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In this work, a new canonical transformation for the Anderson lattice Hamiltonian with f–f electron coupling was developed,
which was further used to identify a new Kondo lattice Hamiltonian. Different from the single impurity Kondo effect, the resulted
new Kondo lattice Hamiltonian only includes the spin-flip scattering processes between conduction electrons and f-electrons, while
the normal process of non-spin-flip scattering is absent in this Hamiltonian, under the second order approximation. The new
Kondo lattice Hamiltonian may be used to study some anomalous physical properties in some Kondo lattice intermetallic
compounds.

1. Introduction

The single impurity Kondo effect is the consequence ofmagnetic
atoms diluted in a nonmagnetic metal (e.g., 0.1% of iron in
copper). The interaction mechanism of the single impurity
Kondo effect is well-studied [1–4]. In 1961, Anderson [5] exam-
ined the localized magnetic moment problem of a single mag-
netic atom in a nonmagnetic metal and used the Hamiltonian
such as the following:

H¼ ∑
k;σ

ϵkC
þ
kσCkσ þ ∑

σ
ϵdC

þ
dσCdσ þ UCþ

d↑Cd↑C
þ
d↓Cd↓

þ∑
kσ
Vdk Cþ

kσCdσ þ Cþ
dσCkσ

À Á
;

ð1Þ

where Cþ
kσ (Ckσ) is the creation (destruction) operator of con-

duction electrons with momentum k and spin σ; Cþ
dσ or Cdσ is

the creation or destruction operator of the localized d-electrons
of the transition metal magnetic atom;U is the on-site Coulomb
repulsive energy of localized d-electrons; Vdk is the coupling
constant between d-electrons and conduction electrons. As
Schrieffer–Wolff demonstrated by using a canonical transforma-
tion [6, 7], such single impurity Anderson Hamiltonian can be

transformed to a single Kondo impurity Hamiltonian as the
following:

eH ¼ ∑
k;σ

ϵkC
þ
kσCkσ −

J
2N

∑
k0k

Cþ
k↑Ck0↑ − Cþ

k↓Ck0↓

� �
Sz

n
þ Cþ

k↑Ck0↓S− þ Cþ
k↓Ck0↑Sþ

o
;

ð2Þ

in which

Sz ¼
σz
2
; ð3Þ

SÆ ¼ σx Æ iσy
À Á

2
; ð4Þ

where σx, σy, and σz are the Pauli spin matrices.
When rare-earth or actinide atoms constitute a sublattice

in a compound, the system may be called Kondo lattice com-
pound. The examples may include CeAl3 [8–10], CeCu2Si2
[11–13], UBe13 [14–16], CeB6 [17, 18], CeCu6 [19–21], CePtSi
[22], Ce2PdIn8 [23], CeGe [24], (Ce1−xLax)Cu2Ge2 [25],
Yb3Ru4Al12 [26], UAuBi2 [27], Ce(Cu, Al,Si)2 [28], CeCu2Mg
[29], Ce2Rh3Sn5 [30], CeRhIn5 [31], CeCu9In2 [32], and
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others. Doniach [33] studied a one-dimensional Kondo lattice
model for Kondo lattice compound and suggested that a
second-order transition from an antiferromagnetic state to a
Kondo spin compensated ground state could occur as the
exchange coupling constant J increased to a critical value Jc;
for systems in which J ∼ Jc, a very weak sublattice magnetiza-
tion may occur as a result of nearly complete spin-compensa-
tion. Lacroix and Cyrot [34] studied the phase diagram of the
Kondo-lattice model at zero temperature and discussed that
the Kondo state is stable when the exchange interaction is
larger than a critical value and the state is insulating when
the conduction band is half filled. Lopes et al. [35] studied the
properties of the Anderson lattice Hamiltonian without f–f
electron coupling by using the Schrieffer–Wolff transforma-
tion. However, the f–f electron coupling in some of the rare-
earth and actinide compounds may not be negligible,
especially for some of those compounds with partially filled
f-electron shells/bands. Lawrence et al. [36] studied the
valence-band photoemission spectra for CeAl3, CeCu2Si2,
and other Ce compounds. They obtained the 4 f valence
band width of about 0.9 eV for CeA13 and about 1.1 eV for
CeCu2Si2. Wuilloud et al. [37] studied the X-ray photoemis-
sion spectroscopies of the occupied and unoccupied states of
UBe13, and they found a surprisingly broad 5 f band tail (up to
5 eV) of some extended states. The f–f electron coupling may
mainly be attributed to the indirect interaction of the weak
hybridization of f-electron wavefunction with the wavefunc-
tion tails of the nearest neighbor atoms [38–41]. Howczak and
Spalek [42] studied Anderson–Kondo lattice model and
found that for large values of hybridization strength, the sys-
tem enters the so-called locked heavy fermion state; under
strong magnetic field, the system transforms from the locked
state to the fully spin-polarized phase.

