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Background. Uveal melanoma (UM) has favorable local tumor control, but once metastasis develops, the prognosis is rather poor.
Thus, it is urgent to develop metastasis predicting markers. Objective. Our study investigated a novel gene expression-based
signature in predicting metastasis for patients with UM. Methods. In the discovery phase, 63 patients with UM from GEO data
set GSE22138 were analyzed using the Weighted Correlation Network Analysis (WGCNA) to identify metastasis-related hub
genes. The Least Absolute Shrinkage and Selection Operator (Lasso) Cox regression was used to select candidate genes and build
a gene expression signature. In the validation phase, the signature was validated in The Cancer Genome Atlas database. Results.
Forty-one genes were identified as hub genes of metastasis by WGCNA. After the Lasso Cox regression analysis, eight genes
including RPL10A, EIF1B, TIPARP, RPL15, SLC25A38, PHLDA1, TFDP2, and MEGF10 were highlighted as candidate
predictors. The gene expression signature for UM (UMPS) could independently predict MFS by univariate and multivariate Cox
regression analysis. Incorporating UMPS increased the AUC of the traditional clinical model. In the validation cohort, UMPS
performed well in predicting the MFS of UM patients. Conclusions. UMPS, an eight-gene-based signature, is useful in predicting
prognosis for patients with UM.

1. Introduction

Uveal melanoma (UM), arising from the melanocytes res-
ident of the eye, is the most common type of primary
intraocular malignant tumor in adults [1]. It occurs in
approximately 1 per 200,000 Americans annually [2].
Despite favorable local tumor control by means of radio-
therapy, UM is a highly aggressive disease with moderate
metastatic risk due to micrometastasis before treatment
[1]. Upon the diagnosis of metastasis, the patients’ survival
time was less than 12 months [3]. Several clinical trials
were designed to evaluate adjuvant therapy for patients
with a high risk of metastasis to improve disease outcome
[3]. Identifying patients that are prone to have disease pro-
gression via postoperative metastasis risk stratification may
help with decision-making of strategies for the surveillance
and adjuvant therapy.

Accumulating evidence suggested that many clinico-
pathological or genomic predictors of metastatic disease
may be useful for patients’ risk stratification. Several studies
found that large tumor size, extraocular extension, male gen-
der, and an epithelioid cell type can predict high metastatic
risk [3]. Molecular investigation of UM could provide infor-
mation for disease progression and metastasis. Previous
studies have highlighted several promising genetic bio-
markers. However, few biomarkers have been incorporated
into clinical practice. The limitations of these researches
included a single-center cohort and a limited methodology
for feature selection.

To best identify patients at high risk of metastasis, we
conducted the Weighted Correlation Network Analysis
(WGCNA) and Least Absolute Shrinkage and Selection
Operator (Lasso) Cox regression in a gene expression micro-
array data to selected candidate genes and trained a novel
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eight-gene expression signature. Our findings were externally
validated in The Cancer Genome Atlas (TGCA) dataset.

2. Materials and Methods

2.1. Patients and Design. The training cohort GSE22138 con-
tains 63 tumor samples from UM patients that was down-
loaded from the GENE EXPRESSION OMNIBUS (GEO)
database. Gene expression was analyzed on GeneChip
Human Genome U133 Plus 2.0 microarrays (Affymetrix).
The TCGA cohort consists of 80 tumor tissue samples from
UM patients. Level 3 RNA sequencing data was downloaded
via UCSC Xena browser (https://xenabrowser.net). The
GSE27831 cohort contains 29 tumor tissue samples from
UM patients. The study design was illustrated in Figure 1.

2.2. Identifying Metastasis Related Hub Genes. The coexpres-
sion modules for microarray data were developed using the
WGCNA method [4]. In our study, the soft-thresholding
was set as 10 and minimum gene module size as 30. Modules
with absolute correlation coefficients values between metas-
tasis status more than 0.15 were identified as metastasis-
related modules. The module with the highest correlation
coefficients was subject to further downstream feature selec-
tion. Hub genes underwent gene ontology (GO) function
and KEGG pathway enrichment analyses using “clusterProfi-
ler” R package.

