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In this paper, the effect of a tunable dielectric core on local field enhancement, induced optical bistability, and the optical bistability
domain in cylindrical core–shell nanoparticle composites are studied. The local field enhancement factor increases significantly at
two resonant frequencies. The results demonstrate that the local field enhancement factor in the cylindrical core–shell nanoparticle
increases when the natural attribute of the dielectric function of the dielectric core is varied by adding a dielectric function to it.
Furthermore, we demonstrated that the magnitude of the imaginary part of the active dielectric core increases as the onset and
offset input intensities increase. This indicates that the optical bistability or threshold width range widens as the imaginary part of
the dielectric function of the dielectric core increases, thereby enlarging the threshold domain to improve system activation.

1. Introduction

Enhancing the local electric field within core–shell nanopar-
ticles is crucial for the development of nonlinear optical
effects. The differences in dielectric characteristics between
the host matrix and the composite, as well as the nanoscale
sizes and shapes of the metal–dielectric composite, signifi-
cantly contribute to this enhancement [1–3]. When the metal
fraction (p) and dielectric of the host matrix increase, the
amplitude of the local field enhancement (LFE) factor also
increases in both passive and active dielectric cores. This
indicates that when the radius of the core increases, i.e.,
when the p value decreases, the enhancement factor of cylin-
drical core–shell nanocomposites decreases, leading to a
smaller amplitude [4]. Optical-induced bistability (OIB),
characterized by a single input field resulting in two different
values of the local field intensity, is a significant nonlinear
optical effect observed in plasmonic nanocomposites [5, 6].
Its potential applications in optoelectronics and logic ele-
ments make it an area of considerable interest [7].

In addition, the local electric field in these composites is
significantly strengthened by surface plasmon (SP) reso-
nance, which arises from localized surface plasmonics. These
fields can be generated by laser light; however, abnormal

amplification of the local field occurs when the incident electro-
magnetic wave frequency approaches the metal’s SP frequency
[8]. Induced optical bistability (IOB) has shown significant the-
oretical and experimental progress, but due to its numerous
potential applications, further research is imperative [9, 10].

Mal’nev and Shewamare [11] investigated the LFE at the
focal point of spherical nanoinclusions in a linear dielectric host
matrix. Their research highlighted the superior performance of
LFE when the frequency of the incident electromagnetic wave
approaches the SP frequency of the metal component of the
inclusions. By altering the thickness of the metal within
coated inclusions, researchers can identify the maximum
value of the enhancement factor. The significance of the
enhancement factor increases for both dielectric-coated metal
inclusions with thin metal cores and those with thick metal
covers [12].

This work proposes the alternative method for tuning the
dielectric function of the core in cylindrical core–shell nano-
particles implanted within a linear host matrix, thereby
enhancing the local field, optical bistability, and its domain
within metal–dielectric composites. The optical density of
the core–shell nanocomposite structure is increased by intro-
ducing an additional imaginary component to the dielectric
core, which enhances the interactions between light and the
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core–shell nanocomposite. This increase in optical density
widens the threshold for optically induced bistability and
augments the LFE factor within the composite.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses the enhancement of the local field in cylin-
drical core–shell nanoparticles. Section 3 presents numerical
results and discussions, while Section 4 provides a summary
and conclusion.

2. The Enhancement of Local Field in
Cylindrical Core–Shell Nanoparticles

In classical electrodynamics, the Laplace equation (i.e.,r2ϕ= 0)
in a cylindrical coordinate systemhas a general form given by the
following equation [13]:

∂2ϕ
∂r2

þ 1
r
∂ϕ
∂r

þ 1
r2

∂ϕ
∂θ2

þ ∂ϕ
∂z2

¼ 0: ð1Þ

In a cylindrical coordinate system, the potential is 2D, and its
choice is not dependent on the z-axis. In this case, Equation (1)
can be reduced to the following form:

∂2ϕ
∂r2

þ 1
∂r

∂ϕ
∂r

þ 1
r2

∂
∂θ2

¼ 0: ð2Þ

The solution of Equation (2) can provide the potential dis-
tribution in various regions of a composite material consisting of
metal-coated dielectric-core cylindrical nanoinclusions embed-
ded in a linear dielectric host matrix, as described in Abbo et al.’s
[14] study:

ϕd ¼ − EhAr cos θ;                 r ≤ r1

ϕm¼ − Eh Br −
C
r

� �
cos θ;     r1 ≤ r ≤ r2

ϕh ¼ − Eh r −
D
r

� �
cos θ;        r ≥ r2;

ð3Þ

where ϕd , ϕm, and ϕh are potentials in the dielectric core,
metallic shell, and the dielectric host matrix, respectively, Eh
is the applied field (for the cylindrical inclusion, it is perpen-
dicular to its axis), r1 and r2 are the radii of the dielectric core
and the metal shell, respectively, and A, B, C, and D are
unknown coefficients. We can calculate the enhancement
factor A using this. The unknown coefficients can be
obtained from the electrostatic boundary conditions, which
means using dielectric boundary conditions (DBC). These
boundary conditions state that at interfaces between differ-
ent dielectric materials, DBC are utilized to ensure continuity
of the electric displacement and the normal component of
the electric field. Under the long-wave approximation, where
the wavelength of the incident electromagnetic wave is
greater than the size of the particle, we can use the following
electrostatic boundary conditions to determine the values of
the coefficients [15] (Figure 1).

From the continuity conditions of the electric potential
and the displacement vector at the interface between the

dielectric core, metal, and host matrix, we derive the system
of linear algebraic equations for the unknown coefficients:

A¼ B −
C
r21
; ð4Þ

B −
C
r22

¼ 1 −
D
r22
: ð5Þ

From the continuity condition of the displacement vector:

Aɛd ¼ ɛm Bþ C
r21

� �
; ð6Þ

ɛm Bþ C
r22

� �
¼ ɛh 1þ D

r22

� �
: ð7Þ

The expressions for the unknown constants are deter-
mined in terms of the dielectric constants of the host (εh),
metal cover (εm), and dielectric core (εd).

Substituting Equation (4) into Equation (6), we obtain
the following equation:

B¼ ɛm þ ɛd
ɛd − ɛm

� �
C
r21
: ð8Þ

Putting Equation (8) into Equation (5), we have the fol-
lowing equation:

C
r21

ɛm 2 − pð Þ þ pɛd
ɛd − ɛm

� �
¼ 1 −

D
r22
: ð9Þ

Substituting Equation (8) into Equation (7), we obtain
the following equation:

Z

εd εm

εh

r2 r1

Y
X

Eh

FIGURE 1: The schematic figure shows a core–shell nanostructure
consisting of a cylindrical dielectric particle with dielectric constant
εd , coated by a metal shell with dielectric function εm, embedded in
a host matrix with dielectric function εh.
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C
r21

ɛdɛm 2 − pð Þ þ pɛ2m
ɛd − ɛm

� �
¼ ɛh þ ɛh

D
r22
: ð10Þ

Multiplying Equation (9) by ɛh, we have the following
equation:

C
r21

2 − pð Þɛmɛh þ pɛdɛh
ɛd − ɛm

� �
¼ ɛh − ɛh

D
r22
: ð11Þ

By adding Equation (11) with Equation (10), we get the
following equation:

C
r21
¼ 2ɛh ɛd − ɛmð Þ

pr ; ð12Þ

where

r¼ ɛ2m þ qɛm þ ɛdɛh; ð13Þ

q¼ 2
p
− 1

� �
ɛh þ

2
p
− 1

� �
ɛd; ð14Þ

p¼ 1 −
r1
r2

� �
3
: ð15Þ

The dielectric function of the core, denoted as ɛd , is
chosen to be a complex value that is independent of fre-
quency. The dielectric constant of the host medium, denoted
as ɛh, is real, while the dielectric function of the metal cover,
denoted as ɛm, is chosen to follow the Drude form.

