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Tumour progression is currently believed to result from ge-
netic instability. Chromosomal patterns specific of a type of
cancer are frequent even though phenotypic spatial hetero-
geneity is omnipresent. The latter is the usual cause of his-
tological grading imprecision, a well documented problem,
without any fully satisfactory solution up to now. The present
article addresses this problem in breast carcinoma. The as-
sessment of a genetic marker for human tumours requires
quantifiable measures of intratumoral heterogeneity. If any
invariance paradigm representing a stochastic or geostatis-
tic function could be discovered, this might help in solving
the grading problem. A novel methodological approach us-
ing geostatistics to measure heterogeneity is used. Twenty tu-
mours from the three usual (Scarff-Bloom and Richardson)
grades were obtained and paraffin sections stained by MIB-1
(Ki-67) and peroxidase staining. Whole two-dimensional
sections were sampled. Morphometric grids of variable sizes
allowed a simple and fast recording of positions of epithelial
nuclei, marked or not by MIB-1. The geostatistical method
is based here upon the asymptotic behaviour of dispersion
variance. Measure of asymptotic exponent of dispersion vari-
ance shows an increase from grade 1 to grade 3. Prelimi-
nary results are encouraging: grades 1 and 3 on one hand
and 2 and 3 on the other hand are totally separated. The fi-
nal proof of an improved grading using this measure will
of course require a confrontation with the results of survival
studies.
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1. Introduction

Determining the accuracy of the histological prog-
nostic grading of a cancer is a crucial matter in terms
of therapeutic decisions. In breast carcinoma, various
morphological, cytonuclear and differentiation charac-
teristics and number of mitoses, are used to construct
histological grading systems. The best known is the
Scarff-Bloom and Richardson (SBR) [6]. It has been
shown that this grading system (as many others) is far
from being perfect [2,14]. One of the concerns with the
histopathological grading of breast cancer is that tu-
mour grading is a subjective evaluation that may affect
reproducibility [10,34].

Interestingly, karyotypes are rather stable among
breast cancers (80% display a typical abnormal kary-
otype) and in other cancers as well [32,33,35]. How-
ever, intra-tumoral phenotypic heterogeneity is most
often found in cancers and particularly in breast can-
cers [1,4,5,15,24,27,31,36]. The first findings con-
cerning histological (spatial) heterogeneity were based
on flow cytometry measurements of nuclear DNA
amounts (ploidies) measured from sampled blocks [4,
15]. Cell proliferation [3], oncogene expression and
anti-oncogene expression, were assessed in terms of
heterogeneity (review in [32]). Other studies analysed
ploidy heterogeneity by image analysis [36]. Hetero-
geneous breast cancer cells were studied by chaos the-
ory [23], morphometry in mitotic cells [16] and flow
cytometry andin situ hybridation [30,36,37]. Recent
studies concerning heterogeneity of tumoral subpop-
ulations demonstrated phenotypic changes in bladder,
breast, colon and prostate cancers [3,17,25,32,33,36,
37].

These problems have fueled the idea of a direct
link between spatial heterogeneity and grading impre-
cision [16,11]. It is now quasi-certain that this repre-
sents a grave hazard for grading.
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Even if one could capture the whole histological
pattern of a tumour (an impossible endeavour in rou-
tine pathological practice), the problem would remain
of selecting the worst sections (but they might be all
more or lessbad depending upon the exact place) and
then finding a model to characterise the intensity of the
phenomenon and its variance. We had previously at-
tempted this by determining a quantitative morphomet-
ric index from a few tumours and showing the feasibil-
ity of such an approach. Although the work was too te-
dious to study important series of patients, we showed
that heterogeneity in breast cancer was everywhere, at
all levels (blocks, sections and slides) [11]. A previous
study had proposed a measure of heterogeneity based
upon the Minimal Spanning Tree [13].

A study of tumoral heterogeneity implies a sys-
tematic sampling. Recently, several experiments were
carried out using several samples from the same tu-
mour, in breast [11,16,27] and prostate [26]. Hetero-
geneity was found at all levels of sampling. Therefore
there were hardly any feasible grading recommenda-
tions.

