spin fluctuation of the Fe moments is crucial in creating the superconductive state [27]. The coupling between lattice and spins results from the proximity of the structural and magnetic transitions [28]. The crystal distortion is driven by magnetisms because lower symmetry allows the spins to order and thus relieve magnetic frustrations [6]. Superconductivity, which is closely related to electron pair instability on the Fermi surface, SDW, which has been deduced from the nesting Fermi surface and observed instabilities on the Fermi surface, and indeed the hole and electron-like Fermi sheets in Ba1−xKxFe2As2 have been observed [29].

Experiment has been revealed that in potassium substitution barium iron arsenide superconductor (Ba1−xKxFe2As2), superconductivity appears for 0.1 ≤ x ≤ 1 in both the orthorhombic and tetragonal phases and for 0.1 ≤ x ≤ 0.4, the SDW and SC orders interplay at low temperature [30]. The coexistence of magnetism and superconductivity strongly emphasizes that magnetic spin fluctuations are involved in the Cooper pairing in Fe-based superconductors [24]. As the doping level (x in Ba1−xKxFe2As2) increases, the electron Fermi pocket continuously shrinks, whereas the hole pocket becomes larger. SDW ordering coexisting with superconductivity at Tc = 24 K. When the doping concentration reaches 0.3, the SDW transition is completely suppressed, and Tc increases to 33 K and at x = 0.4, Tc = 38 K. The electron pocket finally vanishes beyond x = 1, where superconductivity also disappears. In this article, we study the interaction (coexistence) between magnetism and superconductivity in a two-band model for the iron-based superconductor Ba1−xKxFe2As2 by using the Bogoliubov transformation formalism.

Based on the concepts of electronic structure, this article theoretically investigates the coexistence of magnetism and superconductivity with potassium substitution (or hole doping) in the blocking layer of barium iron arsenide (Ba1−xKxFe2As2) superconductor in the two-band model. By considering a two-band model of Hamiltonian and using the Bogoliubov transformation formalism methodology, it tried to find the mathematical expression for the SC critical temperature (Tc), SC order parameter (Δp), the SDW order parameter (M) and SDW transition temperature (TN).

2. Mathematical Formulation of the Problem

A system of Hamiltonian conduction electron interacting with phonons for the interplay of superconductivity and magnetism in our compound (Ba1−xKxFe2As2) in a two-band model, band a and band b, can be expressed as follows [31–35]:

\[
\hat{H} = \sum_{\sigma} \varepsilon_{\sigma}(k) \hat{a}_{\sigma k}^\dagger \hat{a}_{\sigma k} + \sum_{\sigma} \varepsilon_{\sigma}^{b}(k) \hat{b}_{\sigma k}^\dagger \hat{b}_{\sigma k} + \sum_{k} V_{k}^{a}(k)
\]

\[
\left(\hat{a}_{k\uparrow}^\dagger \hat{a}_{-k\downarrow} + \hat{b}_{k\uparrow}^\dagger \hat{b}_{-k\downarrow}^\dagger + \hat{b}_{k\downarrow}^\dagger \hat{a}_{-k\uparrow} + \hat{b}_{k\downarrow}^\dagger \hat{b}_{-k\uparrow} \right) + \sum_{k} U_{m}^{a}(k) \hat{b}_{\sigma k}^\dagger \hat{b}_{\sigma k} \hat{a}_{\sigma k}^\dagger \hat{a}_{\sigma k}.
\]

Here, the first term is the kinetic energy. The second term is the kinetic energy of holes. The third term is the interaction of the SC order parameter, and the fourth term is the kinetic energy of holes. The second term is the kinetic energy. The second term is the kinetic energy of holes. The third term is the kinetic energy of holes. The fourth term is the interaction potential of fermions, εa and εb of free electrons measured with respect to the chemical potential. \(\hat{a}_{k \uparrow}^\dagger \hat{a}_{-k \downarrow}^\dagger\) and \(\hat{b}_{k \uparrow}^\dagger \hat{b}_{-k \downarrow}^\dagger\) are creation (annihilation) operators of the electrons and holes, respectively.

To decouple the model Hamiltonian, one uses the mean-field approximation, and thus the mean-field Hamiltonian of both SC state and SDW state, expressed as follows:

\[
\hat{H} = \sum_{\sigma} \varepsilon_{\sigma}(k) \hat{a}_{\sigma k}^\dagger \hat{a}_{\sigma k} + \sum_{\sigma} \varepsilon_{\sigma}^{b}(k) \hat{b}_{\sigma k}^\dagger \hat{b}_{\sigma k} + \sum_{k} \Delta(k) \left(\hat{a}_{k \uparrow}^\dagger \hat{a}_{-k \downarrow}^\dagger + \hat{b}_{k \uparrow}^\dagger \hat{b}_{-k \downarrow}^\dagger + h.c. \right) + \sum_{k} \Delta(k) \left(\hat{b}_{k \uparrow}^\dagger \hat{b}_{-k \downarrow}^\dagger + h.c. \right) + \sum_{k} M \hat{a}_{\sigma k}^\dagger \hat{b}_{\sigma (k+p) \downarrow}^\dagger \hat{b}_{\sigma (k+p) \uparrow} + h.c.
\]

(2)

where the mean fields (order parameters) are as follows:

\[
\Delta_{c} = \sum_{k} V_{k}^{a}(k) \left(\hat{b}_{k \uparrow}^\dagger \hat{a}_{-k \downarrow}^\dagger \right).
\]
\[\Delta_b = \sum_k V^c_k \langle \hat{a}^{\dagger}_{k\uparrow}, \hat{a}_{k\downarrow} \rangle, \]

where \(V^c_k \) is the SC interaction potential.

\[M(k) = \sum_k U^m_{k\sigma} \langle \hat{a}^{\dagger}_{k\uparrow}, b_{(k+p)\downarrow} \rangle, \]

where \(U^m_{k\sigma} \) is the magnetic interaction potential.