Substituting Equation (12) into Equation (8), we obtain
the following equation:

B¼ 2ɛh ɛd þ ɛmð Þ
pr : ð16Þ

Substituting Equations (12) and (16) into Equation (4),
we have the following equation:

A¼ 4ɛhɛm
pr : ð17Þ

Equation (17) indicates the LFE factor of cylindrical
core–shell nanoparticles. Recall that the dielectric function
of the dielectric inclusion is given by the following equation:

ɛm ¼ ɛ1 −
1

z z þ izð Þ
ɛ0m ¼ ɛ01 −

1
z2 þ γ2

ɛ00m ¼ ɛ001 þ γ

z z2 þ γ2ð Þ ;

ð18Þ

where ɛ0m and ɛ00m are the real and imaginary parts of ɛm,
respectively. Here, z¼ω=ωp represents the dimensionless
frequency, where ω is the frequency of the incident radiation,

ωp is the plasma frequency of the inclusion metal part, ν is
the electron collision frequency, and γ¼ ν=ωp. By squaring
the enhancement factor, we obtain the following equation:

Aj j2 ¼ 16ɛ2h
p2

ɛm
r
��� ���2 ; ð19Þ

where

ɛmj j2¼ ɛ0mj j þ ɛ00mj j2
rj j2¼ ɛ2m þ qɛm þ ɛdɛh½ �2;
rj j2¼ r0½ �2 þ r00½ �2
r0¼ ɛ02m − ɛ002m þ q0ɛ0m − q00ɛ00m þ ɛ0dɛh
r00¼ 2ɛ0dɛ

00
m þ q0ɛ00m þ q00ɛ0m þ ɛ00dɛh

ɛd¼ ɛ0d þ iɛ00d;   q¼ q0 þ iq00

q0¼ 2
p
− 1

� �
ɛ0d þ

2
p
− 1

� �
ɛh

q00¼−
2
p
− 1

� �
ɛ00d:

ð20Þ

Thus, the LFE factor is determined as follows:

Aj j2 ¼ 16ɛh ɛ0mj j2 þ ɛ00mj j2ð Þ
p2 r0j j2 þ r00j j2½ � : ð21Þ

2.1. Induced Optical Bistability in Cylindrical Nanoparticles.
SPs are transverse waves that propagate along the interface
between a metal surface and a dielectric medium. They are
supported by the collective oscillation of free electrons at
themetal–dielectric interface, which gives rise to a surface charge
density that interacts with the incident electromagnetic field.
Specifically, SPs can be sustained in transverse magnetic (TM)
modes of propagation, characterized by a magnetic field com-
ponent perpendicular to the interface. Moreover, the excita-
tion of SPs is highly dependent on the wavelength and
incident angle of the incoming radiation. At a certain combi-
nation of wavelength and incident angle, known as the reso-
nance condition, the energy of the incident radiation can be
efficiently transferred to the SPs. This results in strong elec-
tromagnetic field confinement and enhancement near the
interface. The formation of SP is due to the electric field of
an incoming radiation that induces the formation of a dipole
or a polarization of charges on the nanoparticle surface. The
local electric field E can be represented in the following form:

E ¼ AEh; ð22Þ

where A is the enhancement factor, E is the local field, and Eh
is the applied field.

We consider a cylindrical dielectric particle (the core)
with a radius of r1, covered by a metal shell with a radius
of r2. Let the core be a nonlinear dielectric of the Kerr type
with a nonlinear dielectric function:
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ɛd ¼ ɛd0 þ χ Ej j2; ð23Þ

where ɛd0 represents the linear part of the dielectric function,
and the Kerr coefficient, denoted as χ and mentioned in
Equation (23), represents the nonlinear optical response of
the dielectric profile for the core material. It characterizes the
strength of this nonlinear response and is crucial for under-
standing the material’s behavior in nonlinear optical pro-
cesses. Substituting Equation (23) into Equation (13), we
obtain the following equation:

r¼ ɛ2m þ qɛm þ ɛd0 þ χ Ej j2ð Þɛh; ð24Þ

Since

q¼ 2
p
− 1

� �
ɛd þ

2
p
− 1

� �
ɛh

q¼ 2
p
− 1

� �
ɛd0 þ χ Ej j2ð Þ þ 2

p
− 1

� �
ɛh

q¼ 2
p
− 1

� �
ɛd0 þ

2
p
− 1

� �
χ Ej j2 þ 2

p
− 1

� �
ɛh:

ð25Þ

Substituting Equation (25) into Equation (24), we obtain
the following equation:

r¼ɛ2m þ 2
p
− 1

� �
ɛd0 þ

2
p
− 1

� �
ɛh

� �
ɛm

þ ɛd0ɛh þ
2
p
− 1

� �
ɛm þ ɛh

� �
χ Ej j2

r¼r0 þ σχ Ej j2;

ð26Þ

where

r0¼ ɛ2m þ 2
p
− 1

� �
ɛd0 þ

2
p
− 1

� �
ɛh

� �
ɛm þ ɛd0ɛh

q0¼
2
p
− 1

� �
ɛd0 þ

2
p
− 1

� �
ɛh

σ¼ 2
p
− 1

� �
ɛm þ ɛh

� �
χ Ej j2

r0¼ ɛ2m þ ɛmq0 þ ɛd0ɛh
r0¼r0

0 þ ir00
0 ;   ɛd0 ¼ ɛ0d þ iɛ00d

σ¼σ0 þ iσ00;   q0 ¼ q00 þ iq000 :
ð27Þ

By substituting the above value for the enhancement
factor, we obtain the following equation:

Aj j2 ¼ 16
p2

ɛhɛ2
σ

��� ���2 1
r0
σ

�� ��2 þ 2Re r0
σ

À Á
χ Ej j2 þ χj jE 2j j2 : ð28Þ

By squaring Equation (22) and multiply by χ, we have the
following equation:

χ Ej j2 ¼ Aj j2χ Ehj j2: ð29Þ

Substituting Equation (28) into Equation (29), we obtain
the following equation:

χ Ej j2 ¼ 16
p2

ɛhɛ2
σ

��� ���2 χ Ehj j2
r0
σ

À Á2 þ 2Re r0
σ

À Á
χ Ej j2 þ χj jE 2j j2 :

ð30Þ

Recall that the modulus of the dielectric function of
core–shell nanoinclusion is given by the following equation:

ɛ0mj j2¼ ɛ0mj j2 þ ɛ00mj j2
r0j j2¼ r0

0j j2 þ r00
0j j2

σj j2¼ σ0j j þ σ00j j2

ɛ00m¼ ɛ01 −
1

z2 þ γ2
;   ɛ00m ¼ ɛ001 þ γ

z z2 þ γ2ð Þ
r02

0 ¼ ɛ02m − ɛ002m þ qɛ0m þ ɛ0dɛh;   r00
0 ¼ 2ɛ0mɛ00m þ qɛ00m þ ɛ00dɛh

σ0¼ 2
p
− 1

� �
ɛ0m þ ɛh;   σ00 ¼

2
p
− 1

� �
ɛ00m:

ð31Þ

And by obtaining X¼ χjEj2 and Y ¼ χjɛhj2, the above
equation becomes:

ηY ¼ X3 þ aX2 þ bX; ð32Þ

where

η¼ 16
p2

ɛhɛ2
σ

��� ���2;   b¼ r0

σ

����
����
2
;   a¼ 2Re

r0

γ

� �
: ð33Þ

3. Numerical Results and Discussions

All the numerical values of the dielectric functions of the
composite used in this section are taken from references,
and Table 1 shows the constant values used in numerical
calculations.

3.1. The Enhancement Factor of Cylindrical Core–Shell
Nanoparticles of Passive Dielectric Core. Passive dielectric
core is a medium that is considered to possess a natural
property whereby its dielectric function remains unaffected,

TABLE 1: Numerical values of physical quantities [11, 14].