This paper will present the results of a canonical trans-
formation (which is also a unitary transformation) for the
Anderson lattice Hamiltonian with f–f electron coupling,
which is an extension of the Schrieffer–Wolff transforma-
tion. The properties of a unitary canonical transformation
may include the following: the transformation preserves the
canonical commutation relations of the Hamiltonian with
other physical quantities; the eigenvalues of the Hamiltonian
remain the same after the unitary canonical transformation;
and the Hermitian operator remains as Hermitian after the
transformation.

2. A Canonical Transformation for the
Anderson Lattice Hamiltonian with f–f
Electron Coupling

The Anderson lattice Hamiltonian with f–f electron coupling
can be written as follows:

HAL ¼ ∑
~k;σ

ϵ~kC
þ
~kσ
C~kσ

þ ∑
iσ
ε0 f

þ
iσ fiσ þ ∑

i≠j
T ~Ri −

~Rj

� �
f þiσ fjσ

þ∑
j
Uf þj↑ fj↑ f

þ
j↓ fj↓ þ ∑

~kjσ

h~kjC
þ
~kσ
fjσ þ h:c:

� �
;

ð5Þ

where C~kσ
or Cþ

~kσ
is the operator for conduction electrons

with a momentum ~k and spin σ; fiσ or f
þ
iσ is the operator for

f-electrons at site ~Ri with a spin σ; Tð~Ri −
~RjÞ : in the coupling

term for f-electrons between sites ~Ri and ~Rj; U is the on-site
Coulomb repulsive energy of localized f-electrons; h~kj is the

mixing interaction between f-electrons and conduction elec-
trons and the h.c. means the Hermitian conjugate of the first
part in the expression. C~kσ

and fiσ satisfy the following antic-
ommutation relations:

C~kσ
;Cþ

~qs

h i
þ
¼ C~kσ

Cþ
~qs þ Cþ

~qsC~kσ
¼ δ~k ~qδσs; ð6Þ

fiσ ; f
þ
js

h i
þ
¼ fiσf

þ
js þ f þjs fiσ ¼ δijδσs: ð7Þ

For a model calculation, h~kj and Tð~Ri −
~RjÞ : may be

approximated as follows:

h~kj ¼ h~ke
−i ~k⋅ ~Rj ¼ hffiffiffiffi

N
p e−i

~k⋅ ~Rj ; ð8Þ

T ~Ri −
~Rj

� �
¼ T0e

−α ~Ri−
~Rjj j; ð9Þ

and

T ~Ri −
~Rj

� �
¼ T ~Rj −

~Ri

� �
: ð10Þ

The Anderson lattice Hamiltonian can be rewritten as
follows:

HAl ¼ H0 þ H1; ð11Þ

where

H1 ¼ ∑
~kjσ

h~kjC
þ
~kσ
fjσ þ h:c:

� �
: ð12Þ

So,

H0 ¼ HAl − H1 ¼ ∑
~k;σ

ϵ~kC
þ
~kσ
C~kσ

þ ∑
iσ
ε0 f

þ
iσ fiσ

þ ∑
i≠j

T ~Ri −
~Rj

� �
f þiσ fjσ þ ∑

j
Uf þj↑ fj↑ f

þ
j↓ fj↓:

ð13Þ

We can perform the canonical transformation for the
Anderson lattice Hamiltonian as follows:

H ¼ esHALe−s; ð14Þ

where H is the transformed Hamiltonian. We expand the
above equation as a series as given below:
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H ¼HAL þ s;HAL½ � þ 1
2
s; s;HAL½ �½ � þ…