2.1. Pure SC State. A Bogoliubov transformation can be used to drive the gap equations by diagonalizing the mean-field Hamiltonian. That means a simple 2D rotation can diagonalize the mean-field Hamiltonian. Such a rotation is equivalent to introducing Bogoliubov operators, where the fermionic anticommutation relations remain valid. This kind of rotation is known as canonical or Bogoliubov transformation. The mean-field Hamiltonian in pure SC state Equation (2) can be written as follows:

\[\hat{H} = \sum_{k\sigma} \varepsilon_{k\sigma} \hat{a}_{k\sigma} \hat{a}_{k\sigma}^\dagger + \sum_{k \sigma} \varepsilon_{b,k} b_{k\sigma} b_{k\sigma}^\dagger + \sum_{k} \Delta_\sigma(k) \left(\hat{a}_{k\uparrow}^\dagger \hat{a}_{k\downarrow} + h.c. \right) + \sum_{k} \Delta_b(k) \left(\hat{b}_{k\uparrow}^\dagger \hat{b}_{k\downarrow} + h.c. \right). \]

The mean-field Hamiltonian in Equation (6) can be diagonalized using the relevant Bogoliubov transformation or quasi-particle transformation, and its diagonalized form is as follows:

\[H_{sc} \approx \sum_{k\sigma} \hat{\phi}_{k\sigma}^\dagger \hat{H}_{k\sigma} \hat{\phi}_{k\sigma} + \sum_{k \sigma} \hat{\phi}_{k\sigma}^\dagger \hat{H}_{k\sigma}^D \hat{\phi}_{k\sigma}, \]

\[H_{sc} = \sum_{k\sigma} \hat{\gamma}_{k\sigma}^\dagger \hat{H}_{k\sigma} \hat{\gamma}_{k\sigma} + \sum_{k \sigma} \hat{\gamma}_{k\sigma}^\dagger \hat{H}_{k\sigma}^D \hat{\gamma}_{k\sigma}. \]

For this transformation, the Bogoliubov quasiparticle matrix is defined as follows:

\[\hat{\gamma}_{k\sigma} = \begin{pmatrix} \frac{\hat{\phi}_{k\uparrow}}{\hat{\phi}_{k\downarrow}} \\ \frac{\hat{\phi}_{k\downarrow}^\dagger}{\hat{\phi}_{k\uparrow}^\dagger} \end{pmatrix}, \]

Their relation to fermion operators is defined as follows:

\[\hat{a}_{k\sigma}^\dagger = u_k \hat{\gamma}_{k\sigma}^\dagger + v_k \hat{\gamma}_{k\sigma}, \]

\[\hat{b}_\sigma = x_k \hat{\gamma}_{k\sigma} + y_k \hat{\gamma}_{-k\sigma}, \]

where \(u_k, v_k, x_k, \) and \(y_k \) are coherence factors.

The diagonalized Hamiltonian has the form as follows:

\[\hat{H}_{sc} = \sum_{k\sigma} \varepsilon_{g,k} \hat{\gamma}_{k\sigma} \hat{\gamma}_{k\sigma}^\dagger + \sum_{k \sigma} E_{b,k} \hat{\gamma}_{k\sigma}^\dagger \hat{\gamma}_{-k\sigma}. \]

The electron operators \(\langle \hat{a}_{k\uparrow}, \hat{a}_{k\downarrow} \rangle \) and \(\langle \hat{b}_{k\uparrow}, \hat{b}_{-k\downarrow} \rangle \) can be expressed in terms of the quasiparticle operators as follows:

\[\langle \hat{a}_{k\uparrow}, \hat{a}_{k\downarrow} \rangle = \langle u_k \hat{\phi}_{k\uparrow}^\dagger + v_k \hat{\phi}_{-k\downarrow} \rangle \left(-v_k \hat{\phi}_{k\downarrow}^\dagger + u_k \hat{\phi}_{-k\uparrow}^\dagger \right) \]

\[\approx u_k v_k \left(\langle \hat{\phi}_{k\uparrow}^\dagger \hat{\phi}_{-k\downarrow} \rangle - \langle \hat{\phi}_{-k\downarrow} \hat{\phi}_{k\uparrow} \rangle \right) \]

\[= u_k v_k \left| 1 - 2f \left(E_g(k) \right) \right|. \]

where \(f \) is the Fermi–Dirac statistics, \(E_g \) is the energy at Fermi level.

Applying the properties of Fermi–Dirac statistics, the term \(|1 - 2f \left(E_g(k) \right) | \) becomes the following:

\[1 - 2f \left(E_g(k) \right) \approx \tanh \left(\frac{E_g(k)}{2} \right). \]

The coherence factors \(u_k \) and \(v_k \) related as follows:

\[u_k v_k = \frac{\Delta_s(k)}{2E_g(k)}. \]

Inserting Equations (13) and (14) into Equation (12), one can get the following:

\[\langle \hat{b}_{k\uparrow}, \hat{b}_{-k\downarrow} \rangle = \frac{\Delta_s(k)}{2E_g(k)} \tanh \left(\frac{E_g(k)}{2} \right). \]

Substituting Equation (15) into Equation (3), the gap parameter \(\Delta_s(k) \) becomes the following:

\[\Delta_s = \sum_k V^c_k \frac{\Delta_s(k)}{2E_g(k)} \tanh \left(\frac{E_g(k)}{2} \right), \]

where \(E_g = \sqrt{c^2_g(k) + \Delta^2_s(k)} \). Equation (16) is the SC order parameter in the s band.

Similarly, the b-band mean field value is found as follows:

\[\langle \hat{b}_{k\uparrow}, \hat{b}_{-k\downarrow} \rangle = \left| \langle x_k \hat{c}_{k\uparrow}^\dagger + y_k \hat{c}_{-k\downarrow} \rangle \left(-y_k \hat{c}_{k\downarrow} + x_k \hat{c}_{-k\uparrow} \right) \right| \]

\[\approx x_k y_k \left| \langle \hat{c}_{k\uparrow}^\dagger \hat{c}_{-k\downarrow} \rangle - \langle \hat{c}_{-k\downarrow} \hat{c}_{k\uparrow} \rangle \right| \]

\[= x_k y_k \left| 1 - 2f \left(E_s(k) \right) \right|. \]
Applying the properties of Fermi–Dirac statistics, the term $|1 - 2f(E_c(k))|$ also becomes the following:

$$|1 - 2f(E_c(k))| \approx \tanh \left(\frac{E_c(k)}{2} \right). \quad (18)$$

The coherence factors x_k and y_k related as follows:

$$x_k y_k = \frac{\Delta_b(k)}{2E_c(k)}. \quad (19)$$

Inserting Equations (18) and (19) into Equation (17), one gets the following:

$$\left(\hat{b}_{k1} \right) \times \left(\hat{b}_{k1}^\dagger \right) = \frac{\Delta_b(k)}{2E_c(k)} \tanh \left(\frac{E_c(k)}{2} \right). \quad (20)$$

Substituting Equation (13) into Equation (4), the gap parameter $\Delta_b(k)$ becomes the following:

$$\Delta_b(k) = \sum_k V_k^* \frac{\Delta_b(k)}{2E_c(k)} \tanh \left(\frac{E_c(k)}{2} \right). \quad (21)$$

where $E_c = \sqrt{\epsilon_b^2(k) + \Delta_b^2(k)}$. Equation (21) is the SC order parameter in the b band.