A recent meeting of the Kananaskis Tumour Hetero-
geneity working group resulted in the definition of a
general framework to assess the use of genetic mark-
ers of tumour progression in the context of intratumour
heterogeneity [8]. This meeting emphasized the need
for a reproducible and quantifiable measure of hetero-
geneity.

If an invariance paradigm representing a stochastic
or geostatistic function could be established to mea-
sure heterogeneity, a novel grading method could be
proposed to assess heterogeneity using geostatistics.

In this article, a new measure of heterogeneity is in-
troduced. It is based on the asymptotic behaviour of
dispersion variance in a spatial point process defined
by the existence of a positive cell for a given marker at
each point of the domain. The relevancy of this mea-
sure to histopathological grading is assessed by a non-
parametric discriminant analysis.

2. Material and methods

2.1. Samples

Twenty carcinomas of the breast were surgically re-
moved.

Blocks were routinely fixed in 10% neutral buffered
formalin for 24 hr at room temperature and then paraf-
fin embedded according to standard pathology labora-

Table 1

Characteristics of the twenty tumours studied

Patients Number of Histological Type of

specimens grading (SBR) breast cancer

1 2 I IDC∗

2 2 I IDC

3 1 I IDC

4 1 II Mucinous

carcinoma

5 2 II IDC

6 1 II ILC∗

7 1 II IDC

8 1 II IDC

9 1 II IDC

10 1 II IDC

11 1 II IDC

12 1 II ILC

13 1 II IDC

14 1 II IDC

15 1 II IDC

16 1 III IDC

17 1 III IDC

18 2 III IDC

19 1 III IDC

20 1 III IDC
∗IDC: infiltrating ductal carcinoma, ILC: infiltrating lobular carci-
noma.

tory practice. This will allow archival material to be
used in future retrospective studies. The largest diame-
tral sections only were studied.

All tumours were classified according to the grading
method of Scarff-Bloom and Richardson [6]. Informa-
tion about these specimens is to be found in Table 1.

2.2. Microwave treatment

After removing paraffin with toluen, sections were
gradually rehydrated in ethanol and distilled water.
They were heated in a microwave oven (450 W) for
15 min, in a 10 mM sodium citrate buffer, pH 7.3. Sec-
tions were then cooled using water.

2.3. Labelling

Paraffin sections (3–5µm thick) were cut and la-
belled by monoclonal anti-MIB-1 (equivalent of Ki-67;
Immunotech, France) because of its cell proliferation
properties [7], using a dilution of 1/20. This marker
was detected by a mouse antibody labelled with perox-
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idase and revealed by DAB (brown) with amplification
(Ventana Medical Systems, USA).

Controls were performed to check the specificity of
the MIB-1 marker, by omitting the first incubation.
All controls were negative and are, therefore, not men-
tioned further. Nuclei were stained with Harris- hema-
toxyline solution.

2.4. Image acquisition

This was achieved by using a computer in semi-
automatic mode. In each field, the coordinates of
MIB-1 labelled epithelial nuclei were obtained (soft-
ware “IPS Image”, Alcatel TITN, France) and stored.
Full automation was difficult because of segmenta-
tion problems between epithelial and stromal cells and
frequently overlapping epithelial cells. Labelled cell
marks were identified visually, avoiding any artefact.
Clumped cells were also separated by visual inspec-
tion.

Stromal cells could be rejected visually as they were
clearly more elongated.

2.5. Morphometric model

The position of markers (epithelial cell nuclei and
MIB-1) allowed their sorting into a morphometric grid,
obtaining the dispersion variance data.

At each step, a tissue portion of dimension 200µm
× 200µm, at microscope magnification 25× 1.6, was
numerized into 550×550 pixels (Fig. 1). This was done
in semi-automatic mode (picking cell coordinates one

by one and saving them in the computer). At the next
step, the whole image window was moved by 200µm
one way until the edges of the tumour were reached,
after which the scanning passed above to the next field,
and so on until the whole section had been explored us-
ing staggered row scanning. All fields must be contigu-
ous. The data series obtained for each tumour block
consisted of the 2D coodinates of all labelled cells in
40 to 50 image fields (depending upon the size of the
tumour).

