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Currently, the Thinprep cytologic test (TCT) is the most popular cervical cancer cytology test technique. It can detect
precancerous conditions and microbial infections. However, this technique entirely relies on manual operation and doctors’
naked eye observation, resulting in a heavy workload and low accuracy rate. Recently, automatic pathological diagnosis has
been developed to solve this problem. Cervical cell classification is a key technology in the intelligent cervical cancer diagnosis
system. Training a deep neural network-based classification model requires a large amount of data. However, cervical cell
labeling requires specialized physicians and the cost of labeling is high, resulting in a lack of sufficient labeling data in this
field. To address this problem, we propose a method to ensure high accuracy in cervical cell classification with a small amount
of labeled data by introducing manual features and a voting mechanism to achieve data expansion in semi-supervised learning.
The method consists of three main steps, using a clarity function to filter out high-quality cervical cell images, annotating a
small amount of them, and balancing the training data using a voting mechanism. With a small amount of labeled data, the
accuracy of the proposed method in this paper can reach to 91.94%.

1. Introduction

Cervical cancer is one of the most common cancers which
directly threats women’s lives. According to the 2018 Global
Cancer Report published by the World Health Organization/
International Agency [1], there were 570,000 new cases and
311,000 deaths of cervical cancer. China is a region with a
high incidence of cervical cancer, about 100,000 new cases
each year. These cases account for a quarter of the new cases
in the world. In the last decade, the incidence and mortality
rates of cervical cancer in China have been increasing, and
the age of onset gradually becomes younger. The cure rate
of early cervical cancer is 91.5%, so regular screening, timely
detection, and treatment of precancerous conditions are
effective ways to fight against cervical cancer. Currently,
the Thinprep cytologic test is an effective method for screen-
ing cervical cancer. However, this method relies on manual
manipulation and visual observation of the pathologists to
search for abnormal cells, which brings heavy workload. At
the same time, pathologists inevitably make 10-20% of mis-
diagnosed and missed cases due to subjectivity and visual

fatigue caused by long hours of work. In addition, the accu-
racy of primary pathology diagnosis in China is low, and
pathologists are severely insufficient. Recently, artificial
intelligence and big data technologies have been used in
pathology diagnosis, leading to the emergence of intelligent
auxiliary diagnosis system. Capable of scanning pathology
slides, intelligent diagnosis, and information management,
the system can effectively improve the efficiency of patholo-
gists and significantly reduce the operating costs of pathol-
ogy departments. The core tasks of the intelligent
companion diagnostic system are abnormal cell detection
and pathological graded diagnosis, both of which are techni-
cally dependent on cervical cell classification. Therefore, the
accuracy of cervical cell classification is an important factor
in the intelligent auxiliary diagnosis system.

In cervical cell image classification, the convolutional
neural network (CNN) has shown great advantages. CNN
extracts local region features of images by convolutional
structure, uses the same convolutional kernel in each layer
of convolutional operations (parameter sharing) in order to
reduce the number of parameters, and achieves
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displacement invariance of the output images by using pool-
ing layers [2]. Single-layer CNNs are limited in image feature
extraction. In order to improve the performance of image
recognition, researchers have proposed a series of new
models by adding the number of layers of convolutional
and pooling layers, among which the typical ones are the
AlexNet [3], VGGNet [4], GoogLeNet [5], ResNet [6],
ResNeXt [7], and DenseNet [8]. Among these neural net-
works, the VGGNet, ResNet, and ResNeXt perform better
and are more widely used in the field of medical images.

The innovation of VGGNet is to use successive stacks of
3 × 3 small convolutional kernels instead of the larger con-
volutional kernels in AlexNet. In fact, the structure of multi-
ple layers of smaller convolutional kernels and smaller
pooling kernels not only extracts more image features but
also controls the number of model parameters and speeds
up model training in the same sensory field. Deepening the
network in a single way by stacking small convolutional ker-
nel layers is prone to gradient disappearance and noncon-
vergence. Jaworek-Korjakowska et al. added dense layers to
VGG19 and obtained 87.2% accuracy in the classification
of melanoma thickness, meeting the requirements for preop-
erative assessment of lesion site thickness [9].

ResNet adds a constant mapping before the activation
function, which solves the irreversible information loss
caused by Relu (a nonlinear activation function), making
itself more flexible and no longer limited by the number of
layers. ResNet has a strong feature extracting capability
due to the large number of convolutional layers. However,
the deeper layers lead to dramatic increase in hyperpara-
meters and require more memory and longer time for train-
ing. Lai and Chang used a modified ResNet50 to classify
eight types of colorectal cancer tissue with an accuracy of
94.4% [10].