2.2. Pure SDW State. The Hamiltonian Equation (22) can yield an SDW phase that is a pure magnetic phase for zero SC interaction. The mean-field Hamiltonian for the pure magnetic phase is as follows:

$$\hat{H}_m = \sum_{k \sigma} \epsilon(k) \hat{^a_{k\sigma}} \hat{a}_{k\sigma} + \sum_{k \sigma} \epsilon_b(k) \hat{^b_{k\sigma}} \hat{b}_{k\sigma}$$

$$+ \sum_{\sigma} M \alpha \hat{^a_{k\sigma}} \hat{b}_{(k+p)1\sigma} + h. c. \quad (22)$$

The mean-field Hamiltonian in Equation (22) can be diagonalized using the relevant Bogoliubov transformation or quasiparticle transformation, and its diagonalized form is as follows:

$$\hat{H}_sc \approx \sum_{k \sigma} \hat{\phi}_{mk \sigma}^\dagger \hat{H}_{mk} \phi_{mk \sigma}^\dagger = \sum_{k \sigma} \hat{y}_{mk \sigma}^\dagger \hat{H}_{mk} \hat{y}_{mk \sigma}^\dagger. \quad (23)$$

The Bogoliubov quasi-particle matrix for our transformation is as follows:

$$\hat{y}_{mk \sigma}^\dagger = \left(\hat{b}_{mk \sigma}^\dagger \right). \quad (24)$$

Operators in the Hamiltonian are expressed as follows:

$$\hat{a}_{mk}^\dagger = t_k \hat{h}_{k\sigma} + l_k \hat{\phi}_{mk \sigma}^\dagger$$

$$\hat{b}_{(k+q)\sigma}^\dagger = \alpha \left(\hat{l}_k \hat{h}_{k\sigma} - t_k \hat{e}_{k\sigma} \right). \quad (25)$$

The coherency factors are given by the following:

$$t_k \hat{l}_k = \frac{M(k)}{2E(k)}$$

$$t_k \hat{l}_k^2 = \frac{1}{2} \left(1 \pm \frac{E_b(k) - E_e(k)}{E_b(k) - E_e(k)} \right). \quad (26)$$

Therefore, the diagonalized Hamiltonian will have the form as follows:

$$\hat{H}_sc = \sum_{k \sigma} \Delta_{k\sigma} \hat{h}_{k\sigma}^\dagger \hat{h}_{k\sigma}^\dagger + \sum_{k \sigma} \epsilon(k) \hat{\phi}_{mk \sigma}^\dagger \hat{\phi}_{mk \sigma}^\dagger, \quad (27)$$

where E_b and E_e are the eigenvalues and given by an expression

$$E_b = \frac{1}{2} \left[\epsilon_b(k) + \epsilon_b(k) + \sqrt{\epsilon_b(k) + \epsilon_b(k) + 4M^2} \right]$$

$$E_e = \frac{1}{2} \left[\epsilon_b(k) + \epsilon_b(k) + \sqrt{\epsilon_b(k) - \epsilon_b(k) + 4M^2} \right]$$

Using the Bogoliubov transformation, we defined the SDW state in Equation (23); we can now calculate the expectation value of the operators in Equation (22) to find the SDW gap equation.

$$\langle \hat{a}_{k\sigma} \hat{b}_{(k+q)\sigma}^\dagger \rangle = \left(t_k \hat{h}_{k\sigma} + l_k \hat{\phi}_{mk \sigma}^\dagger \right) \sigma \left(\hat{l}_k \hat{h}_{k\sigma}^\dagger - t_k \hat{\phi}_{mk \sigma}^\dagger \right)$$

$$= t_k \hat{l}_k \left(\langle \hat{h}_{k\sigma}^\dagger \hat{h}_{k\sigma}^\dagger \rangle - \langle \hat{\phi}_{mk \sigma}^\dagger \hat{\phi}_{mk \sigma}^\dagger \rangle \right)$$

$$= t_k \hat{l}_k \left(f(E_b(k)) - f(E_e(k)) \right)$$

$$\approx \frac{M}{2E(k)} \left[\tanh \beta \left(\frac{E_b(k)}{2} \right) - \tanh \beta \left(\frac{E_e(k)}{2} \right) \right]. \quad (28)$$

Substituting Equation (28) into Equation (5), it gives the SDW gap equation.

$$M = \frac{K}{2} \left[\tanh \beta \left(\frac{E_b(k)}{2} \right) - \tanh \beta \left(\frac{E_e(k)}{2} \right) \right]. \quad (29)$$

2.3. SC Order Parameter (Δ). There is clear information that show the coexistence of SDWs and superconductivity in both hole- and electron-doped families in most FebSc [22]. In our compound, Ba$_{1-x}$K$_x$Fe$_2$As$_2$, Superconductivity can be obtained by (1) chemical doping [36–38] and/or (2) the application of pressure [39]. The addition of a chemical dopant and/or the application of pressure on BaFe$_2$As$_2$ results in the eradication of the SDW and, therefore, in the reduction of magnetic order.
Superconductivity is observed when the magnetic order is sufficiently weak; thus, superconductivity and weak magnetic order can still coexist [37, 38, 40]. The exact mechanism for the emergence of superconductivity is, however, still unknown. Therefore, we need to study the coupled system below the SC transition temperature. The mean-field Hamiltonian without the interaction part for both the SC state and the magnetic state is stated in Equation (2). Applying the second quasi-particle transformation to Equation (2), it gives the following:

$$\hat{H} = \sum_{k,\sigma} E_g(k) \hat{\phi}_{gk} \hat{\phi}_{g\sigma}^{\dagger} + \sum_{k,\sigma} E_b(k) \hat{\phi}_{bk} \hat{\phi}_{b\sigma}^{\dagger} + \sum_k \Delta_a \left(\hat{\phi}_{gk} \hat{\phi}_{g-k\downarrow} + h.c. \right)$$

$$+ \sum_k \Delta_b \left(\hat{\phi}_{bk} \hat{\phi}_{b-k\downarrow} + h.c. \right). \tag{30}$$

Using Nambu notation

$$\hat{H} = \sum_{k,\sigma} \hat{\phi}_{gk} \hat{\phi}_{g\sigma} \hat{\phi}_{g\sigma}^{\dagger} \hat{\phi}_{gk}^{\dagger} + \sum_{k,\sigma} \hat{\phi}_{bk} \hat{\phi}_{b\sigma} \hat{\phi}_{b\sigma}^{\dagger} \hat{\phi}_{bk}^{\dagger}, \tag{31}$$

where the Nambu spinors are as follows:

$$\hat{\phi}_{gk} = \left(\hat{\phi}_{gk} \hat{\phi}_{g-k} \right) \tag{32}$$

$$\hat{\phi}_{bk} = \left(\hat{\phi}_{bk} \hat{\phi}_{b-k} \right).$$

The energy matrix

$$\hat{H}_{gk} = \begin{pmatrix} E_g(k) \Delta_a(k) \\ \Delta_a(k) - E_g(k) \end{pmatrix} \tag{33}$$

$$\hat{H}_{bk} = \begin{pmatrix} E_b(k) \Delta_b(k) \\ \Delta_b(k) - E_b(k) \end{pmatrix}.$$