2.3. Feature Selection and Signature Construction. To select
metastasis-related features, we considered three grouped var-
iable selection methods. The ridge regression (alpha =0)
shrinks coefficients of correlated predictors, while Lasso
regression (alpha=1) tends to choose one of them and dis-
card the other features (shrinks all the way to zero). Although
ridge regression reduces the complexity of the model, it does
not really solve the problem of feature selection. The elastic
network compromises between the ridge regression and
Lasso penalties (alpha is from 0 to 1). While setting alpha
from 0 to 1, the cv error is minimized for alpha= 1. Based
on this, we choose Lasso regression. Finally, to consider the
issue of survival time, the Least Absolute Shrinkage and
Selection Operator (Lasso) Cox regression method [5] was
then applied from the primary cohort. The penalty parameter
tuning was conducted by 10-fold cross-validation. In this
method, weak coefficients of predicting features shrink to
zero and the strongest prognostic features remained. A signa-
ture formula (uveal melanoma metastasis prediction score,
UMPS) to predict the metastasis-free survival of UM patients
was generated by the linear combination of the final selected
gene expression features weighted by their individual coeffi-
cients from the Lasso Cox regression analysis.

2.4. Functional Annotation of the Risk Score.Gene set enrich-
ment analysis (GSEA) [3] was done by GSEA 4.1 command
line version on the Linux system. Spearman correlation
coefficients of the risk score and each gene were input as
the prerank gene list. The “h.all.v7.1.symbols.gmt” gene sets
were set as the gene sets for enrichment analysis. The
immune cell infiltration status was evaluated by the CIBER-
SORT software (https://cibersort.stanford.edu/) [3] with the

LM22 (22 immune cell types) as the signature gene file. The
analysis was performed with a 1,000-time permutation.

2.5. Evaluation and Clinical Use of Signature. Survival curves
of different risk groups were plotted by the Kaplan-Meier (K-
M) method. The between-group survival difference was
tested by the log-rank test (p < 0:05). Univariate and multi-
variate analyses with Cox proportional hazards regression
were applied with the determined predictors of survival.
Time-dependent receiver operating characteristic (ROC)
curve analysis was applied to calculate the Area Under Curve
(AUC) of different prediction models. The clinicopathologi-
cal factors with p < 0:05 by univariate Cox regression were
merged as the Clinical model. Decision curve analysis was
applied to calculate the net benefit from the use of the signa-
ture model, the American Joint Committee on Cancer
(AJCC) Tumor-Node-Metastasis (TNM) stage, and the com-
bined signature and AJCC TNM stage model at different
threshold probabilities [3].

2.6. Statistical Analysis. All statistical analysis was performed
using the R software (version 3.6.2, R Project for Statistical
Computing, http://www.r-project.org). WGCNA was per-
formed with the “WGCNA” package. Immune cell propor-
tions between low risk and high risk were evaluated by the
Wilcoxon test. Cox proportional hazards regression was con-
ducted with the “survival” package. Time-dependent ROC
with AUC analysis was conducted with the “survivalROC”
package. Lasso Cox regression analysis was conducted with
the “glmnet” package. Decision curve analysis was performed
with the “dca” package. Statistical tests with a two-sided p
value less than 0.05 was considered significant.

3. Results

3.1. Identification of Metastasis Associated Modules by
WGCNA. To construct gene coexpression modules, microar-
ray data from GSE22138 was subjected to WGCNA. After
setting the power as 10, 54 coexpression modules were con-
structed and assigned with different colors (Figure 2(a)). The
relationships between metastasis status and the identified

Metastasis-related hub genes
62 probes, 41 genes

8-gene expression signature (UMPS)

WGCNA

Patients with microarray data in GSE22138

Lasso-cox

Construction and evaluation of prognostic model

Validation of UMPS with TCGA and GSE27831 cohorts

Figure 1: Flow chart of study design.
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gene modules are presented in Figure 2(b). Among the mod-
ules, module “blue”, “cyan”, “darkgrey”, “darkolivegreen”,
“lightsteelblue1”, “tan”, and “grey” were the most relevant
modules with metastasis status (Figure 2(b)). The genes in
the cyan module turned out to be highly correlated with
metastasis (Figure 2(c)). With a cutoff of correlation ≥0.8,
62 hub probes (41 hub genes) from the cyan module were
chosen for further analysis. GO analyses of the 41 hub genes
suggested the biological processes enriched were SRP-
dependent cotranslational protein targeting to membrane,
cotranslational protein targeting to membrane, and protein
targeting to ER et al. (Figure 2(d)). Enrichment KEGG path-
ways indicated that the Ribosome pathway was enriched
(Figure 2(e)).

