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Abstract. The paper presents a technique to automatically detect the working area of peripheral blood smears stained with May-
Grünwuald Giemsa. The optimal area is defined as the well spread part of the smear. This zone starts when the erythrocytes stop
overlapping (on the body film side) and finishes when the erythrocytes start losing their clear central zone (on the feather edge
side). The approach yields a quick detection of this area in images scanned under low magnifying power (immersion objective
×25 or×16). The algorithm consists of two stages. First, an image analysis procedure using mathematical morphology is applied
for extracting the erythrocytes, the centers of erythrocytes and the erythrocytes with center. Second, the number of connected
components from the three kinds of particles is counted and the coefficient of spreadingρs and the coefficient of overlappingρo
are calculated. The data from fourteen smears illustrate how the technique is used and its performance.

Colour figures can be viewed on http://www.esacp.org/acp/2003/25-1/angulo.htm.
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blood spreading

1. Introduction

Historically examination under microscope of good
quality blood smears has been the best way to esti-
mate the number of leukocytes or white blood cells; for
leukocyte differentiation; to study the morphology of
erythrocytes or red blood cells; to characterise the mor-
phology of lymphocytes and; to calculate the number
and morphology of platelets [9].

From the last 20 years automated systems for leuko-
cyte recognition are currently available in the market
and are used in clinical laboratory routines. These gen-
erally rely on flow cytometry techniques whereby a
blood sample flows through a detector and is then dis-
carded. In addition these devices reach the limited aims
of identifying normally circulating leukocytes and of
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flagging abnormal circulating cells. Thus examination
of stained peripheral blood smears remains necessary
for detecting and classifying abnormal cells [4], partic-
ularly to study the morphology of lymphocytes which
is regarded as the principle basis for the identification
and discrimination among the chronic lymphoprolifer-
ative disorders [5,10].

From a methodological point of view there are two
desirable qualities of a blood smear. These are the suf-
ficient working area, defined as the wellspreadpart of
the smear, and an adequate quality and reproducibility
of the stainingprocedure. Both have been previously
studied, see Benattar and Flandrin [3,4].

Following some research works on haematologi-
cal cytology image analysis for microscopic diagnosis
[11,12], the aim of this paper is to present a power-
ful application of mathematical morphology in order
to automatically detect the working area of a periph-
eral blood smear using the fields scanned under low
magnifying power (immersion objective×25 or×16,
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Fig. 1. Peripheral blood smear stains with May-Grünwald Giemsa:
(a) Low magnifying power, (1) immersion objective×25 and (2) im-
mersion objective×16. (b) High magnifying power, immersion ob-
jective ×100. This figure can be viewed on http://www.esacp.org
/acp/2003/25-1/angulo.htm.

see Fig. 1(a)). In a strategy of automation using a mo-
torised microscope and within a telepathology context,
once the optimal area is detected, the following step is
to increase the magnifying power (immersion objective
×100, see Fig. 1(b)) in order to locate the interesting
fields which contain some leukocyte and in this case to
acquire the fields for storing, transmitting or process-
ing the images.

1.1. State of the art

Classification of blood cells from peripheral blood
smears is an established problem in image analysis and
pattern recognition which started over four decades
ago, Ingram et al. [17], Young [22]; and which contin-
ues still to arouse interest. See in Beksaç et al. [6], the
use of a neural network for blood cell recognition, and
in Theera-Umpom and Gader [21], the application of
morphological granulometries for the same purpose. In
the early 80 s, image analysis based systems for leuko-
cyte differential counting were introduced and several
of these systems were quite capable of differentiating
between many types of immature and abnormal cells,
see Haus et al. [16]. At present, several systems based
on automated microscopy and image processing are
under development for differential blood cell analysis,
see Comaniciu et al. [8], andCellaVisionCompany [7].
However we did not find any reference relating to the
automated detection of the working zone of peripheral

blood smears using image analysis and the above ref-
erenced systems do not claim any characteristic about
this issue.

2. Materials and methods

2.1. Background

In order to define the working area of a periph-
eral blood smear we have to examine the smear un-
der low magnifying power in such a way that we have
in the field a sufficiently large sample of the smear
zone, i.e., enough number of cells for an understand-
ing overview. Our methodology is valid for different
magnification powers whenever this essential require-
ment is observed. For instance, in this study we worked
with images obtained from oil-immersion objective
×25 and oil-immersion objective×16. We believe that
these two values are respectively the upper and lower
limit of validity of the approach.

