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Clear cell renal cell carcinoma (ccRCC) is the most common histological and devastating subtype of renal cell carcinoma.
Necroptosis is a form of programmed cell death that causes prominent inflammatory responses. miRNAs play a significant role
in cancer progression through necroptosis. However, the prognostic value of necroptosis-related miRNAs remains ambiguous.
In this study, 39 necroptosis-related miRNAs (NRMs) were extracted and 17 differentially expressed NRMs between normal
and tumor samples were identified using data form The Cancer Genome Atlas (TCGA). After applying univariate Cox
proportional hazard regression analysis and LASSO Cox regression model, six necroptosis-related miRNA signatures were
identified in the training cohort and their expression levels were verified by qRT-PCR. Using the expression levels of these
miRNAs, all patients were divided into the high- and low-risk groups. Patients in the high-risk group showed poor overall
survival (P < 0:0001). Time-dependent ROC curves confirmed the good performance of our signature. The results were verified
in the testing cohort and the entire TCGA cohort. Univariate and multivariate Cox regression models demonstrated that the
risk score was an independent prognostic factor. Additionally, a predictive nomogram with good performance was constructed
to enhance the implementation of the constructed signature in a clinical setting. We then employed miRBD, miRTarBase, and
TargetScan to predict the target genes of six necroptosis-related miRNAs. Gene ontology and Kyoto Encyclopedia of Genes
and Genomes analyses indicated that 392 potential target genes were enriched in cell proliferation-related biological processes.
Six miRNAs and 59 differentially expressed target genes were used to construct an miRNA–mRNA interaction network, and
11 hub genes were selected for survival and tumor infiltration analysis. Drug sensitivity analysis revealed potential drugs that
may contribute to cancer management. Hence, necroptosis-related genes play an important role in cancer biology. We
developed, for the first time, a necroptosis-related miRNA signature to predict ccRCC prognosis.

1. Introduction

Renal cancer is the leading cause of cancer-related deaths
worldwide. In 2019 in the United States, 73,820 people were
diagnosed with renal cancer, among which 14,770 patients
died as a result [1]. Renal cell carcinoma (RCC) accounts
for approximately 85% of renal cancers. The most common
histological subtype of RCC is clear cell RCC (ccRCC),
accounting for 75–80% of all RCC patients [2]. The 5-year
survival rate of patients with ccRCC diagnosed early when

the tumor is localized is >90%, whereas it decreases to 12%
in patients with distant metastasis [3]. Currently, surgical
resection combined with adjuvant systemic therapy is the
primary treatment for patients with ccRCC [4, 5]. Although
remarkable progress has been made in the management of
ccRCC in the last decade, approximately 20%–30% of
patients with ccRCC present initially with cancer metastasis,
and an additional 20% will present it after radical surgical
resection, which is associated with poor prognosis [6].
Therefore, it is necessary to identify reliable prognostic
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Figure 1: Identification of overall survival- (OS-) related differentially expressed necroptosis-related miRNAs (NRMs). (a) Heat map
showing expression levels of differentially expressed NRMs. Green: low expression level; red: high expression level. (b) Forest plot of
univariate Cox proportional hazard regression analysis revealed 11 OS-related differentially expressed necroptosis-related miRNAs.
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Figure 2: Continued.
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biomarkers to guide clinicians when choosing the optimal
treatment.

Necroptosis, once considered merely as an accidental
uncontrolled form of cell death, is now recognized as a form
of programmed cell death, which is regulated by a set of
molecular mechanisms [7, 8]. Unlike apoptosis, necroptosis

causes prominent inflammatory responses and triggers
adaptive immunity [9]. Necroptosis is initiated by death
receptors, such as tumor necrosis factor receptor 1, and
depends on the activation of receptor-interacting protein
kinase 1 (RIPK1) and protein mixed lineage kinase
domain-like (MLKL) [7, 10]. Accumulating evidence
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Figure 2: Development of necroptosis-related miRNA (NRM) signature in TCGA training cohort. (a) LASSO Cox regression analysis of the
11 overall survival- (OS-) related NRMs. (b) Plot of 10-fold cross-validation error rates in the LASSO Cox regression analysis. (c) Hazard
ratio of the six mRNAs identified. The principal component analysis (PCA) plot of the distribution between the high- and low-risk
groups in (d) the training cohort, (e) the testing cohort, and (f) the whole TGCA cohort. Kaplan-Meier plot of has-miR-223-3p in (g)
the training cohort, (h) the testing cohort, and (i) the whole TCGA cohort. Kaplan-Meier plot of has-miR-193-3p in (j) the training
cohort, (k) the testing cohort, and (l) the whole TCGA cohort.
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Figure 3: Continued.
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Figure 3: Continued.

6 Analytical Cellular Pathology



suggests that necroptosis is a pivotal process in tumorigene-
sis, cancer progression, and metastasis [11]. However, the
results are controversial, as evidence supports both anti-
and prometastasis roles of necroptosis [11]. Hence, the prog-
nostic value of necroptosis in ccRCC remains unclear and
should be elucidated.