Diagonalizing Equation (31) for each band gives the following:

$$\hat{H} = \sum_{k,\sigma} \hat{\gamma}_{gk} \hat{\gamma}_{g\sigma} \hat{\gamma}_{g\sigma}^{\dagger} \hat{\gamma}_{gk}^{\dagger} + \sum_{k,\sigma} \hat{\gamma}_{bk} \hat{\gamma}_{b\sigma} \hat{\gamma}_{b\sigma}^{\dagger} \hat{\gamma}_{bk}^{\dagger}, \tag{34}$$

where \(\gamma_{gk}^{\dagger}\) and \(\gamma_{bk}^{\dagger}\) are the Bogoliubov quasi-particle matrix which is defined as the following transformations:

$$\gamma_{gk}^{\dagger} = \begin{pmatrix} A_{gk}^{\dagger} \\ A_{g-k} \end{pmatrix} \tag{35}$$

$$\gamma_{bk}^{\dagger} = \begin{pmatrix} B_{bk}^{\dagger} \\ B_{b-k} \end{pmatrix}.$$

Their relation to fermion operators is defined as follows:

$$\hat{\gamma}_{gk}^{\dagger} = U_k \hat{A}_{gk}^{\dagger} + V_k \hat{A}_{g-k}$$

$$\hat{\gamma}_{bk}^{\dagger} = X_k \hat{B}_{bk}^{\dagger} + Y_k \hat{B}_{b-k}, \tag{36}$$

where \(U_k, V_k, X_k\) and \(Y_k\) are coherence factors that satisfy the following relation:

$$U_k, V_k = \frac{-\Delta_a(k)}{2E_g(k)} \tag{37}$$

$$U_k^2, V_k^2 = \frac{1}{2} \left(1 + \frac{E_b(k)}{\sqrt{E_b^2(k) - \Delta_b^2(k)}} \right), \tag{38}$$

where \(E_a\) and \(E_b\) are the eigenvalues or excitations and are given by the following:

$$E_a(k) = \sqrt{c_a^2(k) + (\Delta_a + M)^2} \quad \text{and} \quad E_b(k) = \sqrt{c_b^2(k) + (\Delta_b - M)^2}.$$

Therefore, the diagonalized Hamiltonian will have the form as follows:

$$\hat{H} = \sum_{k,\sigma} E_A(k) \hat{\gamma}_{gk}^{\dagger} \hat{\gamma}_{g\sigma} + \sum_{k,\sigma} E_B(k) \hat{\gamma}_{bk}^{\dagger} \hat{\gamma}_{b\sigma}, \tag{39}$$

Following the same procedure as for the SC state and the magnetic state, the gap equations for both the magnetic and SC states, the gap equations or order parameters are given by the following:

$$\Delta_a = \sum_k V_k^a \frac{4E_A(k)}{E_a(k)} \tanh \beta \left(\frac{E_A(k)}{2} \right)$$

$$+ \sum_k V_k^a \frac{4E_A(k)}{E_a(k)} \tanh \beta \left(\frac{E_A(k)}{2} \right) \tag{40}$$

$$\Delta_b = \sum_k V_k^b \frac{4E_B(k)}{E_b(k)} \tanh \beta \left(\frac{E_B(k)}{2} \right)$$

$$+ \sum_k V_k^b \frac{4E_B(k)}{E_b(k)} \tanh \beta \left(\frac{E_B(k)}{2} \right),$$

where \(E_A(k) = \sqrt{c_a^2(k) + (\Delta_a + M)^2}\) and \(E_b(k) = \sqrt{c_b^2(k) + (\Delta_b - M)^2}.$$

Near the edge of the Fermi-surface, there is homogeneity, and the two order parameters can be taken as equal and opposite; with this assumption, we can take \(\Delta_b(k) = \Delta_a(k),\)
and $\epsilon_s = \epsilon_b$. With this in mind, the two SC gap equations of Equation (40) are simplified to the following:

$$\Delta_s = \sum_k V_k^e \frac{\Delta_s(k) + M(k)}{4E_A(k)} \tanh \beta \left(\frac{E_A(k)}{2} \right) + \sum_k V_k^e \frac{\Delta_s(k) - M(k)}{4E_B(k)} \tanh \beta \left(\frac{E_B(k)}{2} \right), \quad (41)$$

where $E_A(k) = \sqrt{\epsilon_s^2(k) + (\Delta_s(k) + M(k))^2}$ and $E_B(k) = \sqrt{\epsilon_s^2(k) + (\Delta_s(k) - M(k))^2}$.

For simplicity, the interaction potential $V_k^e = V$ and Equation (41) is simplified to the following:

$$\Delta_s = \frac{V}{4} \sum_{k=1,2} \frac{\Delta_s(k) \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + \Delta_s^2(k)}}{\sqrt{\epsilon_s^2(k) + \Delta_s^2(k)}}, \quad (42)$$

where $\Delta_s = \Delta_s - (-1)^s M$ is called the effective order parameter.

Changing summation to integration in the region $\hbar \omega_F < \epsilon_s(k) < \hbar \omega_F$ and by introducing the density of state at the Fermi level of the interband interaction, $N(0)$ that is as follows:

$$\sum \approx \int_{-h\omega_F}^{h\omega_F} N(0) d\epsilon_s(k). \quad (43)$$

The density of state $N(0)$ is equal to $\sqrt{N_s(0)N_b(0)}$ and Equation (42), becomes the following:

$$\Delta_s = \frac{V}{4} \int_{-h\omega_F}^{h\omega_F} \sqrt{N_s(0)N_b(0)} \Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + \Delta_s^2(k)} \frac{1}{\sqrt{\epsilon_s^2(k) + \Delta_s^2(k)}}, \quad (44)$$

$$\Delta_s = \frac{V \sqrt{N_s(0)N_b(0)}}{4} \int_{-h\omega_F}^{h\omega_F} \Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + \Delta_s^2} d\epsilon_s(k), \quad (45)$$

$$\frac{4}{V \sqrt{N_s(0)N_b(0)}} = \int_{-h\omega_F}^{h\omega_F} \Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + \Delta_s^2} d\epsilon_s(k), \quad (46)$$

$$\frac{2}{V \sqrt{N_s(0)N_b(0)}} = \int_{-h\omega_F}^{h\omega_F} \Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + \Delta_s^2} d\epsilon_s(k), \quad (47)$$

Let $\varphi = V \sqrt{N_s(0)N_b(0)}$.