Constants Values

ε0d 6.0
εh 2.25
ε1 4.5
ωp 1.6× 1016

ν 1.68× 1014

γ 1.15× 10−2
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as there is no external dielectric function added to it. There-
fore, the imaginary part of the dielectric function of the
dielectric core is zero (ɛ00d ¼ 0). The plot of the enhancement
factor, as stated in Equation (21), for cylindrical core–shell
nanoparticles with a passive dielectric core is shown in
Figures 2 and 3. The enhancement factor A varies with
dimensionless resonant frequency (z), as shown in Figures 2
and 3, jAj2 versus z. Figure 2 shows that the enhancement
factor has two peak values at two separate dimensionless
resonant frequencies for a composite with metal-coated
dielectric cylindrical inclusions. The host dielectric and the
dielectric core are interfaced with the metal shell. As a result,
at the interfaces between the dielectric host matrix and the
dielectric core, the free electrons of the metal fluctuate at
various SP frequencies. The enhancement factor significantly
increases at these two dimensionless resonant frequencies.
Figure 2 depicts two dimensionless resonant frequencies (z).
It is possible that the wavelengths presented are normalized to
these resonant frequencies. This normalization aids in under-
standing how the wavelengths interact with the resonant
behavior of the system, providing valuable insights into its

optical properties. Figure 3 shows the enhancement factor
of nanoparticles with cylindrical core–shell structures sepa-
rated by a metal layer versus the metal fraction (p), for differ-
ent distinct values of the dielectric core. This result indicates
that for a given resonant frequency, there is only one maxi-
mum value of the enhancement factor for a composite con-
taining dielectric cylindrical nanoinclusions coated with
metal.

3.2. The Enhancement Factor of Cylindrical Core–Shell
Nanoparticles of Active Dielectric Core. The active dielectric
core is a medium considered to have a natural property,
whereby its imaginary part of the dielectric function is
affected by applying an additional dielectric function to it.
Therefore, the imaginary part of the dielectric function of the
dielectric core is nonzero (ɛ00d ≠ 0). The presence of the imag-
inary dielectric function suggests that the dielectric core has
absorbed energy from the incident electromagnetic field,
leading to attenuation as the field propagates through the
material. The change in the imaginary part of the dielectric
function with the field intensity signifies the intensity-
dependent absorption characteristics of the material, which
could have arisen from various physical mechanisms, such as
nonlinear optical processes or material defects. In an active
dielectric core, the imaginary part of the dielectric function
has a negative sign, indicating that an additional dielectric
function is applied to the dielectric core.

Figure 4 shows the LFE factor expressed in Equation (21)
for a cylindrical core–shell nanoparticle with an active dielec-
tric core, illustrating different values of ɛ00d . In Figure 4, we
have observed that there are different maximum values of the
LFE factor for various values of the active dielectric core
(ɛ00h<0). When modifying the inherent property of the dielec-
tric function of the core by introducing an additional dielec-
tric function to it, the amplitude of the graph, or jAj2,
increases. Therefore, for the active dielectric core (ɛ00d<0),
the LFE factor can be maximized by altering the original
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FIGURE 2: The enhancement factor jAj2 for cylindrical core–shell
nanoparticles versus z for ε0d ¼ 6 at metallic fraction of p¼ 0:9.
We use the following parameters of the system: ωp ¼ 1:4× 1016,
ν¼ 1:68× 1014, γ¼ 1:15× 10−2, ɛ01 ¼ 4:5, ɛ001 ¼ 0, and εh ¼ 2:25.
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FIGURE 3: Enhancement factor versus metal fraction p of the
core–shell nanoparticle with passive dielectric core (ε00d ¼ 0:0) at
z= 0.2, ε0d ¼ 6:0, and εh ¼ 2:25.
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property of the imaginary part of the dielectric function of
the dielectric core at the same dimensionless resonance fre-
quency. This is akin to increasing the density of the cylindri-
cal core–shell nanoparticle.