MicroRNAs (miRNAs) are small single-stranded non-
coding RNAs that negatively regulate gene expression by
binding to the target gene 3′-untranslated region. An
increasing number of studies indicate that miRNAs are
involved in numerous biological processes in cancer, includ-
ing tumor occurrence, development, and prognosis [12].
Additionally, several miRNAs play a significant role in regu-
lating necroptosis in cancer by targeting various components
of the involved signaling pathways [13]. For example, miR-
874 induces necroptosis in colorectal cancer by targeting
caspase-8 [14, 15]. miR-210 promotes breast cancer metasta-
sis by targeting E-cadherin [16]. It was also demonstrated
that miR-381-3p inhibits RIPK3 and MLKL in patients with
RCC, thereby inhibiting necroptosis and potentially leading
to a poor prognosis [17]. The prognostic value of
necroptosis-related miRNAs in ccRCC has not yet been
investigated, and no molecular signature-related necroptosis
has been established to date.

In the current study, we first performed an integrated
analysis of the expression levels of necroptosis-related miR-
NAs in The Cancer Genome Atlas (TCGA) cohort. We
established a novel necroptosis-related miRNA (NRM)
prognostic risk signature to predict the prognosis of patients
with ccRCC and contribute to the management of patients.

Additionally, an applicable nomogram was constructed to
apply our signature better. We also explored the target genes
of these miRNAs and provided a new understanding of their
role in ccRCC.

2. Methods

2.1. Collection of Data. miRNA expression profiles, recorded
as reads per million mapped values, and the corresponding
clinical follow-up information of 545 patients with ccRCC
and 71 healthy controls were downloaded from TGCA using
the GDC Data Portal (https://portal.gdc.cancer.gov/). In
total, 2435 miRNAs were identified. The mRNA expression
profiles of HTSeq-fragments per kilobase per million and
clinical information of 539 patients with ccRCC and 72
healthy controls were obtained and converted into tran-
scripts per million reads for subsequent bioinformatics anal-
ysis. Moreover, somatic mutation data and copy number
variation (CNV) data for ccRCC were acquired from TCGA
database. Data analysis was conducted using R software
(version 4.1.1). The clinicopathological characteristics of
the cohorts of patients with ccRCC, including sex, age,
grade, stage, TMN stage, overall survival (OS), disease-
specific survival, and progression-free interval, are shown
in Supplementary Table 1.

2.2. Identification of Overall Survival-Related Differentially
Expressed NRMs (DE-NRMs). Consulting a previous litera-
ture, we identified 39 NRMs (Supplementary Table 2) [13,
15, 18]. After matching the expression levels of the
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Figure 3: Prognostic analysis of necroptosis-related miRNA (NRM) signature in training, testing, and whole TCGA cohorts. (a) Risk line
and risk point plots show the survival rate and risk score of each patient in the training cohort. (b) Kaplan–Meier plot of patients in the high-
and low-risk groups in the training cohort. (c) ROC curve shows the prognostic performance of the NRM signature in the training cohort.
(d) Risk line and risk point plots show the survival rate and risk score of each patient in the testing cohort. (e) Kaplan–Meier plot of patients
in the high- and low-risk groups in the testing cohort. (f) ROC curve shows the prognostic performance of the NRM signature in the testing
cohort. (g) Risk line and risk point plots show the survival rate and risk score of each patient in the entire TCGA cohort. (h) Kaplan–Meier
plot of patients in the high- and low-risk groups in the entire TCGA cohort. (i) The ROC curve shows the prognostic performance of the
NRM signature in the entire TCGA cohort.
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aforementioned miRNAs, the remaining miRNAs were
retained for a further study. DE-NRMs between tumor and
normal tissues were identified using the R package
“Limma” [19]. The significance threshold was defined at a
false discovery rate ðFDRÞ < 0:05 to avoid overscreening.
Then, univariate Cox proportional hazard regression
analysis was conducted using the R packages “survival”
and “forest” with the significance threshold set to FDR <
0:05. Subsequently, the R package “caret” was applied to
divide the samples into training and testing cohorts.

2.3. Development and Validation of Necroptosis-Related
miRNA Signature. The “glmnet” R package was used to per-
form the least absolute shrinkage and selection operator
(LASSO) Cox regression analysis in the training cohort
using the penalty parameter λ and 10-fold cross-validation
[20]. The miRNA signature was established based on the
results of LASSO Cox regression analysis. Then, selected
miRNAs were fit in multivariate Cox proportional hazard
regression analysis using the R package “survival.” The risk

score of each patient was computed using the formula:
Risk score =∑n

i=1Coef i × Expi, in which Coef refers to the
coefficient and Exp refers to the expression level of the
selected miRNAs. Patients were separated into the high-
and low-risk groups based on the median value of the risk
score. Principal component analysis (PCA) was applied to
explore the distribution of patients in the training cohort,
the test cohort, and the whole TCGA cohort using the func-
tion “prcomp” of the “stats” R package. Kaplan–Meier (K-
M) analysis was conducted using the R packages “survival”
and “survminer.” The “timeROC” R package was applied
to perform 1-, 3-, and 5-year receiver operating characteris-
tic (ROC) analyses.