$$\frac{1}{\varphi} = \int_{-h\omega_F}^{h\omega_F} \frac{1}{\Delta_s} \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2} d\epsilon_s(k), \quad (48)$$

$$\Delta_s = \frac{V}{4} \int_{-h\omega_F}^{h\omega_F} \frac{\Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}}{\sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}} d\epsilon_s(k), \quad (49)$$

$$\frac{2}{\varphi} = \int_{-h\omega_F}^{h\omega_F} \frac{\Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}}{\sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}} d\epsilon_s(k), \quad (50)$$

$$\frac{2}{\varphi} = \int_{-h\omega_F}^{h\omega_F} \frac{\Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}}{\sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}} d\epsilon_s(k), \quad (51)$$

$$h_1 + h_2, \quad (52)$$

where

$$h_1 = \int_{-h\omega_F}^{h\omega_F} \frac{\Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}}{\sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}} d\epsilon_s(k), \quad (53)$$

$$h_2 = \int_{-h\omega_F}^{h\omega_F} \frac{\Delta_s \tanh \frac{\beta}{2} \sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}}{\sqrt{\epsilon_s^2(k) + (\Delta_s - M)^2}} d\epsilon_s(k), \quad (54)$$

$$h_1 = l_1 + l_2. \quad (55)$$
If \(T \rightarrow T_c, \Delta_s(k) \rightarrow 0 \), and evaluating the integrals,
\[
I_1 = \int_0^{\hbar \omega_p} \frac{2 \beta \tanh \frac{x}{2}}{2 \mu} \, de_s(k),
\]
\[
= \int_0^{\hbar \omega_p} \frac{2 \beta \tanh \frac{x}{2}}{2 \mu} \, de_s(k),
\]
\[
= \int_0^{\hbar \omega_p} \frac{2 \beta}{2 \mu} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k)
\]
\[
= \frac{2 \beta}{2 \mu} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k).
\]

Then Equation (56) written as following:
\[
\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k).
\]

From Laplacian transform with the Matsubara relation result, we can write Equation (58) as follows:
\[
\frac{2}{\beta} \int_0^{\hbar \omega_p} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k)
\]
\[
= \frac{2}{\beta} \int_0^{\hbar \omega_p} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k)
\]
\[
= \frac{2}{\beta} \int_0^{\hbar \omega_p} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k).
\]

Apply following equality.
\[
\frac{1}{(f^2 + \epsilon_s(k)^2)} \, de_s(k) = \frac{2}{\beta} \int_0^{\hbar \omega_p} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k).
\]

From the above equality relations \(z = \beta \epsilon_s(k) \) and \(dz = \beta \frac{de_s(k)}{2} \)

\[
I_1 = \int_0^{\hbar \omega_p} \frac{2 \beta \tanh \frac{x}{2}}{2 \mu} \, de_s(k) - \int_0^{\hbar \omega_p} \frac{4 \beta}{2} \left(\frac{\mu}{(1 + z^2)^2} \right) \, de_s(k).
\]

\[
\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 + \mu^2} \, de_s(k).
\]
\[
\begin{align*}
&\int_0^{\hbar} \frac{\beta M^2 \operatorname{sech}^2 \left(\frac{\beta}{2} \left(e^2(k) + M^2 \right) \right)}{4} \, de(k).
\end{align*}
\]

After some steps, Equation (72) becomes the following:

\[
I_2 = -\frac{\beta M}{4} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right) + \int_0^{\hbar} \frac{\beta M^2 \tanh^2 \left(\frac{\beta}{2} \left(e^2(k) + M^2 \right) \right)}{2} \, de(k).
\]

Now Equation (54) yields,

\[
\begin{align*}
h_1 &= \ln \left(\frac{1.14 \hbar \omega_F}{k_B T_c} \right) - 1.052 \left(\frac{M}{\pi k_B T_c} \right)^2 - \frac{\beta M}{4} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right) + \int_0^{\hbar} \frac{\beta M^2 \tanh^2 \left(\frac{\beta}{2} \left(e^2(k) + M^2 \right) \right)}{2} \, de(k).
\end{align*}
\]

Applying the same procedure, \(h_2 \) can be written as follows:

\[
\begin{align*}
h_2 &= \ln \left(\frac{1.14 \hbar \omega_F}{k_B T_c} \right) - 1.052 \left(\frac{M}{\pi k_B T_c} \right)^2 - \frac{\beta M}{4} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right) - \int_0^{\hbar} \frac{\beta M^2 \tanh^2 \left(\frac{\beta}{2} \left(e^2(k) + M^2 \right) \right)}{2} \, de(k).
\end{align*}
\]

Substituting Equations (74) and (75) into Equation (51), it gives the following:

\[
\begin{align*}
\frac{1}{\varphi} &= \ln \left(\frac{1.14 \hbar \omega_F}{k_B T_c} \right) - 1.052 \left(\frac{M}{\pi k_B T_c} \right)^2 - \frac{\beta M}{4} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right).
\end{align*}
\]

For small \(M \), one can ignore the \(M^2 \) term. Thus, Equation (76) reduces to the following:

\[
\begin{align*}
\frac{1}{\varphi} &= \ln \left(\frac{1.14 \hbar \omega_F}{k_B T_c} \right) - \frac{\beta M}{4} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right),
\end{align*}
\]

\[
\begin{align*}
\exp \left(\frac{1}{\varphi} \right) &= 1.14 \frac{\hbar \omega_F}{k_B T_c} \exp \left(-\frac{M}{4k_B T_c} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right) \right).
\end{align*}
\]

\[
T_c = 1.14 \frac{\hbar \omega_F}{k_B} \exp \left(-\frac{1}{\varphi} - \frac{M}{4k_B T_c} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right) \right).
\]

(80)

The expression for dependence of \(T_c \) on \(M \) in the inter band interaction becomes the following:

\[
T_c = 1.14 \frac{\hbar \omega_F}{k_B} \exp \left(-\frac{1}{\varphi} - \frac{M}{4k_B T_c} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M} \right) \right).
\]

(81)

Equation (81) clearly shows the dependence of the SC transition temperature on the SDW order parameter. In the pure diamagnetism region, \(M = 0 \), and Equation (81) becomes the following:

\[
T_c = 1.14 \frac{\hbar \omega_F}{k_B} \exp \left(-\frac{1}{\varphi} \right).
\]

(82)

This is like the well-known BCS expression for the SC transition temperature \((T_c) \). From Equation (82), the SC coupling parameter can be found as follows:

\[
\begin{align*}
\frac{1}{\varphi} &= \ln \left(\frac{1.14 \hbar \omega_F}{k_B T_c} \right),
\end{align*}
\]

(82.1)

where \(\hbar \omega_F = 84.2 \) meV, \(T_c = 38 K \) [21, 25, 30] and \(k_B = 0.08617 \) meV/K. Substituting these values in Equation (82.1), we will have \(\frac{1}{\varphi} = \ln \frac{1.14 \times 84.2}{0.08617} = \ln \frac{95.988}{327.46} = \ln \frac{2.914}{3.37} = 0.296 \)