ResNeXt simplifies the ResNet network structure by
incorporating a strategy of group convolution which turns
single-way convolution into multiway convolution with
multiple branches. With equal parameter, ResNeXt performs
better than ResNet, but ResNeXt runs slower than ResNet in
hardware execution. Li et al. added a spatial attention refine-
ment module to ResNeXt-50 to calculate breast density on
breast ultrasound images for early screening of breast can-
cer [11].

Deep learning networks are noticed by researchers
because of their outstanding classification results, but they
need large amounts of high-quality labeled data. The main-
stream public image datasets for deep learning all have tens
of thousands of images. For example, MNIST contains 10
classes with a total of 70,000 handwritten digital images;
MS-COCO contains 80 classes with a total of over 200,000
labeled data; ImageNet has a total of about 1.5 million
images. In contrast, public datasets related to medical images
are not only few in number but also small in size, among
which the public datasets for cervical cytopathological
smears are Herlev and SIPaKMeD [12]. Herlev contains
917 single cell images, which divided into 7 categories based
on nucleoplasm ratio and nucleoplasm brightness.
SIPaKMeD contains 4049 annotated data, which divided
into 5 categories based on the characteristic morphology of

the cells. Current public cervical cell annotation datasets
are not sufficient for the needs of deep learning networks,
both in numbers and categories. In addition, the cost of
annotating cervical cytopathology images is high because
of the complexity of the annotation process and the high
level of expertise required of the annotators. It is difficult
to obtain a large amount of cervical cell annotation data by
manual annotation. The VC dimension of the deep learning
algorithm is redundant when annotated data is lacking, lead-
ing to overfitting and a significant decrease in classification
accuracy [13].

The classification of cervical cells faces two problems in
terms of data. The amount of data is extremely imbalanced
in different categories. The total amount of data is sparse.
Combined with deep learning networks, semi-supervised
classification can reduce the impact on performance caused
by of the lack of labeled data. With small amounts of labeled
data, semi-supervised classification can learn good models
by using large amounts of unlabeled data. Current methods
fall into the following categories: self-training, multiview
training, self-embedded training, collaborative training, and
method based on neighbor structure. In self-training
methods, a small amount of labeled data are used to train
a model. The model is used to classify the unlabeled data
to obtain pseudo-labeled data that are used to expand the
training set [14]. In multiview training methods, different
models are trained with the same data under different views.
Different models can complement each other to improve the
accuracy of classification. The idea of multiview methods is
that the determination of category boundaries depends on
the distribution of divergent samples [15]. The self-
embedded methods are implemented based on the low-
density separation hypothesis. The assumption is that there
are significant differences between the data of different cate-
gories. In other words, the data density is low at all category
boundaries. Virtual adversarial training [16] is a self-
embedded method. This method enhances the robustness
of the model by adding noise interference during model
training. In original co-training methods, the neural network
model is replicated in two copies and trained separately. It is
required that the two models have the same prediction
results for the same data. The mean teacher algorithm [17]
is a classical co-training method. Neighbor structure-based
semi-supervised classification methods rely on label propa-
gation algorithms [18]. These methods mine hidden rela-
tionships between similar data in terms of data correlation.
These hidden relationships are usually used to guide the
classification. Self-training methods are widely used because
they are easy to implement. However, the classification accu-
racy of these methods is influenced by the reliability of
pseudo-labeled data and the balance of training data. In
multiview training methods, multiple deep learning classi-
fiers are to be freely combined. These methods focus on
the divergence of opinion among different classifiers. In
order to accomplish the cervical cell classification task, our
method is based on self-training methods, incorporating
the idea of multiview training and combining semi-
supervised classification methods with the deep learning net-
works VGGNet, ResNet, and ResNeXt. In our method,
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different classifiers are assigned different weight, and
pseudo-labels of unlabeled data are determined by classifier
voting. In addition, cervical cell features are used to balance
the data when filtering the samples.

To address the problems of blurred images, incorrect
“pseudo-labeled,” and unbalanced data in the multiclassifi-
cation task of cervical cells, three data processing steps are
added to the semi-supervised method: data filtering and
enhancement based on clarity evaluation, classification and
filtering of unlabeled samples, and data balancing of training
samples. First, in order to filter out high-quality images, the
clarity of the cervical cell images is evaluated by a grey-scale
variance product function, and the blurry images were
deblurred by a blind image deblurring method based on reg-
ularization. Second, a small number of high-quality images
are annotated as training data. VGG19, ResNet18, ResNet50,
ResNeXt29_2∗64d, and ResNeXt29_4∗64d networks are
trained to obtain multiple classifiers. After adding different
weights to each classifier, the classifiers are combined to
obtain a combined classifier. Classification results and confi-
dence levels were obtained using a combined classifier to
predict unlabeled images. Directly adding “pseudo-labels”
to high-confidence images and then adding them to the
training data can lead to an imbalance between the cervical
cell categories and reduce the accuracy of the classifier. In
order to solve this problem, the cervical cell data of different
categories are processed by upsampling or downsampling, so
that the number of cells in each category is equal. In sam-
pling, the cosine similarity of every two cell images in the
same class is calculated, and the cell image with the greater
difference in specificity is selected. Finally, the best classifica-
tion model is obtained after several rounds of expanding the
data and training the model. Experimental result demon-
strates that this method can effectively improve the classifi-
cation accuracy of cervical cells with a small amount of