2.4. Independent Prognostic Significance and Clinical
Subgroup Analysis of NRM Signature. Univariate and multi-
variable Cox regression analyses were used to explore
whether the NRM signature could be an independent prog-
nostic factor. We extracted clinical information, including
age, sex, laterality, histological grade, and pathologic stage,
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Figure 4: Independent prognostic significance and clinical subgroup analysis of clear cell renal cell carcinoma (ccRCC) signature. (a) Forest
plot of the results of the univariate Cox regression analysis of overall survival for risk score and clinical characteristics in the training cohort.
(b) Forest plot of the results of the multivariate Cox regression analysis of overall survival for risk score and clinical characteristics in the
training cohort. (c) Risk score levels in the dead and alive groups. (d) Percentage of patients’ status in the low- and high-risk groups.
Kaplan–Meier plot of patients with different clinical features: (e) age ≤ 60; (f) age > 60; (g) histological grades 1-2; (h) histological grades
3-4; (i) pathological stages I-II; (j) pathological stages III-IV.
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and analyzed them together. The R package “survival” was
used for analyses, and “forest” was used for visualization.
Dataset stratification analysis were performed according to

age, pathological stage, and histological grade in order to
explore the prognostic value of risk score signature in clini-
cal subgroups.
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Figure 5: Establishment and assessment of the predictive nomogram. (a) Nomogram to predict the 1-, 3-, and 5-year OS of patients with
clear cell renal cell carcinoma (ccRCC). (b) Relationship between the area under the curve (AUC) value and predicted survival time.
Calibration curves verified the accuracy of the nomogram for predicting (c) 1-year overall survival, (d) 3-year overall survival, and (e) 5-
year overall survival.
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2.5. Establishment and Evaluation of the Predictive
Nomogram. A predictive nomogram was established using
the R package “rms,” and its prognostic accuracy was
assessed using ROC analysis. Additionally, the discrimina-
tion ability of the predictive nomogram was evaluated using
the R packages “rms” and “survival.”

2.6. Exploration and Functional Analysis of Target Genes of
miRNAs. Target genes of six miRNAs, namely, hsa-miR-
101-3p, hsa-miR-193a-3p, hsa-miR-200a-5p, hsa-miR-214-
3p, hsa-miR-221-3p, and hsa-miR-223-3p, were identified
using miRDB (http://www.mirdb.org/miRDB/) [21], Tar-
getScan (http://www.targetscan.org/) [22], and miRTarBase
(https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_
2019/php/index.php) [23]. The R package “VennDiagram”
was used to screen and plot potential target genes that were
present in the three prediction databases. The Bioconductor
package ClusterProfiler R package (v4.1.4) was used to per-
form gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis [24].

2.7. Construction of miRNA–mRNA Interaction Network.
The “Limma” package was used to identify differentially
expressed target genes between tumor and normal samples
[19]. FDR < 0:05 and jlog2FoldChangej > 1 were set as the

cutoff values. The interaction network between the selected
miRNAs and differentially expressed target genes was visual-
ized using Cytoscape software (version 3.7.2) [25].

2.8. Identification and Tumor Infiltration and Drug
Sensitivity Analysis of Hub Genes. The Cytoscape plug-in
Cytohubba was applied to identify hub genes within the target
genes [26]. The top 20 hub genes were ranked using maximal
clique centrality (MCC), edge percolated component (EPC),
and connection degree. The hub genes simultaneously identi-
fied by the three methods were verified by LASSO Cox regres-
sion with 10-fold cross-validation. The R package “survival”
was used to perform survival analysis of the hub genes. The
web server TIMER was employed to detect the tumor immune
infiltration status of the hub genes [27]. The drug sensitivity
analysis was conducted using the Gene Set Cancer Analysis
(GSCA) database, which contains the drug information from
Genomics of Drug Sensitivity in Cancer (GDSC) and The
Cancer Therapeutics Response Portal (CTRP) [28].

2.9. RNA Extraction and Real-Time PCR. Total RNA from
the tumor and adjacent normal samples was extracted form
12 KIRC patients using the Universal microRNA Purifica-
tion Kit (EZB-miRN1) (EZBioscience, Shanghai, China)
according to the manufacturer’s instructions. We also

0
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Figure 6: Exploration and functional enrichment analysis of the miRNAs target genes. (a) Venn diagram of target genes for six miRNAs
from NRM signature based on miRDB, miRTarBase, and TargetScan. (b) Dot plot showing the results of gene ontology (GO)
enrichment analysis of 392 potential target genes differentially expressed between tumor samples and normal samples. (c) Circle network
plot showing the relationships between the top five enriched pathways of Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis and their associated target genes. (d) Bar plot showing the results of KEGG enrichment analysis. Construction of
miRNA–mRNA interaction network and identification of hub genes.
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Figure 7: Continued.
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collected the total RNA from the renal epithelial cell line
(HK2) and 6 human renal cancer cell lines (786O, 769P,
ACHN, CAKI-1, and A498) using Universal microRNA
Purification Kit (EZB-miRN1) (EZBioscience, Shanghai,
China). The expression of the signature-related miRNAs
was further examined by qRT-PCR. The complementary
DNA (cDNA) was synthesized with miRNA 1st strand
cDNA synthesis kit (Accurate Biology, Changsha, China).
The qRT-PCR was performed on Applied Biosystems™
QuantStudio™ 5 Real-Time PCR System using 2×SYBR
Green qPCR Master Mix (ROX2 plus) (A0012-R2)
(EZBioscience, Shanghai, China). U6 was introduced as an
internal control small RNA to normalize miRNA levels.
Expression levels of each miRNA were calculated using the
2-ΔΔCt method. All trials were conducted in triplicate. All
specific primers used in the study are listed in Supplemen-
tary Table 3. The studies involving human participants
were reviewed and approved by the Institutional Ethics
Committee for Clinical Research and Animal Trials of the
First Affiliated Hospital of Sun Yat-sen University
[(2021)144].