In the stained images, the erythrocytes (ennucleated
cells) have a reddish color from the haemoglobin and
usually appear round or oval with a pale-staining cen-
tral region, caused by their biconcavity [9].

The working area or optimal area is defined as the
well spread part of the blood smear. This zone starts
on the body film side, when erythrocytes stop overlap-
ping (piled on top of one another) and finishes on the
feather edge side, when erythrocytes start to lose their
clear central zone (they were not well spread). See in
Fig. 2 the series of 20 images which illustrate this de-
finition. The rationale behind our algorithm for auto-
matic detection of the optimal area is the quantification
of these two erythrocyte phenomena, the spread and
the overlap.

2.2. Peripheral blood smear images

In this paper, we used the images from 14 peripheral
blood smears stained with May-Grünwuald Giemsa us-
ing an uniform and stable technique [3]. For each one,
the acquisition of several fields yields a succession of
images which covers the complete smear area. For this
study, the manual technique for selecting the field im-
ages on the film is the following: the vertical position
corresponds approximately to the middle of the film
and on the horizontal dimension, a carefully sampling
allows to cover the total smear. These microscopic im-
ages were acquired at controlled light intensities (the
RGB camera is calibrated to ensure correct color reg-
istration) using a ICG TRIBVN workstation.

http://www.esacp.org/acp/2003/25-1/angulo.htm
http://www.esacp.org/acp/2003/25-1/angulo.htm


J. Angulo and G. Flandrin / Working area of blood smear 39

Fig. 2. Series of 20 blood images obtained from the same film and covering the whole smear (Smear 0, ×25). This figure can be viewed on http://
www.esacp.org/acp/2003/25-1/angulo.htm.

The fourteen image folders are,

– Smear 0(×25): 20 images used to describe in
detail the foundation of the algorithm and for
the discussion which provides the morphological
quantitative definition of working area.

– Smear A, Smear BandSmear C(×16): the results
of the application of the approach on these smears
(each one with 20 images) illustrate how the tech-
nique is used.

– Smear 1, Smear 2, . . ., Smear 10(×16): the
analysis of these smears (10 images by smear)
shows by a statistical study the performance of the
method.

2.3. Mathematical morphology

First introduced as a shape-based tool for binary
images, mathematical morphology has become a very

powerful nonlinear image analysis technique with
operators capable of handling sophisticated image
processing tasks in binary, grey-scale, color and mul-
tiresolution imaging modalities. A tutorial in the tech-
nique can be found in Serra [18,19]. In this section we
briefly define the basic morphological operators used
in this paper. The practical effects are shown in Fig. 3
by means of a grey-tone image series.

In the framework of digital grids, agrey-tone image
can be represented by a functionf : Df → T , where
Df is a subset ofZ2 andT = { tmin, . . . , tmax} is an
ordered set of grey-levels. LetB be a subset ofZ2 and
s ∈ N a scaling factor.sB is calledstructuring element
(shape probe)B of size s. The basic morphological
operators are

– Dilation: δB(f (x)) = supy∈B{ f (x− y)},
– Erosion:εB(f (x)) = inf−y∈B{ f (x− y)}.

http://www.esacp.org/acp/2003/25-1/angulo.htm
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Fig. 3. Effects of morphological operators on grey-tone structures: (a) Initial image,f , (b) dilation, δsB (f ) (fading of dark structures and
expansion of white structures), (c) erosion,εsB (f ) (dual effects), (d) opening,γsB (f ) (filter out light structures), (e) closing,ϕsB (f ) (filter out
dark structures, in the four casess = 10 andB is a circle), (f) closing by reconstruction,ϕrec (using as marker a closing of sizes = 20 and a dual
reconstruction; the dark structures with size smaller than 20 are removed and the contours are preserved), (g) dualclose-holeoperator,ψclohole(f )
(the dual holes–light structures inside dark bordered regions – that do not touch the image boundary are filled) and (h) dualsize-and-close-grain
operator,ψclogra(f ) (dark structures smaller than a size are removed and the dark structures are merged).