For perfect diamagnetism \(M = 0 \) Equation (50) gives the following:

\[
\begin{align*}
\frac{1}{\varphi} &= \int_0^{\hbar} \frac{\beta M^2 \tanh^2 \left(\frac{\beta}{2} \left(e^2(k) + \Delta^2 \right) \right)}{2} \, de(k).
\end{align*}
\]

(83)

After some steps, Equation (83) becomes the following:

\[
\begin{align*}
\frac{1}{\varphi} &= \ln \left(\frac{1.14 \hbar \omega_F}{k_B} \right) - 1.052 \left(\frac{\Delta}{\pi k_B T_c} \right)^2.
\end{align*}
\]

(84)

From the BCS theory,

\[
\frac{k_B T_c}{\hbar \omega_F} = 1.14 \hbar \omega_F \exp \left(-\frac{1}{\varphi} \right).
\]

(85)

\[
\frac{k_B T_c}{\hbar \omega_F} = \ln \left(\frac{1.14 \hbar \omega_F}{k_B T_c} \right).
\]

(86)

\[
\ln \left(\frac{1.14 \hbar \omega_F}{k_B T_c} \right) = \ln \left(\frac{1.14 \hbar \omega_F}{k_B} \right) - 1.052 \left(\frac{\Delta^2}{\pi k_B T_c} \right)^2.
\]

(87)
\[
\ln \left(\frac{T}{T_c} \right) = -1.052 \left(\frac{\Delta}{\pi \nu T_c} \right)^2.
\]
(88)

Using logarithmic series
\[
\ln(1 \pm x) = \pm x - \frac{1}{2} x^2 \pm \frac{1}{3} x^3 - .
\]
(89)

\[
\ln \left(1 - \left(1 - \frac{T}{T_c} \right) \right) = \left(1 - \frac{T}{T_c} \right) - \frac{1}{2} \left(1 - \frac{T}{T_c} \right)^2 - \frac{1}{3} \left(1 - \frac{T}{T_c} \right)^3 - .
\]
(90)

Ignoring the high-order terms, it reduces to the following:
\[
\ln \left(1 - \left(1 - \frac{T}{T_c} \right) \right) \approx - \left(1 - \frac{T}{T_c} \right),
\]
(91)

\[
- \left(1 - \frac{T}{T_c} \right) = -1.052 \left(\frac{\Delta}{\pi \nu T_c} \right)^2.
\]
(92)

\[
\Delta_s(T) = 3.063 k_B T_c \left(1 - \frac{T}{T_c} \right)^3.
\]
(93)

2.4. Magnetic Order Parameter \(M \). Using the Bogoliubov transformation, we defined for SDW state in Equation (23); we are now able to calculate the expectation value of the operators in Equation (22) with SC state, the SDW gap equation or SDW order parameter \(M \) is given by the following:
\[
M = \frac{U}{\beta} \sum_k \left(\frac{\hat{a}_k \hat{a}_{k+p}^\dagger + \hat{a}_{k+p}^\dagger \hat{a}_k}{2} \right).
\]
(94)

Applying the same procedure as for the pure SDW region, Equation (94) is simplified.
\[
M = \sum_k U \left[\frac{-1}{2E(k)} \left(\frac{\Delta_s(k) + M(k)}{\tanh \beta \frac{E_A(k)}{2}} \right) + \frac{\Delta_s(k) - M(k)}{2E(k)} \left(\frac{\tanh \beta \frac{E_A(k)}{2}}{} \right) \right],
\]
(95)

where
\[
E(k) = \sqrt{\epsilon_k^2(k) + (\Delta_s(k) + M(k))^2},
\]
(96)
\[
E_A(k) = \sqrt{\epsilon_k^2(k) + (\Delta_s(k) + M(k))^2},
\]
(97)
\[
E_B(k) = \sqrt{\epsilon_k^2(k) + (\Delta_s(k) - M(k))^2}.
\]
(97)

Equation (95) can be simplified as follows:
\[
M = \frac{U}{4} \sum_{j=1}^\infty \frac{(-1)^j (\Delta_j(k)) \tanh \frac{\beta}{2} \sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}}{\sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}},
\]
(98)

where \(\Delta_j \equiv \Delta_j (-1)^j M \), which is the effective order parameter. \(E(k) = \sqrt{\epsilon_k^2(k) + \Delta_j^2(k)} \).

Changing the summation to integration in the region \(-\hbar \omega_F < \epsilon(k) < \hbar \omega_F \) and by introducing the density of state at the Fermi level is \(N(0) \) that is as follows:
\[
\sum_k \approx \int_{-\hbar \omega_F}^{\hbar \omega_F} N(0) d\epsilon(k).
\]
(99)

Inserting Equation (99) into Equation (98), we get the following:
\[
M = \frac{U}{4} \int_{-\hbar \omega_F}^{\hbar \omega_F} \frac{(-1)^j (\Delta_j(k)) \tanh \frac{\beta}{2} \sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}}{\sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}} d\epsilon(k),
\]
(100)

Say \(\psi = UN(0) \), which is called the magnetic coupling parameter.
\[
M = \frac{(-1)^j \psi \Delta_j}{4} \int_{-\hbar \omega_T}^{\hbar \omega_T} \tanh \frac{\beta}{2} \sqrt{\epsilon_k^2(k) + \Delta_j^2(k)} \, d\epsilon(k),
\]
(102)

\[
\frac{4}{\psi} = \frac{(-1)^j \Delta_j}{M \int_{-\hbar \omega_T}^{\hbar \omega_T} \frac{\tanh \frac{\beta}{2} \sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}}{\sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}} d\epsilon(k)},
\]
(103)

\[
\frac{2}{\psi} = \frac{(-1)^j \Delta_j}{M \int_0^{\hbar \omega_T} \frac{\tanh \frac{\beta}{2} \sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}}{\sqrt{\epsilon_k^2(k) + \Delta_j^2(k)}} d\epsilon(k)},
\]
(104)

\[
\frac{2}{\psi} = \frac{(-1)^j \Delta_j}{M \int_0^{\hbar \omega_T} \frac{\tanh \frac{\beta}{2} \sqrt{\epsilon_k^2(k) + (\Delta_j + M)^2(k)}}{\sqrt{\epsilon_k^2(k) + (\Delta_j + M)^2(k)}} d\epsilon(k)},
\]
(105)

\[
\frac{2}{\psi} = \frac{(-1)^j \Delta_j}{M \int_0^{\hbar \omega_T} \frac{\tanh \frac{\beta}{2} \sqrt{\epsilon_k^2(k) + (\Delta_j - M)^2(k)}}{\sqrt{\epsilon_k^2(k) + (\Delta_j - M)^2(k)}} d\epsilon(k)},
\]
(105)
\[
\frac{2}{\psi} = \left(1 + \frac{\Delta_s}{M}\right) \int_0^{\hbar \omega_F} \frac{\tanh \frac{\theta}{2} \sqrt{\epsilon^2_s(k) + (\Delta_s + M^2)^2(k)}}{\sqrt{\epsilon^2_s(k) + (\Delta_s + M^2)^2(k)}} \, dc_s(k) \\
- \left(1 - \frac{\Delta_s}{M}\right) \int_0^{\hbar \omega_F} \frac{\tanh \frac{\theta}{2} \sqrt{\epsilon^2_s(k) + (\Delta_s - M^2)^2(k)}}{\sqrt{\epsilon^2_s(k) + (\Delta_s - M^2)^2(k)}} \, dc_s(k).
\]