3.2. Constructing an Eight-Gene Metastasis-Free Survival
Prediction Signature. Then, Lasso Cox regression analysis
was performed to identify the most predictive markers
among the 41 genes. The ten-fold cross-validation for tuning
parameter selection was shown in Figure 3(a). Then, eight
genes were selected as the predicting feature. The final genes
were RPL10A, EIF1B, TIPARP, RPL15, SLC25A38,
PHLDA1, TFDP2, and MEGF10. The individual coefficient
of each of the eight genes by Lasso Cox analysis suggested
that seven genes were protective (Hazard Ratio, HR <1)
and one gene was associated with high risk (HR >1)
(Figure 3(b)). According to the coefficient weighed by Lasso
Cox regression analysis, the UMPS was calculated as follows:
UMPS = ð0:720 ∗ expression level of RPL10AÞ + ð−0:354 ∗
expression level of EIF1BÞ + ð−0:076 ∗ expression level of
TIPARPÞ + ð−0:434 ∗ expression level of RPL15Þ + ð−0:066
∗ expression level of SLC25A38Þ + ð−0:044 ∗ expression
level of PHLDA1Þ + ð−0:397 ∗ expression level of TFDP2Þ
+ ð−0:017 ∗ expression level of MEGF10Þ. GSEA analysis
according to the gene list correlated with the risk score showed
that the high-risk group was associated with the complement,
E2F targets, G2M checkpoint, and unfolded protein response
pathways (p < 0:05) (Figures 3(c) and 3(d)). There was no

difference in the immune cell proportions between the
low-risk and high-risk groups (Figures 3(e) and 3(f)), indi-
cating that high-UMPS patients’ worse prognosis may not
be due to differed immune cell infiltration in the tumor
microenvironment.

3.3. Survival Prediction Based on Risk Score of the UMPS in
the Training Cohort. Then, we investigate the association
between the UMPS and metastasis-free survival in the train-
ing cohort. According to the UMPS formula, the risk score
for each patient was calculated. Patients were divided by the
median level of risk scores into a low-risk group (n = 31)
and a high-risk group (n = 32) (Figure 4(a)). The survival
time distributions were illustrated in Figure 4(b). The expres-
sion heatmap of the genes in the formula showed that
patients in the high-risk group had relatively lower expres-
sion of EIF1B, TIPARP, RPL15, SLC25A38, PHLDA1,
TFDP2, and MEGF10 and higher expression of RPL10A
(Figure 4(c)). Patients in the high-risk group had signifi-
cantly worse metastasis-free survival compared to those in
the low-risk group as shown in the Kaplan-Meier survival
curve (p < 0:001) (Figure 4(d)).

3.4. Prognostic Performance and Clinical Utility of UMPS in
the Training Cohort. First, univariate and multivariate Cox
proportional hazards regression analysis were performed.
Samples that had covariates with Not Applicable (N/A) values
were excluded. The tests of proportional hazards assumption
in the remaining 51 patients indicate that Chromosome3 sta-
tus (HR = 4; p < 0:001) and UMPS (HR = 6:2; p < 0:001) were
associated with metastasis-free survival (MFS). In the multi-
variate Cox Regression model, UMPS (HR = 6:09; p < 0:05)
was found to be independently associated with metastasis-
free survival (supplementary table 1). Second, time-
dependent ROC analysis showed the AUC was 0.935 and
0.893 for UMPS in predicting 3-y and 5-y metastasis-free
survival, respectively (Figures 4(e) and 4(f)). AUC of UMPS
was higher than any single clinicopathological predictor

Ribosome
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Gene ratio

2.533066e−07

p.adjust

Count
7

Enrichment KEGG pathways

(e)

Figure 2: WGCNA of metastasis-related module. (a) The clustering dendrograms showed 54 coexpression modules recognized byWGCNA.
(b) The correlations and p value of module-traits associations. (c) The cyan module genes were highly correlated with metastasis status. (d)
Gene Ontology (GO) analyses of the 41 hub genes. (e) KEGG pathways analysis of the 41 hub genes.
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including Chromosome3 status (AUC = 0:730 and 0:738 for
3-y and 5-y, respectively) (Figures 4(e) and 4(f)). According
to the univariate Cox regression model, the Chromosome3
status was incorporated into the Clinical Model in the
training cohort. The combination of UMPS and Clinical
model (AUC = 0:945 and 0:901 for 3-y and 5-y, respectively)
could improve the accuracy of the clinical model
(Figures 4(e) and 4(f)).