annotated data and meet the practical application needs of
intelligent cervical cancer diagnosis tasks.

2. Materials and Methods

2.1. Application Domain. Cytopathology is a discipline that
studies the causes and pathogenesis of diseases, as well as
the patterns of changes in the physiological functions of cells
during the development of diseases. The most important
application of cytopathology is the diagnosis of tumors, in
which the presence or absence of tumor cells is determined
through the examination of cytological specimens (e.g., spu-
tum, urine, chest and abdominal fluid, and cervical smears).
If cells with typical abnormal morphology are found during
an the examination, it can further determine the lesion level
of the tumor cells. Cervical cancer cytology screening is the
most successful example of cytopathology application. This
screening has significantly reduced the incidence and mor-
tality of cervical cancer worldwide by observing cervical
exfoliated cells to detect cervical cancer and precancerous
conditions. Quantitative DNA cytology and TCT are often
used together during cervical cancer screening, which can
improve the sensitivity and specificity of early cervical can-
cer diagnosis. Studies have shown that DNA heteroploid
cells can be found in all levels of cervical lesions. The higher
the level of cervical lesion, the greater the frequency of DNA
heteroploid cells. In addition, the increase in DNA content is
earlier than the change in cell morphology during
carcinogenesis.

The quantitative DNA ploidy analysis technique mea-
sures the DNA content in the nuclei of specially stained cer-
vical cells by using the Lambert-Bier principle. Under
normal physiological conditions, human cells have 23 pairs
of chromosomes. The content of DNA in the nucleus is
fairly constant. During the proliferation period, the
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Figure 1: Microscopic cell diagram.
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chromosomes in the cell replicate themselves. The DNA
content of normal cells is set to N and that of proliferating
cells to 2N. Affected by oncogenic factors, cells are geneti-
cally mutated, resulting in structural or quantitative changes
in chromosomes. In addition, cancer cells are able to prolif-
erate indefinitely. During proliferation, chromosomes con-
tinuously replicate themselves. The DNA content in the
cell nucleus accumulates to 2.5N and above. It is possible
to determine whether a cell section is cancerous by measur-
ing the relative amount of DNA or the number of proliferat-

ing cells. The Feulgen staining method is commonly used for
quantitative DNA ploidy analysis techniques. There is strong
adsorption between DNA and Feulgen staining molecules.
The darker the nucleus staining, the higher the DNA con-
tent. However, neutrophils contain DNA and impurities
can adsorb Feulgen staining molecules. These can affect the
determination of DNA content in cells. Therefore, it is nec-
essary to distinguish the nuclei of epithelial cells, neutrophil
nuclei, and garbage based on morphological features by
using deep learning networks. Then, the nuclei of epithelial
cells are classified as normal or abnormal based on DNA
content.

In Figure 1, neutrophils, epithelial nuclei, and garbages
from different cervical samples and different periods are
shown. Normal epithelial cell nuclei are round or ovoid with
evenly distributed staining, and some of them contain a
nucleolus (a small dark black dot in the center of the nucleus
in the image). The morphology of early abnormal epithelial
cell nuclei may not be altered, and only the DNA content
is increased. As the time passes by, morphological changes
in the nuclei of abnormal epithelial cells become apparent,
such as enlarged nuclei, deviated round nuclei, and deeply
stained nuclei. Neutrophil nuclei are mostly lobulated in
shape, and a few are rod-shaped. The lobed nuclei are usu-
ally 2-5 lobes, with 2-3 lobes predominating in number.
The garbage varies in area size and staining depth, and tex-
ture distribution is not biologically distinctive. For example,
black spot garbage staining is dark and opaque, while glass
layer garbage staining is light.

2.2. Implementation of Our Algorithm. A cervical cell classi-
fication method that combines semi-supervised learning
based on self-training with classical deep learning networks
is presented. The method adds several modules to the
semi-supervised process, including image clarity screening,
image quality enhancement, screening of pseudo-labeled
data, and balancing of training samples.
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Figure 3: Data balancing flowchart.
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Figure 4: Part of typical data.