2.10. Statistical Analysis. All statistical analyses were con-
ducted using R software (v4.1.1) and GraphPad Prism
(v9.0.0). The Wilcoxon rank-sum test was used to compare
expression levels between normal and tumor samples. For
the comparison of expression levels among cell lines, the
one-way analysis of variance (ANOVA) was employed. K-
M analysis and the log-rank test were used to compare the
OS time. Univariate and multivariate Cox regression models
were used to explore the independent prognostic value of the
NRM signature. Statistical significance was set at P < 0:05.

3. Results

3.1. Identification of OS-Related DE-NRMs. Analysis of the
expression levels of NRMs identified 20 DE-NRMs between
normal and tumor samples, of which 17 met the statistical
criteria of FDR < 0:05. These included 12 upregulated miR-
NAs (hsa-miR-155-5p, hsa-miR-7-5p, hsa-miR-193a-3p,
hsa-miR-223-3p, hsa-miR-223-5p, hsa-miR-16-5p, hsa-
miR-331-3p, hsa-miR-221-3p, hsa-miR-101-3p, hsa-miR-
425-5p, hsa-miR-148a-3p, and hsa-miR-22-3p) and five
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Figure 7: Construction of miRNA-mRNA interaction network and identification of hub genes. (a) Volcano plot showing differentially
expressed target genes in clear cell renal cell carcinoma (ccRCC) (red: upregulated; blue: downregulated). (b) Heat map showing the
expression profiles of 59 differentially expressed target genes (red: high expression levels; green: low expression levels; ns: P ≥ 0:05; ∗P <
0:05; ∗∗P < 0:01; ∗∗∗P < 0:001). (c) Interaction network shows the relationship of six miRNAs and 59 differential expressed target genes
(red: upregulated; green: downregulated). (d) Interaction network plotted using the MCC method and Cytohubba. (e) Interaction
network plotted using the EPC method and Cytohubba. (f) Interaction network plotted using the degree method and Cytohubba. (g)
Venn diagram of hub genes.
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Altered in 16 (4.76%) of 336 samples
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Figure 8: Continued.
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downregulated miRNAs (hsa-miR-500a-3p, hsa-miR-200a-
5p, hsa-miR-381-3p, hsa-miR-214-3p, and hsa-miR-141-
3p) in tumor samples compared with normal samples
(Figure 1(a)). Univariate Cox proportional hazard regression
analysis with a threshold of adjusted P value < 0.05 was used
to identify the DE-NRMs associated with OS. Eleven OS-

related DE-NRMs were retained and depicted using a forest
plot (Figure 1(b)). These DE-NRMs included hsa-miR-223-
3p (HR = 1:5635, 95%CI = 1:3744 – 1:7786, P < 0:0001),
hsa-miR-101-3p
(HR = 0:5986, 95%CI = 0:4893 – 0:7322, P < 0:0001), hsa-
miR-155-5p (HR=1.2794, 95% CI=1.1460-1.4284, P <
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Figure 8: Gene alterations and survival analysis of hub genes. (a) Mutation landscape of 11 hub genes in 336 patients with ccRCC from
TCGA dataset. (b) Copy number variation (CNV) frequency of 11 hub genes in TCGA cohort. The height of the columns represents the
alteration frequency. (c) Location of CNV alteration of 11 hub genes. (d–j) Kaplan-Meier survival curves show seven hub genes
associated with patient prognosis. Red: high expression; blue: low expression. (k) Expression differences of seven hub genes in tumor
tissues and unpaired normal tissues. (l) Expression differences of seven hub genes in tumor tissues and paired normal tissues. Red:
tumor; blue: normal; ns: P ≥ 0:05; ∗P < 0:05 ; ∗∗P < 0:01 ; ∗∗∗P < 0:001.
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Figure 9: Continued.
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0:0001), hsa-miR-425-5p (HR = 1:3616, 95%CI = 1:1802
-1.5709, P < 0:0001), hsa-miR-221-3p
(HR = 1:2783, 95%CI = 1:1403-1.4329, P < 0:0001), hsa-
miR-381-3p (HR = 1:2762, 95%CI = 1:1232-1.4499, P =

0:0002), hsa-miR-7-5p (HR = 1:4565, 95%CI = 1:1883
-1.7851, P = 0:0003), hsa-miR-214-3p
(HR = 1:3214, 95%CI = 1:1208-1.5578, P = 0:0009), hsa-
miR-200a-5p (HR = 0:8176, 95%CI = 0:7208-0.9274, P =
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Figure 9: Tumor infiltration and drug sensitivity analysis of OS-related hub genes. (a–g) The tumor immune infiltration status of seven OS-
related hub genes analyzed by TIMER. (h) Correlation between the expression of OS-related hub genes and CTRP drug sensitivity. (i)
Correlation between the expression of OS-related hub genes and GDSC drug sensitivity.
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0:0017), hsa-miR-193a-3p (HR = 1:3468, 95%CI = 1:1120
-1.6312, P = 0:0023), and hsa-miR-16-5p
(HR = 1:3264, 95%CI = 1:0299-1.7083, P = 0:0286).