¼H0 þ H1 − H0; s½ � þ s;H1½ � þ 1
2
s; s;HAL½ �½ � þ…

ð15Þ

The generator s of the canonical transformation is given
below:

s¼ s 1ð Þ
− h:c:; ð16Þ

s 1ð Þ ¼ hffiffiffiffi
N

p ∑
~kjσ

e−i~k⋅~Rj

1
N ∑

n
f þn;−σfn;−σ

� �
Cþ
~kσ
fjσ

ε~k − ε0 − T ~k
� �

− U
þ

1 − 1
N ∑

n
f þn;−σfn;−σ

� �
Cþ
~kσ
fjσ

ε~k − ε0 − T ~k
� �

2664
3775;

ð17Þ
in which

T ~k
� �

¼ ∑
m
e−i~k⋅~RmT ~Rm

� �
: ð18Þ

This canonical transformation is also a unitary
transformation.

Using Equations (6), (7), (13), and (17), the third term of
Equation (15) can be expressed as follows:

H0; s 1ð ÞÂ Ã¼ hffiffiffiffi
N

p ∑
~kjσ

e−i~k⋅~Rj
ε~k − ε0 − Uf þj;−σ fj;−σ − T ~k

� �h i
ε~k

�
− ε0 − T ~k

� �
− U 1 − f þj;−σfj;−σ

� �h i
ε~k − ε0 − T ~k

� �
− U

� �
ε~k − ε0 − T ~k

� �� � Cþ
~kσ
fjσ

24 35
þ hffiffiffiffi

N
p ∑

~kjσ

e−i~k⋅~RjU
ε~k − ε0 − Uf þj;−σfj;−σ − T ~k

� �h i
n−σ − f þj;−σfj;−σ
� �

ε~k − ε0 − T ~k
� �

− U
� �

ε~k − ε0 − T ~k
� �� � Cþ

~kσ
fjσ

24 35;
ð19Þ

in which

n−σ ¼
1
N
∑
j
f þj;−σ fj;−σ : ð20Þ

In order to simplify the calculations, we do not consider
the degeneracy of the f-electron orbital or the crystal field
effect. Equation (19) can be rewritten as follows:

H0; s 1ð ÞÂ Ã¼ hffiffiffiffi
N

p ∑
~kjσ

e−i~k⋅~Rj Cþ
~kσ
fjσ

h i
þ hffiffiffiffi

N
p ∑

~kjσ

e−i~k⋅~RjU
ε~k − ε0 − Uf þj;−σ fj;−σ − T ~k

� �h i
n−σ − f þj;−σfj;−σ
� �

ε~k − ε0 − T ~k
� �

− U
� �

ε~k − ε0 − T ~k
� �� � Cþ

~kσ
fjσ

24 35: ð21Þ

We introduce the notation Hfluc as follows:

Hfluc ¼ H1 − H0; s½ � ¼ −
hffiffiffiffi
N

p ∑
~kjσ

U
ε~k − ε0 − Uf þj;−σfj;−σ − T ~k

� �h i
n−σ − f þj;−σfj;−σ
� �

ε~k − ε0 − T ~k
� �

− U
� �

ε~k − ε0 − T ~k
� �� �

24 35
e−i~k⋅~RjCþ

~kσ
fjσ þ ei~k⋅~Rjf þjσ C~kσ

h i
:

ð22Þ
Here, Hfluc results from the fluctuation of f-electron den-

sity. In most of the Kondo lattice compounds, the energies/
bands of occupied f-electron states are much below the Fermi
energy, and the fluctuation of the f-electron density is quite

small. In addition, the energy difference between the conduc-
tion electron and f-electron bands/states is quite large in
most of such systems. We are now only interested in such
case that

h

ε~k − ε0 − T ~k
� �

− U
� �
������

������≪ 1;
h

ε~k − ε0 − T ~k
� �� �

������
������≪ 1:

ð23Þ

So, the expansion of the series in Equation (15) converges
quite rapidly. Retaining to the second order in the expansion
in Equation (15), the transformed Hamiltonian H can be
approximated as follows:
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H ¼ H0 þ
1
2
s;H1½ � þ Hfluc þ

1
2
s;Hfluc½ �; ð24Þ

where H1, H0, and Hfluc are given by Equations (12), (13),
and (22), respectively.