The two elementary operations oferosionanddilation
can be composed together to yield a new set of opera-
tors having desirable feature extractor properties which
are given by

– Opening:γB(f ) = δB[εB(f )],
– Closing:ϕB(f ) = εB[δB(f )].

The morphologicalopenings(closings) filter out light
(dark) structures from the images according to the pre-
defined size and shape criterion of the structuring ele-
ment.

A morphological tool that complements the open-
ing and closing operators for feature extraction (extract
the marked particles) is the morphological reconstruc-
tion, implemented using thegeodesic dilationoperator
based on restricting the iterative dilation of a function
markerf byB to a function maskg,

δng (f ) = δ1
gδ
n−1
g (f ),

whereδ1
g(f ) = δB(f ) ∧ g. Thereconstructionby dila-

tion is defined by

γrec(g,f ) = δig(f )

such thatδig(f ) = δi+1
g (f ) (idempotence).

There are two composed operators derived from the
geodesic reconstruction that are of great importance
for the application in this paper are theclose-holeop-
erator and thesize-and-close-grainoperator.

– Close-hole: this operator fills all holes in an image
f that do not touch the image boundaryf∂ (used
as a marker) and therefore provides a parameter
free approach to detect holes in an image:

ψclohole(f ) =
[
γrec(f c,f∂)]c.

– Size-and-close-grain: this operator removes the
small light structures or grains (smaller thanλB1)
using an opening by reconstruction and closes the
packets of grains when they are sufficiently near
(gap smaller thanµB2 whereB2 is a circle) using
an isotropic closing

ψ
clogra
λB1,µB2

(f ) = ϕµB2

[
γrec(f ,γλB1

(f )
)]
.
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2.4. Cell segmentation by thresholding

In blood images scanned under low magnification
power, two regions may be observed: the plasma
(background) and the cells (erythrocytes, leukocytes
and platelets). The histogram summarises the grey-
level contents of an image. In this case, the histogram
of the filtered green channelhG[n] is typically bi-
modal. The cell segmentation by thresholding at the
optimal value,uT , between the two modal peaks,n1
andn2, yields a binary image which matches the leuko-
cytes, the platelets and the erythrocytes without their
central zone. Different methods, see the survey on im-
age segmentation by Fu and Mui [13] or the overview
and comparison of eleven common histogram-based
thresholding methods in Glasbey [14], can be em-
ployed to determineuT .

We propose a new approach which combines the
classical selection of the thresholding value by min-
imising the sum of within class variances with a mor-
phological technique for selecting the central mode
values which speeds up the convergence touT . The
algorithm, divided into three steps, is summarised as
follows,

Smooth histogram In order to obtain the smooth his-
togramĥG[n], we filter the histogram by aver-
aging every bin with its neighbours (anti-causal,
zero-phase filter of sizeN = 5). In Fig. 4(b) the
interest of this step is shown: after smoothing,
the number of maxima is reduced and the com-
putation of the next step is faster. On the other
hand, this preprocessing step stabilises and en-
hances the histogram modes in order to avoid
that in an extreme situation a secondary maxima
could have a significant contrast.

Maxima of the histogram In order to find the two
peak maxima, we use a morphological tool:
the dynamics or contrast extinction value. Intro-
duced by Grimaud [15], this measure of con-
trast maps each maximum with a value: the con-
trast of a maximum is the minimum descent nec-
essary to move from the maximum to another
higher maximum (the contrast of the highest
maximum is defined as the difference between
the maximum and minimum of the function).
Figure 4(a) illustrates the contrast of histogram
maxima. Then, we can select the two highest
maxima,n1 andn2, which square with the cen-
tral value of each mode. This definition of his-
togram modes as the histogram peaks of largest
dynamic (the most relevant peaks) has been pre-
viously used by Soille [20].

Variance criterion Using a statistical test, we obtain
the best histogram partitionuT with respect to a
criterion of varianceC,

C = min
uT

{ uT∑
n=tmin

(n− n1)2 ĥG[n]

+
tmax∑
n=uT

(n− n2)2 ĥG[n]

}
.

2.5. Algorithm

Our algorithm can be divided into two parts. First,
an image analysis procedure using mathematical mor-
phology is applied for extracting the erythrocytes, the
centers of erythrocytes and the erythrocytes with cen-
ter. Second, the number of connected components from
the three kinds of particles is counted and the coeffi-
cient of spreading and the coefficient of overlapping
are calculated.