2.6. Geostatistics

The theory of geostatistics was invented by Math-
eron [21,22]. It is a corpus of mathematical/statistical
methods based upon random models on limited spatial
fields. It has seldom been used in biology. The most
common applications of geostatistics are in mining (es-
pecially for precious ore and diamonds), for reserve es-
timation [9,18].

We demonstrate here that geostatistics may be used
to determine grading classes by bypassing heterogene-
ity problems in breast cancer. The distribution of cells
positive for a given marker in a breast tumour specimen
can be considered as a unique, partially unknown, real-
isationz(x) of a spatial random processZ(x). Grading
is in fact a geostatistical inference based upon a unique
(single) realisation [21] of the histological spatial pro-
cess. In this case, the spatial processZ(x) is the point
wise process defined by the existence at the pointx
of a cell positive for a given marker. The method used
here is based on an approach through spatial and point

Fig. 1. Peroxidase MIB-1 labelling of nuclei: (a) histological image of breast carcinoma labelled with MIB-1; (b) nuclear centroid positions
obtained by semi-automatic image analysis.
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Fig. 2. Example of a two-dimensional histological tumour sample, with contiguous partitioning of domainV into sub-domainsv1, . . . ,vk.

statistics [12,29] and dispersion variance, which stems
from geostatistics.

It is important to understand that each of our speci-
mens can be viewed as a unique realisationz(x) of the
stochastic processZ(x), and that this forbids most clas-
sical statistical inferences. Stationarity (see Appendix)
helps bypassing in part uniqueness difficulties.

Only two-dimensional (2D) space will be consid-
ered here, so as to simplify our work, although a gen-
eralisation to 3D would be straightforward, as the most
plausible hypothesis in large fields is isotropy [19].

Let a complete sectionV , of arbitrary shape, be
partitioned into disjoint sub-domainsv1, . . . ,vk, with
equal-form and size|v| (Fig. 2).

Let the dispersion variance over the partitionV [9,
28] be

s2(v∣∣V ) ≈ 1
k

k∑
i=1

(
ẑ(vi)− ẑ(V )

)2
, (1)

whereẑ(vi) is the spatial average of the processz(x)
over sub-domainvi (of size|vi|)

ẑ(vi) =
1
|vi|

∫
vi

z(x) dx, (2)

which is a non-biased estimator of the point process
meanµ = E{Z(x)}. In this study,ẑ(vi) represents the
density of (positive) marked cells over sub-domainvi.
The dispersion variance reflects the dispersion of the
density of marked cells over sub-domains of a same
size|v| around the overall density (ẑ(V )) and over the
whole sectionV .

As |v| and |V | become larger, the dispersion vari-
ance (s2(v|V |)) should converge to zero. The speed

of convergence toward zero can be used as an indica-
tor of heterogeneity: the more the process is homoge-
neous, the faster the dispersion variance decreases. If
the point processZ(x) is homogeneous at all observa-
tion scales, as in the case of a Poisson point process,
s2(v|V ) converges to zero asK/|v|, whereK is real
positive valued [12]. An ergodic process shows a simi-
lar asymptotic behaviour [20], homogeneous for obser-
vation scales greater than the integral range (see Ap-
pendix) [20]. On the other hand, if no convergence to-
wards zero occurs, the spatial average loses its mean-
ing and can no longer describe the process.

Following the conclusions of the Kananaskis Tu-
mour Heterogeneity working group [8], the asymp-
totic behaviour of the dispersion variance is used here
to assess heterogeneity. A Poisson point process, with
an asymptotic convergence to zero asK/|v|, can be
viewed here as a null model, that represents homogene-
ity at all observation scales.

A linear model for the asymptotic behaviour of the
dispersion variance can be obtained. Let a log-log
graph ofs2(v|V ) versus|v| show the convergence of
the dispersion variance towards a linear alignment with
slope−α (0< α 6 1) and interceptβ, i.e.,

log
s2(v|V )
σ̂2 ≈ −α log |v|+ β, (3)

meaning that the dispersion variance behaves asymp-
totically as

s2(v|V )
σ̂2

≈ K

|v|α , (4)

whereσ̂2 is the estimation of the point processZ(x)
and variance (Var{Z(x)}) is obtained using the follow-
ing dispersion variance property:
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lim
|v|→0

s2(v|V ) = Var{Z(x)} . (5)

The positive exponentα in Eq. (4) measures the
speed of convergence dispersion variance toward 0 and
K = eβ represents the integral range [20] when the
point processZ(x) is ergodic (see Appendix).