After some steps, one gets,
\[
\frac{1}{\psi} = \ln \left(1.14 \frac{\hbar \omega_F}{k_B T_{M}}\right) - 1.052 \left(\frac{M}{\pi k_B T_{M}}\right)^2 + \frac{\beta M}{4} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M}\right).
\]

For small values of \(M\), we ignore \(M^2\) term. Thus, Equation (107) reduces to the following:
\[
\frac{1}{\psi} = \ln \left(1.14 \frac{\hbar \omega_F}{k_B T_{M}}\right) + \frac{\beta M}{4} \ln \left(\frac{\hbar \omega_F + M}{\hbar \omega_F - M}\right),
\]

\[
T_{M} = 1.14 \frac{\hbar \omega_F}{k_B} \exp \left(-\frac{1}{\psi}\right).
\]

where \(\psi\) is the SDW coupling parameter. Equation (110) shows that the SDW order parameter increases as the SDW transition temperature increases. For \(M = 0\), Equation (110) is simplified to the following:
\[
T_{M} = 1.14 \frac{\hbar \omega_F}{k_B} \exp \left(-\frac{1}{\psi}\right),
\]

where \(\hbar \omega_F = 84.2\text{meV},\) \(T_{M} = 140\text{K}\) [21, 22, 36] and \(k_B = 0.08617\text{meV/K}\). Substituting these values in Equation (110.1), we have \(\frac{1}{\psi} = \ln \left(\frac{1.14 \times 84.2\text{meV}}{0.08617\text{meV/K} \times 2140\text{K}}\right) = \ln\left(\frac{95.988}{72.0638}\right) = \ln(7.9567) = 2.074\text{meV} = 1.1487\text{meV}.

For pure magnetic region \(\Delta_s = 0\) and Equation (106) becomes the following:
\[
\frac{1}{\psi} = -\int_0^{\hbar \omega_F} \frac{2 \beta \tanh \frac{\theta}{2} \sqrt{\epsilon^2_s(k) + M^2(k)}}{2 \gamma} \, dc_s(k).
\]

Let say \(\gamma^2 = \beta^2 (\epsilon^2_s(k) + \Delta^2_s(k))\) and \(\int_{-\infty}^{\infty} \frac{1}{(2n + 1) \pi^2 + \gamma^2} = \frac{1}{2\gamma}\)
\[
\frac{1}{\psi} = -\int_0^{\hbar \omega_F} \frac{2 \beta \tanh \frac{\theta}{2} \sqrt{\epsilon^2_s(k) + M^2(k)}}{2 \gamma} \, dc_s(k).
\]

\[
= -2 \beta \int_0^{\hbar \omega_F} \frac{1}{(2n + 1) \pi^2 + \gamma^2} \, dc_s(k).
\]
\[
\ln \left(\frac{\beta}{2} \hbar \omega_F \right) \tanh \left(\frac{\beta}{2} \hbar \omega_F \right) - \ln \left(\frac{\pi}{4} \right) \\
- \frac{4\beta^2 M^2}{\hbar} \sum_{i} \sum_{j} \frac{1}{(2n+1)^2} \int_{0}^{\infty} \frac{1}{(1+z^2)^2} \, dz,
\]

(122)

\[
= \ln \left(\frac{\beta}{2} \hbar \omega_F \right) \tanh \left(\frac{\beta}{2} \hbar \omega_F \right) - \ln \left(\frac{\pi}{4} \right) - \frac{4\beta^2 M^2}{\pi^3} \frac{7}{8} \xi(3) \frac{\pi}{4}.
\]

(123)

For low-temperature \(\tanh \left(\frac{\xi}{\hbar \omega_F} \right) \rightarrow 1\) and \(\gamma\) denotes the Euler’s constant and its value is given by \(\gamma = 0.5772\).
\[
\int_{0}^{\infty} \frac{1}{1+z^2} \, dz = \frac{\pi}{2} \text{ and } \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \left(1 - 2^{-2}\right)\xi(2)\text{ this means } \xi(3) = 1.202, \text{ so Equation (123) can be written as follows:}
\]

\[
\frac{\beta}{2} \int_{0}^{\hbar \omega_F} \sum_{n} \frac{1}{\omega_n^2 + \xi^2 (k) + M^2} \, dc_n(k)
\]

\[
= \ln \left(\frac{\beta}{2} \hbar \omega_F \right) - \ln \left(\frac{\pi}{4} \right) - \frac{4\beta^2 M^2}{\pi^3} \frac{7}{8} \left(1.202\right) \frac{\pi}{4}.
\]

(124)

Therefore, it gives the following:

\[
- \frac{1}{\psi} = \ln \left(\frac{1.14 \hbar \omega_F}{k_B T} \right) - M^2 \left(\frac{1}{\pi k_B T} \right)^2 1.052.
\]

(125)

For a very small value of \(M, M^2\) goes to zero and \(T \rightarrow T_M\). The magnetic coupling parameter becomes as follows:

\[
- \frac{1}{\psi_f} = \ln \left(\frac{1.14 \hbar \omega_F}{k_B T_M} \right).
\]

(127)

Substituting Equation (127) into Equation (126), we get the following:

\[
\ln \left(1 - \left(1 - \frac{T}{T_M} \right) \right) = -M^2(k) \left(\frac{1}{\pi k_B T_M} \right)^2 1.052.
\]

(128)

After some steps, we get the following:

\[
M = \frac{\pi k_B T_M}{1.052} \left(1 - \frac{T}{T_M} \right)^\frac{1}{4}.
\]

(129)

The expression for the temperature dependence of SDW in the temperature range of \(0 \leq T \leq 140K\) [36] becomes the following:

\[
M(T) = 3.063 k_B T_M \left(1 - \frac{T}{T_M} \right)^\frac{1}{4}.
\]

(130)

This equation tells that if the temperature increases, the SDW order parameter decreases.