3. Discussion of the Properties of the
Transformed Hamiltonian

Using the expressions of H1, H0, and Hfluc, the second term
of Equation (24) can be rewritten as follows:

1
2
s;H1½ � ¼ Hex þ H0

0 þ Hch; ð25Þ

in which,

Hex ¼ −
1
2
∑
~k ~qσ

J~k ~qC
þ
~kσ
C~q;−σf

þ
~q;−σf~kσ; ð26Þ

H0
0 ¼

h2

2
∑
~k ~qσ

1

ε~k − ε− ~k
� �þ 1

ε~k − εþ ~k
� � − 1

ε~k − ε− ~k
� �

0@ 1A24
1
N
∑
~k1

f þ~k1;−σ
f~k1;−σ

#
Cþ
~kσ
C~kσ

− f þ~kσ f~kσ
h i

;

ð27Þ

Hch ¼
h2

2
∑
~k ~qσ

1

ε~k − εþ ~k
� � − 1

ε~k − ε− ~k
� �

0@ 1A24 358<:
Cþ
~q;−σC

þ
~kσ
f~kσf~q;−σ

h i
þ h:c:

)
;

ð28Þ

where

εþ ~k
� �

¼ ε0 þ T ~k
� �

þ U ; ð29Þ

ε− ~k
� �

¼ ε0 þ T ~k
� �

; ð30Þ

f~kσ ¼
1ffiffiffiffi
N

p ∑
j
e−i

~k⋅~Rj fjσ ; ð31Þ

J~k ~q ¼ h2
1

ε~k − εþ ~k
� � − 1

ε~k − ε− ~k
� �

0@ 1A24
þ 1

ε~q − εþ ~qð Þ −
1

ε~q − ε− ~qð Þ

 !#
:

ð32Þ

We introduce the notations as follows:

Ψþ
~k
¼ Cþ

~k↑
Cþ
~k↓

� �
; ð33Þ

Φþ
~q ¼ f þ~q↑ f þ~q↓

� �
: ð34Þ

Hex can be rewritten as follows:

Hex ¼ −∑
~k ~q

J~k ~q Ψþ
~k
SxΨ ~q

� �
Φþ

~q TxΦ~k

� �
þ Ψþ

~k
SyΨ ~q

� �
Φþ

~q TyΦ~k

� �h i
;

ð35Þ

where Sx and Sy are the spin matrices for conduction elec-
trons, and Tx and Ty are the spin matrices for f-electrons,
respectively.

Hex is the exchange interaction between conduction elec-
trons and f-electrons for the Kondo lattice compounds. It is
different from the results of single impurity Kondo problem.
There only exists the spin-flip scattering terms in Equation (35),
while the normal process of non-spin-flip scattering is absent,
that is different from the single impurity Kondomodel.H0

0 is the
change of the band energies resulting from the mixing interac-
tion between conduction electrons and f-electrons. Hch changes
the occupancies of f-orbitals and conduction bands by two elec-
trons. Similar to the consideration in the single impurity prob-
lem as discussed by Schrieffer and Wolff [6], Hch can be
neglected. The transformed Hamiltonian H can be rewritten
as follows:

H ¼ H0 þ H0
0 þ Hex þ Hfluc þ

1
2
s;Hfluc½ �: ð36Þ

The details of the last term of Equation (36), 12 ½s;Hfluc� :, will
be given in the appendix. It is noticed that the scattering of f-
electron density fluctuation to conduction electrons contributes
to both the spin-flip and non-spin-flip processes. If, the fluctua-
tion of f-electron density in some cases is very small and can be
neglected, then the transformed Hamiltonian H can be written
as a new Kondo lattice Hamiltonian HKL as below:

HKL ¼ H0 þ H0
0 þ Hex; ð37Þ

where H0, H0
0, and Hex are given by Equations (13), (27), and

(35), respectively. A distinctive feature of Equation (37) is
that the new Kondo lattice Hamiltonian HKL only includes
the spin-flip scattering processes between conduction elec-
trons and f-electrons; and, however, the normal process of
non-spin-flip scattering is absent in Equation (37). In the
case of single impurity Kondo effect, conduction electrons
can be scattered by both of the non-spin-flip and spin-flip
processes. When those “impurity” magnetic atoms form a
periodic sublattice in the conductive compounds, conduction
electrons may not be scattered by the non-spin-flip normal
scattering process, because of the periodic nature of those
magnetic sublattice atoms. Nevertheless, the spin-flip scat-
tering process still exists in such Konda lattice Hamiltonian.
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4. Conclusion