This result shows that the first maximum value of the
LFE factor increased from 506 to 1,104 as the magnitude of
the imaginary part of the dielectric core increased from 0.0 to
0.15. These changes occur at a fixed dimensionless frequency
(z= 0.276). Similarly, the second maximum value of the LFE
factor increased from 170 to 244 as the magnitude of the
imaginary part of the dielectric core increased from 0.0 to
0.15. This variation is observed at a dimensionless frequency
of z= 0.4. The LFE factor describes the extent to which the
electromagnetic field is amplified within the nanocomposite
structure compared to its surroundings. An increase in
the optical density of the nanocomposite indicates that
more light is confined and interacts within the structure,
resulting in a stronger amplification of the electromagnetic
field and thus an increase in the LFE factor. The enhance-
ment factor is currently being studied in 2D, whereas Figure 5
is represented in 3D. The physical quantities depicted in
Figures 4 and 5 were the same. However, there are distinc-
tions between 2D and 3D graphs when utilizing an idealized
active dielectric core.

Figure 6 shows that the dimensionless metal fraction (p),
and the imaginary part of the dielectric core both play crucial
roles in LFE by determining the resonant frequency. This
result indicates that there is only one resonant frequency
and one maximum value of the enhancement factor for a
composite containing dielectric spherical nanoinclusions
coated with metal. Modifying the dielectric properties of
the core material alters the way the structure interacts with
electromagnetic waves. Increasing the optical density effec-
tively enhances the confinement of electromagnetic fields
within the structure, resulting in a higher LFE factor.

3.3. Induced Optical Bistability in Cylindrical Core–Shell
Nanoparticles of Passive Dielectric Core. Referring subsection
(3.1), in the passive dielectric core, the natural property of
the dielectric function of the dielectric core is not affected by
applying additional dielectric function, then ɛ00d ¼ 0. The plot

of Equation (32) for cylindrical core–shell nanocomposites
in passive dielectric core is shown in Figure 7.

3.4. Induced Optical Bistability in Cylindrical Core–Shell
Nanoparticles of Active Dielectric Core. In an active dielectric
core, the imaginary part of the dielectric function (ɛ00d) is
affected by applying an additional dielectric function to it,
similar to increasing the density of the cylindrical nanopar-
ticles, resulting in ɛ00d ≠ 0. In Figure 8, optical bistability is
illustrated in the Y–X plane with observed S-like curves. The
increase in χjEhj2 (applied field) from zero leads to a mono-
tonic increase in χjEj2 (local field). However, after reaching a
certain value of χjEhj2, decreasing it results in an increase in
the local field χjEj2. Linear stability analysis indicates that this
solution branch is unstable. This implies that if the system is
initially in this state, it will rapidly switch to one of the stable
solutions due to the growth of small perturbations. Therefore, as
χjEhj2 increases from zero, it immediately switches to the upper
branch upon passing the turning point in the lower branch.
Conversely, if the input intensity is gradually decreased, the
systemwill remain on the upper branch, and the output intensity

350

300

250

200

150

100

50

0
0.1

0.2

z 0.3
0.4

0.5 –0.1
–0.2

–0.3
–0.4

|A|2

εd̋

FIGURE 5: The local field enhancement factor jAj2 for cylindrical
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will continue until it switches down to the lower branch at the
turning point. In Figure 8, we observed that both the input
intensities for switching up and switching down increase. How-
ever, the difference in input intensities between switching up
and switching down widens as the magnitude of ɛ00d increases,
leading to a broader range of optical bistability. The results
indicate that the threshold for induced optical bistability
increases from 7.4 to 8.7 as the magnitude of the imaginary
part of the dielectric core rises from 0.0 to 0.9. This change is
observed at a dimensionless frequency of z¼ 0:2. This suggests
that as the magnitude of the imaginary part of the dielectric
function of the core increases, the width of the optical bistability
range or the threshold width broadens. This broader threshold
width enhances the system’s oscillation strength or increases its
activation.

We chose to display a 3D graph containing these quantities
to gain a basic understanding of the relationship between the
applied field, local field, and the imaginary part of the active
dielectric core (ɛ00d). The 3D graph shown in Figure 9 was created
by using Equation (32). It demonstrates this relationship within
the most interesting range of these parameters, where three
different values of the local field correlate to one value of the

applied field. The bistability region, characterized by three dif-
ferent values of χjEj2 for one value of χjEhj2, broadens as the
imaginary part of the active dielectric core, ɛ00d , increases.