2.5.1. Image analysis
The aim of the image analysis step is to segment and

classify the cells, mainly the erythrocytes. We are in-
terested in the morphology of erythrocytes: presence or
absence of clear center and overlapping of neighbour-
ing cells. The distinction between erythrocytes with
and without center and between separated and over-
lapped erythrocytes are required. The first task is easy,
we extract on one hand the cells and on the other the
centers (brighter than the body), afterwards byrecon-
struction, the cells with center are obtained. The sec-
ond task is less direct, for identifying the overlapped
cells we consider that after segmentation two over-
lapped cells are only a connected component never-
theless they have probably two centers. The presence
of some leukocytes is not a serious error since their
contribution from a statistical viewpoint is negligible.
However, it is desirable to extract the platelets and
other small artefacts which could be numerous.

Let f be the blood smear color image. After com-
paring several color spaces, we found that the contours
of the erythrocytes appear most continuous and con-
trasted against the background as well as a better con-
trast between center and body in the green channelfG
of the RGB color space. After pre-filtering and binari-
sation, it is enough to apply morphological filtering to
binary images. There are two reasons behind the use
of binary operators: the first one is for particle count-
ing we have to use a binary image and on the other
hand using binary operators the algorithm is signifi-
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Fig. 4. Histograms and optimal thresholding: (a) On the left, histogram and contrast extinction values; on the right, maximan1 andn2 (the two
peaks of largest dynamic or the first two most relevant peaks), and optimal threshold valueuT . (b) On the left, histogram and contrast extinction
values; on the right, smoothed histogram and new contrast extinction values. This figure can be viewed on http://www.esacp.org/acp/2003/
25-1/angulo.htm.

cantly faster (to envisage the integration of this algo-
rithm in a microscopic system). The algorithm can be
summarised as follows (the intermediate images which
allow to follow the different steps are shown in Fig. 6),

Filtering In a first step we filter the imagefG using a
median filterMFn of sizen = 3

f̂G = MFn(fG),

in order to remove the noise and small mistakes
of digitalisation. In fact, this pre-filtering which

is the same for images under×25 and×16
allows that the possible Gaussian and flicker
noises, introduced in the optical and image ac-
quisition chain system, are controlled before the
thresholding.

Binarisation The histogram off̂G is typically bi-
modal, i.e., two object categories: the cells (ery-
throcyte bodies, leukocytes and platelets) and
the background (plasma and erythrocyte center).
A simple thresholding process atu, i.e., the opti-
mal value between the two modes,T[tmin,u] , seg-

http://www.esacp.org/acp/2003/25-1/angulo.htm
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Fig. 5. Histograms of some images from the four smears test (for each one, the green component histogram of 4 random images is depicted): the
histograms are typically bi-modal but the optimal value which separates the two categories depends on the image. This figure can be viewed on
http://www.esacp.org/acp/2003/25-1/angulo.htm.

ments the two categories obtaining a binary im-
age

I = T[tmin,u]
(
f̂G

)
.

The choice ofu is crucial since it is important
to differentiate between center and body on the
erythrocytes. Ifu is chosen too low, cell bodies
are broken, if it is set too high, cell and back-
ground are not separated. In Fig. 5 some exam-
ples of histograms are shown.
The overlapping phenomenon determines the lo-
cus of the first mode and the variations in the
staining procedure condition the relative posi-
tion of histogram. In order to automatically con-
trol this lack of definition, the optimalu is cho-
sen by means of the adaptive morphological
thresholding, presented above.

Extraction of cells In I, the cells without their centers
are included. In order to fill all the holes in the
cells, we apply a close-hole operator

Icl = ψclohole(I).

Extraction of platelets and artefacts As we know
approximately their size, in order to eliminate
the platelets we can apply a reconstruction using
an opening as the marker

Icl2 = γrec(Icl,γs1B)

with s1 such thats1B is larger than the size of
the platelets; the structuring elementB is a cir-
cle. The result is a binary mask of cells, know-
ing that a certain amount of them could be over-
lapped. By difference, we can obtain

http://www.esacp.org/acp/2003/25-1/angulo.htm
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Fig. 6. Cell image analysis algorithm (×25): (a) Filtered green component of color image. (b) Binary image after thresholding. (c) Binary mask
of cells. (d) Binary mask of platelets and artefacts. (e) Binary mask of centers. (f) Binary mask of cells with center.