3.2. Development and Validation of Necroptosis-Related
miRNA Signature. Patients from TCGA for whom data on
miRNA expression levels and clinical information were
available were randomly partitioned into training and test
cohorts at a ratio of 0.5. The LASSO Cox regression analysis
was performed in the training cohort using 10-fold cross-
validation. Among the 11 OS-related NRMs, six miRNAs
(hsa-miR-101-3p, hsa-miR-193a-3p, hsa-miR-200a-5p, hsa-
miR-214-3p, hsa-miR-221-3p, and hsa-miR-223-3p) were
associated with OS (Figures 2(a) and 2(b)). Multivariate
Cox regression analysis was performed to calculate the coef-
ficient of each miRNA. hsa-miR-223-3p
(HR = 1:4614, 95%CI = 1:1934-1.7896, P < 0:001), hsa-miR-

221-3p (HR = 1:2488, 95%CI = 1:0149-1.5367, P = 0:0357),
and hsa-miR-101-3p (HR = 0:6992, 95%CI = 0:4900-0.9978,
P = 0:486) were independent prognostic factors
(Figure 2(c)). The NRM signature was developed based on
the LASSO Cox regression and multivariate Cox regression
analyses, and the risk score was calculated according to the
following formula: risk score = ð0:15316 ∗ expression level
of hsa‐miR‐193a‐3pÞ − ð0:35780 ∗ expression level of hsa‐
miR‐101‐3pÞ − ð0:09381 ∗ expression level of hsa‐miR‐200a
− 5pÞ + ð0:06757 ∗ expression level of hsa‐miR‐214‐3pÞ + ð
0:22222 ∗ expression level of hsa‐miR‐221‐3pÞ + ð0:37938 ∗
expression level of hsa‐miR‐223‐3pÞ. Subsequently, we com-
puted the risk score of each sample and classified patients
into the high- and low-risk groups based on the median risk
score value in the training, testing, and whole TCGA
cohorts. Then, to detect the distribution of samples in the
two groups, we conducted PCA in the three cohorts and
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Figure 10: Prediction and verification of expression levels of 6 necroptosis-related miRNAs. (a, b) The expression levels of 6 necroptosis-
related miRNAs between normal and tumor tissues predicted in TCGA-KIRC. (c, d) The expression levels of 6 necroptosis-related miRNAs
in RCC tissues verified by RT-qPCR. (e–j) The expression levels of each miRNA compared to U6 by RT-qPCR in the renal epithelial cell line
(HK2) and 6 human renal cancer cell lines (786O, 769P, ACHN, CAKI-1 and A498). (∗∗∗P < 0:001 ; ∗∗P < 0:01 ; ∗P < 0:05; -: no
significance).
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found a distinct distribution between the high- and low-risk
groups (Figures 2(d)–2(f)). Additionally, K-M analysis in
three cohorts revealed that hsa-miR-193a-3p and hsa-miR-
223-3p were correlated with poor prognosis in patients with
ccRCC. Moreover, K-M indicated that high expression levels
of hsa-miR-193a-3p and hsa-miR-223-3p were associated
with a shorter lifetime (Figures 2(g)–2(l)).

We then investigated the prognostic value of our risk sig-
nature in the training, testing, and whole TCGA cohorts.
The risk-line plot and risk-point plot showed that patients
with a high-risk score were associated with a higher proba-
bility of death and shorter survival time in the training
cohort (Figure 3(a)). Additionally, the K-M analysis indi-
cated that high-risk patients with ccRCC had a poor progno-
sis (P < 0:0001, Figure 3(b)). Time-dependent ROC analysis
conducted in the training cohort indicated a good efficiency
of the NRM signature, with an area under curve (AUC)
value of 0.713 for predicting 1-year survival, 0.725 for pre-
dicting 3-year survival, and 0.722 for predicting 5-year sur-
vival (Figure 3(c)). The results in the test cohort
(Figure 3(d)) and the entire TCGA cohort (Figure 3(g)) were
consistent. Additionally, K-M analysis confirmed that
patients classified into the high-risk group had a lower sur-
vival rate than those in the low-risk group, in both the test-
ing (P < 0:0001, Figure 3(e)) and whole TCGA (P < 0:0001,
Figure 3(h)) cohorts. The AUC value in the testing cohort
was 0.761 for predicting 1-year survival, 0.704 for predicting
3-year survival, and 0.699 for predicting 5-year survival
(Figure 3(f)). Consistent with individual analyses, the AUC
value in the entire TCGA cohort was 0.721 for predicting
1-year survival, 0.711 for predicting 3-year survival, and
0.703 for predicting 5-year survival (Figure 3(f)).

3.3. Independent Prognostic Significance and Clinical
Subgroup Analysis of NRM Signature. To investigate whether
the established NRM signature was an independent prog-
nostic factor for OS, univariate and multivariate Cox regres-
sion analyses were conducted in the training cohort.
Univariate Cox regression analysis revealed that risk score
(HR = 2:9710, 95%CI = 1:8281-4.8266, P < 0:0001), patho-
logical stage (HR = 3:6102, 95%CI = 2:2779-5.7216, P <
0:0001), histological grade (HR = 2:8547, 95%CI = 1:6703
-4.8787, P < 0:0001), laterality
(HR = 0:5546, 95%CI = 0:3558-0.8644, P = 0:0092), and age
(HR = 1:8237, 95%CI = 1:1589-2.8700, P = 0:0094) were sig-
nificantly related to OS (Figure 4(a)) and independent prog-
nostic factors. Multivariate Cox regression analysis
confirmed that the NRM signature was an independent
prognostic factor (HR = 2:4504, 95%CI = 1:4881-4.0348, P
< 0:001) after correcting for other confounding factors
(Figure 4(b)). Additionally, the risk score of NRM signature
was an independent factor in the testing and entire TCGA
cohorts (Supplementary Figure 1). Moreover, patients in
the death group had higher risk scores than those in the
alive group, and the percentage of deaths in the high-risk
group (44%) was higher than that in the low-risk group
(17%, Figures 4(c) and 4(d)).