Acanonical transformation for theAnderson latticeHamiltonian
with f–f electron coupling was developed, which was used to
identify a newKondo latticeHamiltonian. The newKondo lattice
HamiltonianHKL only includes the spin-flip scattering processes
between conduction electrons and f-electrons; and however, the
normal process of non-spin-flip scattering is absent in such
Kondo lattice Hamiltonian, under the second order approxima-
tion. The newKondo lattice Hamiltonian had been used to study
the anomalous temperature dependence of the electrical resistiv-
ity in the Kondo lattice intermetallic compound such as CeCu6,
by using the Green’s function method and numerical computa-
tions, and the obtained numerical result was consistent with the
experimental data of CeCu6 [43]. The new Kondo lattice Hamil-
tonianmay also be used to study some anomalous physical prop-
erties in other Kondo lattice intermetallic systems [44–48], e.g.,
Kondo spin compensated state, or the state with local magnetic
moments quenched at low temperature.

Appendix

The appendix will list the detail calculations of the term ½s;
Hfluc� : in Equation (36). In order to simplify the calculations,
we do not consider the degeneracy of the f-electron orbital.
Equation (22) can be rewritten as follows:

Hfluc ¼ H1 − H0; s½ � ¼ −
hffiffiffiffi
N

p ∑
~kjσ

U
n−σ

ε~k − ε0 − T ~k
� �

− U
� �

ε~k − ε0 − T ~k
� �� �

24 35
e−i~k⋅~RjCþ

~kσ
fjσ þ ei~k⋅~Rjf þjσ C~kσ

h i
:

ðA:1Þ

Using Equations (16)–(18), we have:

S;Hfluc½ � ¼ −
h2

N
∑

~kjσqσ0
e−i~k⋅~Rje−i~q⋅~Rj

U

ε~k − ε0 − T ~k
� �� �

2
ε~k − ε0 − T ~k

� �
− U

� � Cþ
~kσ
fjσ ; n−σ Cþ

~qσ0 fjσ0 þ f þjσ0C~qσ0

� �h i
þ h2

N
∑

~kjσqσ0
ei~k⋅ ~Rje−i~q⋅~Rj

U

ε~k − ε0 − T ~k
� �� �

2
ε~k − ε0 − T ~k

� �
− U

� � f þjσ C~kσ
; n−σ Cþ

~qσ0 fjσ0 þ f þjσ0C~qσ0

� �h i
−
h2

N
∑

~kjσqσ0
ei~k⋅~Rje−i~q⋅~Rj

U2

ε~k − ε0 − T ~k
� �� �

2
ε~k − ε0 − T ~k

� �
− U

� ��
2 n−σC

þ
~kσ
fjσ ; n−σ Cþ

~qσ0 fjσ0 þ f þjσ0C~qσ0

� �h i
þ h2

N
∑

~kjσqσ0
ei~k⋅ ~Rje−i~q⋅~Rj

U2

ε~k − ε0 − T ~k
� �� �

2
ε~k − ε0 − T ~k

� �
− U

� ��
2 n−σ f

þ
jσ C~kσ

; n−σ Cþ
~qσ0 fjσ0 þ f þjσ0C~qσ0

� �h i
¼ −

h2

N
∑

~kjσqσ0
e−i~k⋅~Rje−i~q⋅~Rj

U

ε~k − ε0 − T ~k
� �� �

2
ε~k − ε0 − T ~k

� �
− U

� � n−σ −δ~k ~q f
þ
jσ fjσ þ Cþ

~kσ
C~qσ

� �
þ h:c:

−
h2

N
∑

~kjσqσ0
e−i~k⋅~Rje−i~q⋅~Rj

U2

ε~k − ε0 − T ~k
� �� �

2
ε~k

�
− ε0 − T ~k

� �
− U

� �
2 n−σf

þ
j−σC~q−σC

þ
~kσ
fjσ þ h:c:

−
h2

N
∑

~kjσqσ0
e−i~k⋅~Rje−i~q⋅~Rj

U

ε~k − ε0 − T ~k
� �� �

2
ε~k − ε0 − T ~k

� �
− U

� � − n−σn−σC
þ
~kσ
C~qσ þ h:c:

ðA:2Þ

From the above calculated results, we can conclude that
the scattering of f-electron density fluctuation to conduction
electrons contributes to both the spin-flip scattering process
and the normal process of non-spin-flip scattering.
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