Ipl = Icl − Icl2,

that contains the platelets and some small arte-
facts, typically pieces of cell.

Extraction of centers The goal is to extract the cen-
ters of cells. To achieve this, we start by taking
the difference betweenI andIcl

Ict = I − Icl.

Then, we apply a size-and-close-grain operator
in order to merge the grains which are part of the
same center

Ict2 = ψ
clogra
s2B,s3B

(Ict),

wheres2 is the size of the opening by recon-
struction which removes the small centers and
s3 the size of the closing which packs the grains
sufficiently near. As result, we have the binary
mask of centers.

Extraction of cells with center The final image is ob-
tained by applying a reconstruction of the mask
of cellsIcl2 using the mask of centersIct2 as the
marker

Iclct = γrec(Icl2, Ict2)

that provides a binary mask with the cells which
have at least a clear center.

This algorithm has three parameters: the size of the
plateletss1, the size of the centers considered too small
s2 and the size of the gap between particles belong-
ing to the same centers3. Since they are parameters of
size of biological structures, the use of different mag-
nification powers of cells involves different sizes. For
instance, under×25: s1 = 9, s2 = 3 ands3 = 5 and
under×16:s1 = 7,s2 = 1 ands3 = 3. The robustness
of an algorithm can be defined in respect to changes in
the parameters or to image quality. We have tested the
algorithm and the influence of parameters on an image
database with 180 field images, introducing several al-
terations of quality (noise, resolution, etc.). In view of
the results we can state that the behaviour of the algo-
rithm with respect to limited changes is quite robust.

Figure 7 depicts the results of the algorithm for three
fields belonging to a blood smear under×25 and an-
other under×16, showing the differences of the possi-
ble three zones that we could find: too spread, accept-
able and too thick.
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Fig. 7. Example of three fields of a blood smear (first row×25 and second row×16): (a) Spread area, (b) optimal area and (c) thick area. In
green, clear centers and in red, boundaries of cells. This figure can be viewed on http://www.esacp.org/acp/2003/25-1/angulo.htm.

2.5.2. Parameters for quantification
Taking these three binary imagesIcl2, Ict2 andIclct

as a starting point, we can count for each one the num-
ber of connected components (separated particles) in
such way that we have the number of cellsNcells, the
number of centersNcentersand the number of cells with
clear centerNcells_with_center. In order to calculate the
connected components of a binary image, a fast al-
gorithm based on the geodesic reconstruction is used.
From these three measurements, the following parame-
ters are defined.

The coefficient of spreadingρs quantifies the pro-
portion of cells which have a clear center; i.e.,

ρs =
Ncenters

Ncells
.

A low value ofρs involves that the cells are too spread
on the slide or that they are too overlapped on top of
one another and the central zones are also piled. Since
Ncenterscan be greater thanNcells, the range ofρs > 1.
This happens when there are some overlapped cells.
However, in order to quantify more precisely this situ-
ation, we introduce a second parameter. Thecoefficient
of overlappingρo assesses the proportion of cells with
clear central zone which are overlapped; i.e.,

ρo =
Ncells_with_center

Ncenters
.

Fig. 8. Morphology of neighbouring erythrocytes. (1) Two sepa-
rated cells without center,ρs = 0 andρo ∼ 1. (2) Two separated
cells with a clear center,ρs = 0.5 andρo = 1. (3) Two sepa-
rated cells with two centers,ρs = 1 andρo = 1. (4) Two con-
nected (overlapped) cells with two centers,ρs = 2 andρo = 0.5.
(5) Two connected (overlapped) cells with a center,ρs = 1 and
ρo = 1. This figure can be viewed on http://www.esacp.org/acp/
2003/25-1/angulo.htm.

In this caseρo � 1. A low value ofρo involves any
amount of overlapped erythrocytes.

The synthetic diagram, in Fig. 8, contains the pos-
sible situations of two neighbouring erythrocytes and
the respective values ofρs andρo. The combined use
of the two coefficients is very meaningful and yields a
discrimination of the different zones of the smear.