Subsequently, we used dataset stratification analysis to
investigate the independent prognostic value of our risk

score signature according to age, histological grade, and
pathological stage. In all clinical subgroups divided by age,
grade, and stage, patients in the high-risk group had a lower
survival probability predicted by K-M analysis (P < 0:001).
This result suggested that our risk score signature predicts
the prognosis of patients with ccRCC who have different
clinical characteristics well (Figures 4(e)–4(j)).

3.4. Establishment and Evaluation of the Predictive
Nomogram in TCGA Cohort. To provide a useful model
for clinicians and patients, we created a nomogram based
on data from the entire TCGA cohort. Combining the risk
score of the NRM signature and some easy-to-obtain clinical
information, our nomogram can be used to predict the 1-, 3-
, and 5-year OS probabilities (Figure 5(a)). The accuracy of
the nomogram was assessed using ROC analysis. The AUC
value ranged from 0.76 to 0.79 from 1- to 5-year
(Figure 5(b)). Moreover, the calibration analysis showed
the excellent performance of the predictive nomogram in
the entire TCGA cohort (Figures 5(c)–5(e)).

3.5. Exploration and Functional Enrichment Analysis of the
Target Genes of miRNAs. To further elucidate the potential
functions associated with the NRM signature, we predicted
the target genes of the selected miRNAs using three data-
bases, miRDB, miRTarBase, and TargetScan. In total, 2086,
1150, and 15487 target genes were identified in miRDB,
miRTarBase, and TargetScan, respectively. Only 392 target
genes were identified in all three databases (Figure 6(a)
and Supplementary Table 4).

We then conducted GO and KEGG enrichment analyses
based on the 392 potential target genes. GO-enrichment
analysis of biological function terms showed that the miR-
NAs’ potential target genes were enriched in signal transduc-
tion, cell proliferation, and cell response-related biological
processes, including Ras protein signal transduction, epithe-
lial cell proliferation, cardiac muscle cell proliferation, cellu-
lar response to drugs, response to oxygen levels, response to
glucocorticoids, and response to corticosteroids. Cellular
component-enriched terms included focal adhesion, cell-
substrate adherens junction, cell-substrate junction, methyl-
transferase complex, cell-cell junction, ESC/E(Z) complex,
sex chromosome, and cell leading edge, histone methyltrans-
ferase complex, and nuclear chromatin. Finally, molecular
function terms enriched included GDP binding, SMAD
binding, protein serine/threonine kinase activity, GTPase
activity-catenin binding, insulin receptor substrate binding,
protein phosphorylated amino acid binding, DNA-binding
transcription activator activity RNA polymerase II-specific,
MAP kinase activity, and DNA-binding transcription
repressor activity RNA polymerase II-specific (Figure 6(b)).

The top five enriched pathways of KEGG enrichment
analysis were FoxO signaling pathway, AGE-RAGE signal-
ing pathway in diabetic complications, prolactin signaling
pathway, MAPK signaling pathway, and PI3K-Akt signaling
pathway. The relationships between the enriched pathways
and their target genes are illustrated in Figure 6(c). The
top 30 KEGG results are shown in Figure 6(d).
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3.6. Construction of miRNA–mRNA Interaction Network and
Identification of Hub Genes. To further investigate the func-
tions of the dysregulated miRNAs, we identified their target
genes that were differentially expressed. Using the statistical
criteria of FDR < 0:05 and jlog2FCj > 1, we identified 59 dif-
ferentially expressed target genes (Figures 7(a) and 7(b)).
Then, the possible interaction between the six NRM
included in the risk signature and the 59 differentially
expressed target genes was investigated using Cytoscape,
and hub genes were identified using the plugin Cytohubba
(Figure 7(c)). Hub genes were ranked using MCC, EPC,
and the connection degree algorithms (Figures 7(d)–7(f)).
Based on the three algorithms, 14 overlapping genes
(ERBB4, TGFBR3, MYBL1, PCDHA12, SIX4, TAL1, ARH-
GAP42, ATG12, BTG2, CADM1, DUSP1, GJA1, KCNQ5,
and MEF2C) were identified and LASSO Cox regression
with 10-fold cross-validation was conducted (Supplemen-
tary Figure 2). After verification, CADM1, GJA1, and
MEF2C were excluded and the remaining 11 genes were
regarded as hub genes for the next analysis (Figure 7(g)).