3.5. Optical Bistability Domain in Cylindrical Core–Shell
Nanoparticles. The bistability domain in the plane (z;
χjEhj2) can be determined through an analysis of the roots
of the cubic Equation (21). There are two methods available
for locating the roots of this cubic equation. The solution to
Equation (21) is as follows:

Y ¼ −1
4

D −bÆ
ffiffiffiffi
D

p

3

� �
þ ab

2

� �
; ð34Þ

where D¼ a2 − 3b.
In Figure 10, it is evident that the onset and offset of

induced optical bistability, as described in Equation (21),
correspond to the conditions outlined in the bistability
domain depicted by Equation (34). The amplitude, which
represents the distance between the onset and offset of
induced optical bistability as shown in Figure 10, is identical
to the distance between the minima and maxima of Y . This
distance is calculated from the solution of the cubic equation
at a specific resonance frequency, where z¼ 0:2.

Figure 11 illustrates the dependencies of the induced
optical bistability domain on the imaginary part of the active
dielectric core. The information extracted from the curves
that enclose the bistability domain, specifically the onset and
offset bistability fields at a specific dimensionless frequency,
can be compared to that obtained from S-type curves. This
result demonstrates that A1, A2, and A3 imply an increase in
the distance between the onset and offset domains of induced
optical bistability with the addition of an extra dielectric
function to the imaginary part of the dielectric core, specifi-
cally at ε00d values of 0.0, −0.3, and −0.9. The amplitudes and
activation energies of the system are correlated. These find-
ings indicate that as an additional dielectric function is
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introduced to the imaginary part of the dielectric core, the
domain region of induced optical bistability broadens. This
suggests a potential alteration in the optical properties of the
system, accompanied by a possible increase in its activation
energy.

4. Summary and Conclusion

In this paper, we investigated the effect of modifying the
dielectric properties of the core material in a cylindrical
core–shell nanoparticle structure. Specifically, by applying
an additional dielectric function to the dielectric core mate-
rial, such as increasing its optical density, we observed that
the LFE factor increased. This phenomenon can be explained
by the interaction between the electromagnetic field and the
modified dielectric core. When the optical density of the core
material is increased, it alters the distribution of electromag-
netic fields within the nanocomposite structure. This alter-
ation leads to a stronger confinement and enhancement of
the local electric field within the core region, resulting in an
overall increase in the LFE factor. This shows that the behav-
ior of the enhancement factor is significantly influenced by
the imaginary part of the active dielectric core.

For the first maximum value of the LFE, as the magni-
tude of the imaginary part of the dielectric core increased
from 0.0 to 0.15, the LFE increased from 506 to 1,104. This
occurred at a dimensionless frequency (z= 0.276). For the
second maximum value of the LFE, as the magnitude of the
imaginary part of the dielectric core increased from 0.0 to
0.15, the LFE increased from 170 to 182. This occurred at a
dimensionless frequency (z= 0.4). Similarly, the threshold of
induced optical bistability increased from 7.4 to 8.7 as the
magnitude of the imaginary part of the dielectric core
increased from 0.0 to 0.9. These findings suggest that differ-
ent maximum values of LFE and thresholds of induced opti-
cal bistability are influenced by variations in the magnitude
of the imaginary part of the dielectric core. The research
demonstrates that as the imaginary part of the dielectric

function of the core increases, the range of optical bistability,
or threshold width, broadens. These findings suggest that the
optical bistability domain expands as the distance between
switching up and switching down, or the onset and offset of
optical bistability, increases.

In conclusion, this study has proposed an alternative
method for enhancing the local field and increasing the thresh-
old of induced optical bistability within cylindrical core–shell
nanoparticles. Bymanipulating themagnitude of the imaginary
part of the dielectric core at specific dimensionless frequencies,
significant improvements in both LFE and the threshold of
induced optical bistability were observed. These findings hold
potential for advancing memory devices, optical switches, and
sensor technologies.
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