3.5. Validation of the UMPS for Survival Prediction in
Additional Cohorts. At the validation phase, we validated
the prognostic performance of the UMPS in the TCGA
cohort and GSE27831 cohort. Using the UMPS formula
derived from the training set, we calculated the risk score
for each patient. Risk score distribution and survival over-
view were shown in Figures 5(a) and 5(b), respectively.
According to the median cut-off value, patients were sepa-
rated into low-risk (n = 40) and high-risk (n = 40) groups.
High-risk score of UMPS was associated with worse MFS,
disease-specific survival (DSS), and overall survival (OS) in
the TCGA cohort as shown in the Kaplan-Meier survival
curve (all p < 0:001) (Figure 5(c), Supplementary Fig. 1). In
addition, UMPS could predict disease-free survival (DFS) in
the GSE27831 cohort (p = 0:017, Supplementary Fig. 2a-c).

3.6. Prognostic Power for UMPS in the Additional Cohorts.
Seventy-four samples that had non-N/A covariates were
included for prognostic power evaluation. Similarly, high
UMPS was an independent risk factor for MFS, DSS, and

OS evaluated by univariate and multivariate Cox Regression
Analysis (supplementary table 2). Time-dependent ROC
analysis suggested that UMPS was more accurate in
predicting 3-y and 5-y MFS (AUC = 0:740 and 0:951,
respectively) compared to any clinicopathological parameter
alone, including AJCC TNM stage (AUC = 0:579 and 0:654,
respectively) (Figures 5(d) and 5(e)). The AJCC TNM stage
is the current gold standard for the prognostic stratification
of UVM. Thus, it was combined with UMPS for time-
dependent ROC analysis, despite that it was not associated
with MFS in univariate Cox Regression analysis (p = 0:059).
The addition of UMPS could improve predicting accuracy of
the traditional AJCC TNM stage model. Finally, decision
curve analysis demonstrated that the UMPS or the
combination of UMPS and AJCC TNM staging
outperformed the traditional AJCC TNM staging system in
terms of clinical usefulness for predicting 5-y MFS
(Figure 6). Additionally, time-dependent ROC analysis
showed that UMPS was more accurate in predicting 3-y and
5-y DFS (AUC = 0:794 and 0:867, respectively) compared to
any clinicopathological parameter alone in the GSE27831
cohort (Supplementary Fig. 2d-e).

4. Discussion

One challenge in UM management is that, despite favorable
local tumor control of various treatment options, such as
stereotactic radiotherapy, enucleation, brachytherapy, and
proton therapy, patients who progressed to metastatic
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disease have poor prognosis [6]. In this study, we used
WGCNA to screen hub genes correlated to metastasis in a
discovery cohort from the GEO database and selected 8 sig-
nificant metastasis-associated genes by using Lasso Cox
regression analysis. GSEA analysis indicated that various
metastasis stimulating pathways were activated in the high-
risk group. Subsequently, we built a gene expression signa-
ture according to the 8 identified genes named UMPS in
the discovery cohort which was an independent factor to pre-
dict metastasis-free survival by multivariate Cox regression
model. UMPS had superior accuracy than the clinical model
in predicting 3-y and 5-y MFS. The addition of UMPS could
improve the performance of the traditional clinical predict-
ing model. Finally, we validated the UMPS in the TCGA
cohort. Our results suggested that UMPS could be helpful
in stratifying UM patients into distinct subgroups with differ-
ent risks of metastasis. The UMPS could simplify the
decision-making process for patients with UM in terms of
individualized surveillance and therapeutic strategies.