3.7. Gene Alterations and Survival Analysis of Hub Genes.
First, we analyzed the genetic changes of the 11 hub genes.
Sixteen (4.76%) of 336 samples showed gene mutations,
and ERBB4 showed the highest alteration frequency
(Figure 8(a)). CNV frequencies were computed, and those
of DUSP1, PCDHA12, and ATG12 were more than 15%
(Figure 8(b)). The locations of CNV alterations on chromo-
somes are presented in Figure 8(c). Next, to further explore
the prognostic value of the 11 hub genes, we conducted a
K-M analysis. High expression of ARHGAP42 (P < 0:0001
), BTG2 (P = 0:0206), DUSP1 (P = 0:00144), PCDHA12
(P = 0:00023), TAL1 (P = 1e − 05), and TGFBR3
(P = 0:00062) was associated with poor patient prognosis,
whereas high expression of SIX4 (P = 0:00193) correlated
with a better prognosis (Figures 8(d)–8(j)). The differential
expression of seven OS-related hub genes between tumor
tissues and unpaired normal tissues is illustrated in
Figure 8(k). Furthermore, differences in expression
between tumor tissues and paired normal tissues are
shown in Figure 8(l).

3.8. Tumor Infiltration and Drug Sensitivity Analyses. We
explored the relationship between the immune infiltration
status and expression levels of the seven OS-related hub
genes using TIMER, which suggested that the mechanism
of hub genes is associated with tumor immunity
(Figures 9(a)–9(g)).

To explore the possible treatment targets, we investi-
gated the correlation between OS-related hub genes and
existing drugs in a pan-cancer analysis using the GSCA data-
base, which integrated genomic data from TCGA and over
750 drugs from CTRP and GDSC. In the current study, drug
sensitivity analysis represented the correlation between gene
expression and sensitivity to drugs from CTRP and GDSC
(Figures 9(h) and 9(i)). TGFBR3, SIX4, DUSP1, and ARH-
GAP42 were positively correlated, whereas TAL1, and
BTG2 were negatively correlated, with drug sensitivity.

3.9. Prediction and Verification of Expression Levels of 6
Necroptosis-Related miRNAs. By analyzing the miRNA
expression profiles from TCGA-KIRC, we explored the
expression levels of tumor and unpaired normal tissues of
6 necroptosis-related miRNAs in our risk signature
(Figure 10(a)) and between tumor and adjacent normal tis-
sues (Figure 10(b)). To validate the expression tendency of
them, we conducted RT-qPCR in tumor samples and cell
lines. In our validation results in 12 paired RCC samples,
we found has-miR-193a-3p was significantly high expressed
in RCC patients and has miR-214-3p was significantly low
expressed (Figures 10(c) and 10(d)). Meanwhile, in the ver-
ification results in cell lines, we found the expression ten-
dency of 6 miRNAs was consistent with prediction results
(Figures 10(e)–10(j)).

4. Discussion

Necroptosis, a caspase-independent form of programmed cell
death, has a dual effect on cancer progression and metastasis.
The exact role of necroptosis in the regulation of cancer
remains controversial, and seems to be highly dependent on
the tumor stage [18]. Although some studies have suggested
that necroptosis can promote cancer progression andmetasta-
sis [29], others have reported that it can exert anti-tumor
effects by compensating for apoptotic resistance [30, 31].
Hence, the exact prognostic value of necroptosis is still
unclear, and no necroptosis-related molecular signature has
been constructed until now. In this study, we explored the
expression levels of miRNAs associated with necroptosis in
ccRCC. By applying univariate Cox proportional hazard
regression analysis and LASSO Cox regression analysis, we
constructed a six-miRNA risk signature, which exhibited good
performance in the training, testing, and entire cohort. Addi-
tionally, we showed that our signature was an independent
prognosis predictor factor and established a predictive nomo-
gram that can be used to apply our signature to a clinical set-
ting. Both ROC and calibration analyses showed the good
performance of our model. However, additional data are
needed to verify the feasibility before implementing its use.

In the current study, we established a signature and
nomogram and also explored the potential function of key
miRNAs, which can lay a preliminary foundation for further
in vivo or in vitro studies aiming to elucidate the role of pro-
grammed cell death in cancer, and, specifically, in ccRCC
[32]. To the best of our knowledge, we are the first to estab-
lish an NRM signature in ccRCC and inform about poten-
tially relevant genes and miRNAs using it.

In our study, six key miRNAs were identified, among which
miR-193a-3p and miR-223-3p were markedly significant in the
K-M analysis. The expression levels of 6 miRNAs were verified
in RCC tissue samples and cell lines, which showed the consis-
tent tendency with predicted results. The function of miR-193a-
3p and miR-223-3p in cancer progression has been reported in
various cancers that they have a role in tumorigenesis, progres-
sion, and metastasis. Although miR-193a-3p and miR-223-3p
are characterized as oncogenes in certain cancers and tumor
suppressors in others, their role in RCC was consistent accord-
ing to existing researches.
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Many studies revealed the oncogene function of miR-
193-3p in renal cancer. Liu et al. first demonstrated that
miR-193a-3p is upregulated in RCC tissues and cell lines
and knockdown of miR-193a-3p can significantly inhibited
cell proliferation and migration by directly targeting PTEN
[33]. Pan et al. also found high expression level of miR-
193a-3p and overexpression of miR-193a-3p can activate
PI3K/Akt pathway and function as oncogenic by targeting
ST3GalIV in RCC [34]. Moreover, Yu et al. showed that
miR-193a-3p functions as a tumor inhibitor by targeting
the ERBB signaling pathway in non-small-cell lung cancer
[35]. In terms of miR-223-3p, Xiao et al. found miR-223-
3p was highly expressed in ccRCC patients and patients with
higher expression level of miR-223-3p always had higher
tumor stages and grades and poorer prognosis. The results
revealed miR-223-3p could bind directly to solute carrier
family 4, member 4 (SLC4A4) mRNA, and reduced SLC4A4
mRNA and protein expression, which was associated with
KRAS signaling and epithelial-mesenchymal transition
[36]. Besides, Zhang et al.’s study confirmed the carcinogen-
esis of miR-223-3p and found RASA1 may play a key role in
the progression of RCC by decreasing miR-223-3p and sub-
sequently increasing FBXW7 expression [37].