The asymptotic exponent of the dispersion variance,
α, reflects the speed of convergence of the spatial av-
erageẑ(v) to the statistical meanµ = E{Z(x)} of the
spatial point processZ(x). The more the process is het-
erogeneous, the slower the convergence of the disper-
sion variance to zero and the smaller the value ofα.
The asymptotic exponentα is used to assess hetero-
geneity.

2.7. Practical implementation

The following procedure was applied to estimate the
asymptotic exponentα and the offsetβ. DomainV
may be tiled in any shape by design (Fig. 2); however,
the use of rectangular sections allowed partitioning and
recombining in an easier way. The size of the domain
V varied between a minimum of 4000µm × 800µm
and maximum of 6000µm × 1200µm depending on
the size of the tissue block. Progressive partitioning of
V was used with 2i, i = 2, . . . , 14 sub-domains. This
led to a maximum of 16384 sub-domains. This maxi-
mal partition depth was chosen such that at least a cou-
ple of cells not necessarily labelled subsist in the small-
est sub-domain.

The density of marked cells in̂z(v) in each sub-
domainv was obtained from the stored coordinates.

Graphs ofs2(v|V ) from all specimens were shown
and the dispersion variance was normalised so as to
allow all curves to begin at the same point and the size
of the sub-domain|v| to be scaled by the size of the
initial partition |v|min = |V |/214.

The values ofα andβ were estimated by linear re-
gression over the last part of the log-logs2(v|V ) versus
|v| curve, where linear alignment occurs. Clearly, for
a homogeneous Poisson process,α converges rapidly
toward 1. The log-logs2(v|V ) versus|v| graph is then
compared to a standard line with slope−1, represent-
ing the behaviour of a homogeneous Poisson process.

The robustness of the estimation ofα versus the
block location of the tumour has been analysed by ap-
plying the procedure above to two blocks of from the
same tumour. The values in (Table 2) show that the es-
timatedα is not dependent of location of blocks into
the tumour. However, a more complete analysis of ro-
bustness will require a confidence interval estimation.

Table 2

Comparison between estimated values ofα for two
blocks of the same tumour, showing robustness of the
estimation ofα versus block location in the tumour

SBR grade α for two blocks of the same tumour

I 0.82

0.91

II 0.84

0.87

III 0.30

0.32

The estimation of the integral range usingK = eβ is
not robust. A slight estimation error inβ can degener-
ate into a large estimation error forK. More generally,
the values ofE{eX} and eE{X} might be far from one
another.

3. Results

The stationarity condition was verified by compar-
ing the curve ofs2(v|V ) obtained over different sub-
domains of the same sampleV .

All graphs show a similar behaviour for small|v|
(the slope of log-log dispersion variance graph is equal
to−1) which is compatible with homogeneity at finest
scale of observation. For coarser scales, the behaviour
of the dispersion variance graphs follows two possi-
ble paths: grade 1 behave in a linear log-log way, but
higher grades yield slightly concave curves (Fig. 3).

For all specimens, linear alignment occurred over
the five last points of the dispersion variance graph
(which represents 22 to 27 subdomains). These points
were used to estimateα andβ by linear regression.

The estimated asymptotic exponents of dispersion
variance (α) for grade 3 samples were all lower than
0.5 which means a considerable level of heterogeneity.
On the other hand, grade 1 and some grade 2 speci-
mens showed a high level exponent (near 1), which is
compatible with a relative homogeneity.

Parameter (α) is a measure of heterogeneity; it was
used to discriminate histopathological grades (Fig. 4).