3. Experiments and discussion

Colour figures can be viewed on http://www.esacp.
org/acp/2003/25-1/angulo.htm.

In order to define numerically the working area, we
present a control experiment onSmear 0(see Fig. 2)

http://www.esacp.org/acp/2003/25-1/angulo.htm
http://www.esacp.org/acp/2003/25-1/angulo.htm
http://www.esacp.org/acp/2003/25-1/angulo.htm
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Table 1

Quantitative results of the study and subjective remarks by the haematological expert onSmear 0

Image No. No. No. cells ρs ρo Remarks

cells centers with center

1 208 1 1 0.005 1.000 End of slide, too spread

2 322 12 11 0.037 0.917 Too spread, no clear center

3 346 16 16 0.046 1.000 "

4 373 63 63 0.169 1.000 "

5 386 211 211 0.547 1.000 Acceptable, clear center

6 382 306 303 0.801 0.990 "

7 374 301 297 0.805 0.987 "

8 396 360 351 0.910 0.975 "

9 408 387 370 0.948 0.956 "

10 416 410 380 0.985 0.927 "

11 402 393 354 0.977 0.900 "

12 382 404 345 1.057 0.854 "

13 376 383 328 1.018 0.856 Too thick, overlapped cells

14 360 363 289 1.008 0.796 "

15 352 360 271 1.023 0.753 "

16 332 336 245 1.012 0.729 "

17 271 342 205 1.262 0.599 "

18 304 316 212 1.040 0.671 "

19 223 268 155 1.202 0.578 "

20 116 115 56 0.991 0.487 Illegible, hard accumulation

for testing the ability of coefficientsρs andρo against
a human expert.

The images have been subjected to analysis by a
haematological grader in order to remark the contents
and to assign the corresponding zone of the smear. We
consider three kinds of zone: too spread, acceptable (or
working area) and too thick. Then the parameters have
been computed for each image. The results have been
compared with the subjective study. The values of pa-
rameters and human comments are summarised in Ta-
ble 1.

From this table we were able to establish the values
of the coefficients that allow the objective verification
of the classification done by the human expert. For the
coefficient of spreading, it is easy to observe that if we
consider for instanceρs > 0.50 as criterion of accep-
tation, the fields too spread are rejected. The interpre-
tation of this round value is also very intuitive: half the
detected cells (50%) have at least a clear center. The
coefficient of overlapping is less simple since its inter-
pretation is also less intuitive. We took the limit value
ρo > 0.73; i.e., at least 73% of cells with clear cen-
ter are not overlapping. This choice implied that three
images, doubtfully classified by human expert as be-
longing to the thick area, were acceptable for reading.

Fig. 9. Scatter plot of parametersρs andρo on Smear 0. The work-
ing zone belongs with the upper-right quadrant. This figure can be
viewed on http://www.esacp.org/acp/2003/25-1/angulo.htm.

These undecided cases for a human operator are re-
solved according to objective criteria.

Figure 9 shows the scatter plot of parametersρs and
ρo. The established limits divide the space, demarcat-
ing the fields belonging to the working zone.

In summary, from this control case the working area
is defined by the following boundaries

http://www.esacp.org/acp/2003/25-1/angulo.htm
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ρwork area
s > 0.50 andρwork area

o > 0.73.

Moreover, we can state that

if ρs � 0.50⇒ area too spread

and

if ρo � 0.73⇒ area too thick.

We fixed these values as the classification stage of our
approach.

Apart from the control example×25, we tested ini-
tially the algorithm on 3 smears×16, with 20 images
from each one. By this scale changing we showed that
the definition of working area by means ofρwork area

s
andρwork area

o is independent of magnification power
and consequently independent of size of cell sample.
Also independent of the field image size. This is nat-
ural because the definition of working area is given by
two relative coefficients.

In order to compare the results obtained by the pro-
posed algorithm with the performance of a human
expertise, the image contents has been manually as-
sessed into tree classes: too thick (TT), too spread
(TS), acceptable (OK) and doubtful (DB). The results
are shown in Table 2. We observe that the results are
good enough. The manual results matched the auto-
matic classification in the well-defined cases. A re-
sponse was also obtained when the human has a doubt.
The conflicts (image 16 ofSmear Band image 16 of
Smear C) happened just in the border between accept-
able and spread area, where the decision to take is very
difficult for the human grader.