Our study represents a robustly discovered and validated
gene expression signature with an orientation to predict
metastasis as a complement to the traditional clinicopatho-
logical parameter-based approaches. So far, various clinico-
pathological prognostic predictors of UM had been widely
researched. The AJCC TNM staging is a well-established
approach categorizing UM patients in terms of predicting
prognosis [3]. In the study by Shields et al., the reported
metastasis rates at ten years were 12% for T1, 29% for T2,
and 61% for T3 [7]. Recent studies found that older age is
associated with an unfavorable prognosis [8]. By the three
age characterization strategy (≤20 years, young; 21-60 years,
midadults; >60 years, older adults), Kaliki et al. found that
younger patient of age is associated with lower incsdence of
metastasis compared with the other two groups [8]. Besides,
investigations also found that the tumor size is a critical fac-
tors to predict the metastasis and prognosis for patients with
UM [3]. For UM patients with small tumors (<10mm),
medium tumors (10-15), and large tumors (≥16mm), the
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Figure 4: Survival analysis, prognostic performance, and clinical utility of UMPS in the training cohort. (a) Risk score distribution of the
training cohort. (b) Survival overview. (c) Heatmap showing the expression of the 8 genes in the low-risk and high-risk groups. (d)
Survival curve of the low-risk and high-risk groups by Kaplan-Meier survival analysis. The high-risk group had worse metastasis-free
survival than the low-risk group. (e, f) Time-dependent receiver operating characteristic (ROC) analysis for comparing the performance of
UMPS with the clinicopathological factors. The AUC of UMPS was higher than the single clinicopathological factor in prediction 3-y and
5-y metastasis-free survival.
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melanoma-related mortality at 25 years was 18%, 52%, and
59%, respectively [9]. In a research of 8,033 UM patients by
Shields et al. [10], there was a 5% increased risk for metastasis
at 10 years in the condition that tumor thickness increased by
one millimeter. The female gender was significantly associ-
ated with a lower risk of disease-specific mortality than the
male gender by survival analysis of 119 patients [11]. Simi-
larly, a study of 723 uveal melanoma patients found that
males had an unfavorable prognosis compared with females
[12]. In our study, UMPS was more accurate than single clin-
icopathological factors or the combined clinical model,
which is relatively complex and time-consuming to use in
an everyday clinical practice setting.

Our results highlight the notion of using genomic disease
stratification algorisms for prognosis predicting of UM
patients. Similarly, while some authors have tried to use
genetic tests to improve the prognostic value of clinicopatho-
logical prognostic predictors, other investigators provide the
formulas of combined clinical and genetic parameters. For
example, Jorge Vaquero et al. developed a web-based prog-

nosis prediction tools PriMeUM [13]. The accuracy of the
risk prediction was 80%, 83%, and 85% by prognostic predic-
tion models using chromosomal features only, clinical
features only (age, sex, tumor location, and size), and com-
bined clinical and chromosomal information [13]. The
web-based tool LUMPO, providing a personalized estimation
of survival in UM patients by the combination of pathologi-
cal, clinical, and genetic data, was developed and externally
validated [3]. Ni [14] built a 14 gene expression-based signa-
ture derived from the TCGA dataset to predict OS/RFS of
UM by usingWGCNA and Cox regression analyses, the gene
expression classifier had the best AUC compared to clinico-
pathological features or chromosome aberrations. Luo et al.
[15] identified 21 microenvironment-related prognosis genes
by using the TCGA cohort as the training cohort and
GSE22138 as the validation cohort. Xue et al. [16] performed
univariate Cox regression analysis and glmnet Cox analysis
on the TCGA cohort to generate the 18-gene prognostic
model for patients’ OS. Choi et al. [17] performed the log-
rank test and univariate Cox regression using GSE22138,
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Figure 5: Validation of UMPS in the TCGA cohort. (a) Risk score distribution. (b) Survival overview. (c) Survival curve of UMPS for
metastasis-free survival. The high-risk group had worse metastasis-free survival than the low-risk group. (d, e) Time-dependent receiver
operating characteristic (ROC) analysis for comparing the performance of UMPS and the clinicopathological factors. The AUC of UMPS
was higher than the single clinicopathological factor in predicting 3-y and 5-y metastasis-free survival. The addition of UMPS could
improve the performance of the AJCC TNM staging system.
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GSE39717, and TCGA cohorts. A total of 37 oncogene-like
and 14 tumor suppressor-like genes were intersected among
the three cohorts. Protein-protein analysis revealed
NDUFB9, NDUFV2, CYC1, and CTNNB1 may be prognos-
tic molecular predictors in UM. Luo et al. [18] performed
Kaplan–Meier analysis, univariate Cox regression, and
Lasso-Cox to build a ten-gene signature using TCGA cohort
and validated the signature using GSE22138 cohort. Our
UMPS for the GSE22138 cohort was more accurate in pre-
dicting 3-y and 5-y MFS (AUC = 0:794 and 0:867, respec-
tively), compared to Luo et al. (AUC = 0:785). Our study
differed from the abovementioned ones. First, we performed
a combination of WGCNA and Lasso-Cox regression analy-
sis. Second, we derived the model from the GSE22138 cohort
and validated with the TCGA cohort. Third, we mainly
focused on building a genomic model to predict metastasis
of UM. We provided a possible new genomic predictive sys-
tem to evaluate metastasis risk for patients with UM by eval-
uating the gene expression in the local UM samples. Whether
using UMPS alone or in combination with clinicopathologi-
cal factors warrant further investigation in different clinical
centers or via prospectively designed study.