3. Result and Discussion

In this chapter, the effect of temperature \((T)\) on the SC order parameter \((\Delta_s)\) and SDW order parameter \((M)\) on the SC transition temperature \((T_s)\) and on SDW transition temperature \((T_M)\). It also describes the analysis we made for the conceptual analysis of the interplay of superconductivity and SDW in a two-band model for \(\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2\). Using a two-band model Hamiltonian and using Bogoliubov transformation formalism, one obtained the mathematical expressions for the SC transition temperature \((T_s)\), the SDW transition temperature \((T_M)\), the SC order parameter \((\Delta_s)\) and the SDW order parameter \((M)\).

From Equations (82) and (93) and using the MATLAB script, we plot the phase diagram \(\Delta_s(M)\) versus \(T(K)\) as Figure 1(a) illustrates this. Based on Equation (130), the phase diagram showing how the magnetic order parameter \((M)\) depends on the temperature in the pure magnetic region shown in Figure 1(b) was plotted.

As seen in Figure 1(a), when the temperature increases, the SC order parameter decreases and gets lost as the temperature is equal to the critical temperature. The maximum value of SC order parameter, \(\Delta_s = 10.01 \text{ meV}\), occurs at \(T = 0\) and it vanishes at the SC transition temperature \(T_s = 38 \text{ K}\). As Figure 1(b) shows, magnetism decreases as the temperature increases and becomes lost at the SDW transition temperature \(T_M = 140 \text{ K}\). The maximum value of the SDW order parameter, \(M = 36.9514 \text{ meV}\), occurs at \(T = 0\). This finding is also in agreement with experimental observations [21, 23, 25, 30, 37].

Based on Equation (81), we plotted the phase diagrams of \(T_s\) versus \(M\). As can be observed in Figure 2(a), the SC transition temperature is suppressed as the value of the SC SDW order parameter increases for \(\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2\). From this figure, one can observe that the SDW order parameter suppresses superconductivity and increases the magnetic nature of the system.

Using Equation (110), one also plotted the phase diagram of the transition temperature \((T_M)\) versus SDW order parameter of SDW \((M)\) (Figure 2(b)). As can be observed from the figure, \(T_M\) increases with increasing SDW order parameter of the \(\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2\) superconductor.

Finally, by merging Figures 2(a) and 2(b), one depicted a region where both superconductivity and SDW coexist, as shown in Figure 3. This figure shows the possible interplay of superconductivity and SDW for \(\text{Ba}_{1-x}\text{K}_x\text{Fe}_2\text{As}_2\). As indicated in this figure, this finding is in agreement with experimental observations [21, 25, 30]. This figure also depicts there are regions that show SC state and antiferromagnetic state segregates, which indicates that there are regions where magnetic and SC phases are not mixed.
4. Conclusions

In this work, the possible coexistence of superconductivity and magnetism has been studied in the two-band model for the iron-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$. The superconductivity order parameter is weakened when the temperature increases and gets lost at the SC critical temperature. The SC transition temperature is weakened as the magnitude of the SDW order parameter increases. The SDW transition temperature increases with increasing SDW order parameter for Ba$_{1-x}$K$_x$Fe$_2$As$_2$. This finding also proofs the dependence of the SDW order parameter on the temperature in the pure magnetic region of the iron-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2$. The SDW order parameters is weakened when the temperature increases.
increases and vanishes at the SDW transition temperature. We have depicted the possible interplay of superconductivity and magnetism in the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ superconductor. The possible interplay of superconductivity and magnetism in Ba$_{1-x}$K$_x$Fe$_2$As$_2$ initiates further study in the field of condensed matter physics for further studies. The results obtained in this article work are in agreement with previous studies [25, 30] that the coexistence implies that there is a weak exchange coupling between the itinerant SC electrons and the localized ordered spins in the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ superconductor.

Data Availability

The data used to support the findings of this study are included in the article.

Ethical Approval

The conducted research is not related to either human or animal use.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally to this study. That is, they analyzed the data, drafted and edited the manuscript, and read and approved the final manuscript.

References

[9] M. Hesani, K. Rahimi, and A. Yazdani, “Charge-doping-induced variation of the superconducting BaFe$_2$As$_2$ electronic structure and the emerging physical effects a
14 Advances in Condensed Matter Physics

16 F. Waßer, J. T. Park, S. Aswartham et al., “Strong spin resonance mode associated with suppression of soft magnetic ordering in hole-doped Ba$_{1-x}$Na$_x$Fe$_2$As$_2$,” *NPJ Quantum Materials*, vol. 4, Article ID 59, 2019.

22 Z. Xin, Y. Wang, C. Cai et al., “Revealing the intrinsic superconducting gap anisotropy in surface-neutralized BaFe$_2$(As$_{0.7}$P$_{0.3}$)$_2$,” *Communications Physics*, vol. 4, Article ID 31, 2021.

23 M. Bonura, H. Huang, C. Yao, Y. Ma, and C. Senatore, “Current transport, magnetic and elemental properties of densified Ag-sheathed Ba$_1$-K$_x$Fe$_2$As$_2$ tapes,” *Superconductor Science and Technology*, vol. 33, no. 9, Article ID 095008, 2020.

24 Z. W. Dlamini, A. Srinivasan, Y. Ma, and V. V. Srinivasu, “Electron spin resonance in the superconducting state of Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$,” *AIP Conference Proceedings*, vol. 1953, no. 1, Article ID 120079, 2018.

25 M. D. Watson, P. Dudin, L. C. Rhodes et al., “Probing the reconstructed Fermi surface of antiferromagnetic BaFe$_2$As$_2$ in one domain,” *NPJ Quantum Materials*, vol. 4, Article ID 36, 2019.

29 T. Böhm, F. Kretzschmar, A. Baum et al., “Microscopic origin of cooper pairing in the iron-based superconductor Ba$_{1-x}$K$_x$Fe$_2$As$_2”, *NPJ Quantum Materials*, vol. 3, Article ID 48, 2018.

31 T. Lissau, “Parameterization of high temperature superconductivity in two band model for the iron based superconductor Ba$_{1-x}$Na$_x$Fe$_2$As$_2”$ (Doctoral dissertation), 2022.

32 T. Kidanemariam, G. Kahsay, and A. Mebratuhi, “Theoretical investigation of the coexistence of superconductivity and spin density wave (SDW) in two-band model for the iron-based superconductor BaFe$_2$(As$_{1-y}$P$_y$)$_2”, *The European Physical Journal B*, vol. 92, Article ID 39, 2019.

38 A. Park, S. Pyon, K. Ohara et al., “Field-driven transition in the Ba$_{1-x}$K$_x$Fe$_2$As$_2$ superconductor with splayed columnar,” *Physical Review B*, vol. 97, no. 6, Article ID 064516, 2018.