Many molecules have been identified to facilitate or sup-
press cancer prognosis via miR-193a-3p. For example,
LncRNA ZNFX1-AS1 targets miR-193a-3p/SDC1 to regu-
late cell proliferation, migration, and invasion of bladder
cancer cells [38]. Similarly, molecules including long non-
coding RNA SLCO4A1-AS1, Hsa_circ_0003159, and circle
RNA circABCB10 which modulates PFN2 were found to
interact with miR-223-3p to regulate cancer progression
[39–41]. However, the upstream mechanism of these 2
microRNAs is still unclear in ccRCC. Jia et al. found miR-
193a-3p is an androgen receptor target gene, whose expres-
sion level can be regulated by androgen and promotes pros-
tate cancer cell migration through its direct target AJUBA
gene [42]. Yang et al. observed that H. pylori infection con-
tributed to higher expression level of miR-223-3p in gastric
cancer via NF-κB-dependent pathway. NF-κB directly
bound to the promoter of miR-223-3p so that the expression
of miR-223-3p was stimulated, and miR-223-3p played the
oncogenic role in gastric cancer by directly targeting
ARID1A. They suggested miR-223-3p might act as a
“bridge” to link H. pylori-induced chronic inflammation
and carcinogenesis [43]. In summary, the factors contribut-
ing to high expression of miR-193a-3p and miR-223-3p in
ccRCC should be addressed in further studies.

Furthermore, another study suggested that the invasion
and deterioration of breast cancer are strongly associated
with the high expression of miR-221-3p, which demon-
strates the poor prognosis and advanced stage of BC [44].
Cao et al. demonstrated that miR-101-3p can be inhibited
by LINC01303 and then enhances gastric cancer progression
[45], and Wang et al. indicated that the expression of miR-
200a-5p downregulates the antitumor gene FOXD1 in
high-grade serous ovarian carcinoma [46]. Although these
studies show the importance of miRNAs in cancer, the role
of necroptosis-related miRNAs has not yet been fully stud-
ied. GO and KEGG enrichment analyses of the target genes

of the six miRNAs identified indicated that these genes were
mostly involved in cell proliferation and oxygen response-
related biological processes. We hypothesize that these target
genes participate in the production of reactive oxygen spe-
cies (ROS), which have been widely suggested to form a pos-
itive pathological feedback loop with necroptosis under
pathophysiological conditions [47]. FoxO, MAPK, and
PI3K/AKT signaling pathways are activated when the ROS
concentration is high. Additionally, MAPK and PI3K/AKT
signaling pathways are important targets in regulating
necroptosis in in vivo and in vitro experiments [48]. Hence,
we hypothesized that these pathways might mediate the
crosstalk between necroptosis and ROS production. How-
ever, ROS are also associated with other cell death pathways,
including apoptosis, autophagy, and ferroptosis, and the role
of ROS in metastatic cancers remains controversial. The
diversity of ROS effects on different tumor cell types could
underlie the dual roles of necroptosis in cancer metastasis.
Additionally, our results suggest that necroptosis is involved
in the regulation of the tumor immune response.

Finally, we analyzed the tumor infiltration and drug sen-
sitivity status of hub genes. Surprisingly, the correlation
between the expression of hub genes and drug sensitivity
to drugs from the CTRP and GDSC databases was remark-
able, which reveals that miRNAs and their target genes
might be new therapeutic targets in cancer. By analyzing
the correlation between drug sensitivity and hub genes’
mRNA expression levels, our study could improve drug tol-
erance and developing new drugs for cancer, which should
be validated by in vivo and in vitro experiments in the
future.

Our study had several limitations, first, both our training
and testing cohorts were obtained from TCGA. Because data
of miRNA expression with the corresponding clinical infor-
mation and sufficient sample size are not available besides
those from TCGA, we could not conduct external validation
for the developed signature. Thus, more ccRCC samples are
required for further validation of the risk signature. Second,
we preliminarily explored the prognostic value of these miR-
NAs and their target genes. However, owing to the insuffi-
cient literature on the topic, the relationship between the
identified molecules (six selected miRNAs and potential tar-
get genes) and response to cancer therapy could not be
investigated. The mechanisms underlying the relationship
between cancer development and the signature miRNAs
and their target genes are still unclear, and further research
is required. Nonetheless, our study provides an informed
starting point for further studies.

5. Conclusion

In summary, we established a novel necroptosis-related
miRNA signature and nomogram for predicting the progno-
sis of patients with ccRCC, both of which achieved good pre-
diction accuracy. Additionally, six miRNAs (hsa-miR-101-
3p, hsa-miR-193a-3p, hsa-miR-200a-5p, hsa-miR-214-3p,
hsa-miR-221-3p, and hsa-miR-223-3p) and seven hub target
genes (ARHGAP42, BTG2, DUSP1, PCDHA12, TAL1,
TGFBR3, and SIX4) were dysregulated in ccRCC.
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