Among the eight genes in UMPS, EIF1B has been inves-
tigated previously in UM, and the other seven were found
novel to UM. Harbour and coworkers described a 12 genes
expression profile predictive of systemic metastasis in uveal

melanoma including EIF1B [19]. Different from our findings
of RPL10A as a protective prognostic marker, low-expression
of RPL10A was associated with worse OS and RFS of patients
with glioblastoma [3] and worse OS of patients with breast
cancer [20]. TIPARP act as a tumor suppressor in breast can-
cer that might be regulated by DNA methylation [21]. Lower
TIPARP expression was related to unfavorable survival, and
the expression of TIPARP was upregulated by metformin
treatment [21]. On the contrary, TIPARP was upregulated
in meningioma [22]. While RPL15 was downregulated in
cutaneous squamous cell carcinoma [23] and pancreatic duc-
tal adenocarcinoma [3], it was markedly upregulated in gas-
tric cancer [3] and colon cancer tissues [24]. SLC25A38
protein level was higher in ALL patients compared to con-
trols. But, decreased expression of SLC25A38 was found in
hepatocellular carcinoma and associated with microvascular
invasion [25]. PHLDA1 was downregulated and could act
as a protective prognosis biomarker in hepatocellular carci-
noma [26]. In addition, reduced expression of PHLDA1
could enhance proliferate and migration of breast cancer cells
and was related to unfavorable prognosis [27]. TFDP2 was
decreased in human papillary carcinoma tissue, and its
expression can be altered by CDDP treatment [28]. EGF10
was identified to contribute to tumorigenesis of medulloblas-
toma from in vitro and in vivo experiments [3]. As indicated
by GSEA, high-risk group showed various activated cancer
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pathways. The E2F1 targets pathway was involved in the
BAP1-mediated cell cycle progression of uveal melanoma
cells [3]. The G2M checkpoint pathway was a key element
of cell cycle regulation function. A higher score of the G2M
checkpoint pathway was an independent negative prognostic
factor of pancreatic cancer [3]. Growing evidence suggests
that the tumor immune microenvironment contributes to
cancer progression including uveal melanoma [3]. However,
our result did not find a difference in immune cells between
the high-risk and low-risk groups as defined by the UMPS
formula. Although immune cell infiltration in the tumor
microenvironment contributes significantly to UM progno-
sis, it does not contribute to the worse prognosis of the
high-UMPS patients. Instead, high-UMPS patients’ worse
prognosis may be due to the activated well-known oncogenic
pathways, such as E2F targets, G2M checkpoint, and
unfolded protein response pathways. These results may
implicate that our formula predicts disease progression of
UM independent of the tumor microenvironment.

Taken together, further characterization of the eight
genes will give new insights into the understanding of UM
development and disease progression and may contribute
to the discovering of potential therapeutic targets for patients
with UM.

The current study had several limitations. First, the sam-
ple size of the development and validation cohorts is rela-
tively small. Second, the biological function and mechanism
of the identified eight genes in UM are still unknown. Third,
this predicting formula was developed from UM microarray
data from France and validated in the TCGA data from the
United States, whether the UMPS formula could be imple-
mented in different populations requires further study.

5. Conclusion

In conclusion, the 8-gene expression-based UMPS formula is
a promising prognostic tool for predicting metastasis and
survival for patients with UM. The additional UMPS may
augment the predicting accuracy of traditional clinicopatho-
logical predictors. Using UMPS, high-risk patients could be
subjected to additional treatment such as adjuvant chemo-
therapy. Conversely, low-risk patients can be spared to
unnecessary surveillance and treatment to prevent tumor
metastasis.
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