The measure of heterogeneityα separates SBR
grades 1 and 2 from grade 3 (Mann–WhitneyU test,
p 6 0.05) (Table 3). However, grade 1 and grade 2
are not significantly separated. Two kinds of behaviour
of the dispersion variance can be detected for grades
1 and 2: (i) a completely linear curve with high slope
(α > 0.75), which is compatible with a homogeneous
process at the scale of observation; (ii) a semi-linear
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Fig. 3. Logarithmic scaled graphs showing normalised dispersion variance as a function of the size of sub-domains for samples from all: (a) grade
I, (b) grade II, and (c) grade III. The homogeneous Poisson process (line with slope−1) is used as a reference.

curve converging to a slope of intermediate value (be-
tween 0.75 and 0.5).

The failure of the Mann–Whitney test to separate be-
tween grades 1 and 2 might mean that some tumours
of grades 2 (4 cases out of 10) assessed as grade 2 by
the pathologist are in fact of grade 1, and that one as-
sessed as grade 1 (1 out of 4) was in fact of grade 2.
More precise analyses will require a larger set of data.

4. Discussion and conclusions

The samples were used without any possibility of
bias (systematic morphometry) and the procedure is

easily reproducible; further image processing should
allow full automation.

The most important result is that there exists a geo-
statistical parameter (the asymptotic exponent of the
dispersion varianceα) that can be used as a mea-
sure of spatial heterogeneity and grading. Parameter
α shows a progressive, statistically significant increase
from grades 1 to 3 passing by grade 2 (Fig. 4).

An objective automatic histo-pathological grading
procedure using the asymptotic exponent of the disper-
sion variance (α) should eventually be applicable in a
clinical environment.

The dispersion varianceα clearly bears a relation-
ship with heterogeneity.
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Fig. 4. Asymptotic exponent of dispersion variance (α) measures heterogeneity and is also a function of SBR grades classified by the pathologist.

Table 3

Statistical analysis for slopeα between grade I, II, and III; Mann–
WhitneyU test (significant ifp < 0.05)

SBR grade α Mean SD Mann–Whitney

Min. . . Max U test

I 0.79. . . 0.91 0.83 0.048 (I-II) 0.44 NS

II 0.50. . . 0.88 0.75 0.125(II-III) <0.0001 S

III 0.20. . . 0.44 0.41 0.167 (III-I) 0.002 S

S= significant; NS= non-significant.

Our conjecture about grading is that grading and het-
erogeneity are akin. The full confirmation will require
a confrontation between our grades and the patients’
outcome after at least five years of follow up.
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Appendix

A.1. Stationarity

Stationarity is defined by the invariance by trans-
lation of the distribution law of the spatial stochastic

processZ(x). This property validates the assumption
that the observed valuez(x) at each point is a sam-
ple of a single random variable. Therefore it is suffi-
cient to analyse only a subpart of the whole natural
phenomenon which is most often too large to be stud-
ied fully. A sampling model must therefore be used to
make sure of the representativity of the sample anal-
ysed. Stationarity is a strong property here, as it con-
cerns directly the distribution law of any tuples of val-
ues ofZ.

A weaker stationarity condition requires only that
the expectation of punctual and doublets of values of
the function exist and are invariant by translation:{

E{Z(x)} = µ,

E{Z(x)Z(y)} = f (x− y).
(A1)

In practice, we always found this sufficient to ensure
stationarity [20].

A.2. Ergodicity

For making statistical inferences, the stationarity
condition is necessary but not sufficient as the observed
values ofZ(x) are not statistically independent. Ergod-
icity ensures that an estimation of statistical parame-
ter of the stochastic process based on spatial averages
is consistent, i.e., that spatial averages converge to the
statistical expectation if the sample size is sufficient.

A geostatistical procedure based on the dispersion
variance was used to demonstrate ergodicity [20–22].
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Let the statistical mean of a stochastic processµ =
E{Z(x)} be estimated by the spatial average on a sam-
ple |V | (z̄ (V )):

z̄(V ) =
1
V

∫
V

z(x) dx. (A2)

This estimator is unbiased. For an ergodic function,
the variance of the estimator can be approximated for
large sample (|V | large) by:

var{z̄(V )} ≈ σ2A

|V | , (A3)

whereA is the integral range [20].

A.3. Integral range

When |V |/A = N , the variance estimator will be-
have as the variance of an estimator based uponN in-
dependent observation of varianceσ2 (var{z̄(V )} ≈
σ2/N). The integral range can be interpreted as the
scale of correlation of an ergodic processZ(x).
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