Finally, in order to complete the results we carried
out an additional analysis on other 10 smears×16,
with 10 images from each one. The methodology used
to validate the performance is the same, comparing the
result of the proposed algorithm with the human ex-
pert evaluation. We propose to use the well-known no-
tions of true positive TP, true negative TN, false pos-
itive FP and false negative FN. Besides the absolute
number of classified images, we used the classical rel-
ative ratios:sensitivity, Sens. = TP/(TP+ FN) (mea-
sures the number of field images which truly belong to
the working area and which correctly classified);speci-
ficity, Spec. = TN/(TN+FP) (measures the number of
field images which do not belong to the working zone
which test negative) and thepositive predictive value
PPV = TP/(TP + FP) (measures the proportion of
fields which have been classified as working area are

Table 2

Comparison of the proposed automatic method with manual exper-
tise on Smear A, Smear Band Smear C. Code for the manually
classified zones: too thick (TT), too spread (TS), acceptable (OK)
and doubtful (DB). The automated working zone belongs with the
upper-right quadrant
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Table 3

Comparison of the results obtained by the proposed algorithm with
the manually classified by a human expert

TP TN FP FN Sens. (%) Spec. (%) PPV (%)

Smear A 10 10 0 0 100.0 100.0 100.0

Smear B 10 9 1 0 100.0 90.0 90.0

Smear C 9 10 1 0 100.0 90.0 90.0

Smears 1,2, . . . ,10 43 48 7 2 95.5 87.2 86.0

Total 72 77 9 2 97.2 89.5 88.8

Table 4

Statistical values of the coefficientsρs andρo on the 14 smears for
the different smear zones: too thick (TT), doubtful in the border be-
tween TT and OK (DB 1), working area (OK), doubtful in the border
between OK and TS (DB 2), and too spread (TS). Data are expressed
as mean± std. dev.

ρs ρo

Total 0.655± 0.357 0.825± 0.130

TT 0.567± 0.294 0.722± 0.150

DB 1 0.738± 0.054 0.768± 0.020

OK 0.845± 0.189 0.887± 0.072

DB 2 0.566± 0.430 0.905± 0.075

TS 0.409± 0.488 0.810± 0.154

really in the working area). In Table 3 are summarised
the satisfactory values obtained for the 13 smears×16.

In essence, the choice of decision boundaries for
ρwork area
s andρwork area

o is not only a question of au-
tomated classification. Despite that the fixed values of
the coefficients are only based on a well-representative
smear and a proved human experience these decision
limits have yielded interesting results. We can not use
the term “optimal” limits for the fixed values however
we believe that for classical cell smear blood analy-
sis the images have to be acquired from zones which
coefficients of spreading and overlapping belong ap-
proximately to the presented values, see in Table 4 the
statistical values of the coefficientsρs andρo on the
14 smears for the different smear zones. Moreover, the
physical sense of parameters allows to lift the bound-
aries depending on the requirements of the blood cell
image analysis application.

Considering the success of the classification tech-
nique we could say that the information provided by
these two coefficients and their computation speed can
yield a simple tool to help an expert or a software sys-
tem during the process of image acquisition.

4. Conclusions

Definition of working area of peripheral blood smear
stained with May-Grünwuald Giemsa is a crucial step

in order to automate the haematological cytology im-
age analysis for microscopic diagnosis; detection of
leukocytes using a motorised microscope; acquisition
in digital images and quantitative analysis of mor-
phological cell features based on mathematical mod-
els [1,2]. An efficient algorithm for the detection of the
well spread part of the smear has been presented. Ro-
bustness and accuracy in comparison to human exper-
tise have been evaluated on several smears under two
magnification powers.

The results are encouraging and they open up new
possibilities. Besides integrating the presented algo-
rithm as a software module in a microscopic work-
station, there are other indirect applications of the ap-
proach in practical haematology as a tool for qual-
ity control and standardisation of automatic devices
and laboratory routines. Benattar and Flandrin [4] per-
formed a comparison of an apparatus for automatically
spreading peripheral blood films to the manual wedge-
pull technique, showing that the average size of opti-
mal area for counting is twice as large as compared to
manual ones. Using our approach, it is possible to en-
visage comparing objectively the performance of dif-
ferent slide maker apparatus.
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