Table 1: Experimental data situation of each group.

Group
The number of experimental data

Training set
Validation set Test set Discarded samples

Real label data Pseudo-labeled data

Supervised learning
A1 50000 0 10000 10000 0

A2 10000 0 10000 10000 0

semi-supervised learning
B1 10000 40000 10000 10000 0

B2 10000 38573 10000 10000 1427

Table 2: Record of semi-supervised training.

Epoch Group Trust threshold Labeled data Unlabeled data
Accuracy (%)

Vgg19 ResNet18
ResNet
50

ResNeXt29_2∗64d ResNeXt29_4∗64d

0 — — 10000 40000 0 0 0 0 0

50 B1/B2 0.9 39990 10010 89.45 90.34 89.90 91.22 90.95

100 B1/B2 0.8 44140 5860 89.83 90.74 90.11 91.63 91.86

200 B1/B2 0.7 46820 3180 89.94 90.81 90.31 91.60 91.89

Table 3: Record of classifier accuracy.

Group Vgg19 ResNet18 ResNet50 ResNeXt29_2∗64d ResNeXt29_4∗64d Fused classifier

A1 90.55% 91.60% 90.78% 93.12% 92.51% —

A2 85.01% 87.64% 87.49% 87.21% 88.04% —

B1 89.29% 89.44% 90.23% 90.14% 90.92% 90.32%

B2 90.14% 90.95% 90.34% 91.67% 91.94% 91.29%
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2.2.1. Flowchart of Our Algorithm. The data flow diagram of
the proposed algorithm is shown in Figure 2. The specific
steps are described as follows.

First, the clarity of the cervical cell images is evaluated
and high-quality images are selected. Second, a small num-
ber of high-quality images are annotated to obtain a labeled
dataset, which is further divided into a training set, a valida-
tion set, and a test set. Third, deep learning networks
VGGNet, ResNet, and ResNeXt are trained on the training
set to obtain several classifiers. Subsequently, the classifier
was evaluated on the validation set. These classifiers are then
combined to obtain a combined classifier. Unlabeled images
are predicted by using the combined classifier to obtain clas-
sification results and their confidence levels. Then, the unla-
beled data are divided into a high confidence dataset and a
low confidence dataset by comparing the predetermined
trust threshold with the confidence magnitude. Next, the
high confidence data set and its predicted class labels are
retained, which are used to update the training sample set,
and the low confidence data are put back into the unlabeled
data. The training sample set is balanced. Finally, the steps of
model training and training samples are repeated until the
number of unlabeled data is less than 10% of the original
number, and the final model is output after the end of the
training round.

2.2.2. Data Filtering and Enhancement Based on Clarity
Evaluation. The quality of the dataset determines the perfor-

mance of the classifier. Image clarity is an important indica-
tor of the quality. To ensure the quality of the training data,
the cervical cell images are screened by clarity and then
enhanced.

Cervical cell images are evaluated by using grey variance
product function. The grey variance product function multi-
plies two grayscale differences in the neighborhood of each
pixel and then adds them up pixel by pixel. The basic prin-
ciple is that there is a positive relationship between the clar-
ity of a picture and the level of focus, with a focused picture
containing more grey variation than an out-of-focus picture.
The SMD2 function is defined as the following equation.

D fð Þ =〠
y

〠
x

f x, yð Þ − f x + 1, yð Þj j f x, yð Þ − f x, y + 1ð Þj j,

ð1Þ

where f ðx, yÞ is the greyscale value of any pixel in the
image, and f ðx + 1, yÞ and f ðx, y + 1Þ are the greyscale values
of the two adjacent pixels at ðx, yÞ.

After calculating the clarity mean of the images, the
labeled data with clarity greater than the mean were used
as the original training samples; the remaining images were
processed using a regularized blind deblurring model [19]
which preserved and enhanced the salient structures of
images and helped to estimate the kernel functions. The
model equations are described in the following equations.

∅ Dð Þ =
ð

D x, yð Þ
D2 x, yð Þ + ε

dxdy,

D x, yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x x, yð Þ + u2y x, yð Þ

q
,

ð2Þ

where u is an image, uðx, yÞ is the image pixel point at
location ðx, yÞ, ux is the partial derivative of uðx, yÞ in the
x-direction, uy is the partial derivative of uðx, yÞ in the y
-direction, and ε is an arbitrary positive constant. If the clar-
ity of the processed image reaches the average value, this
image is added to the original training samples, otherwise,
it is discarded.

To meet the input requirements of the deep network, the
size of the cervical cell images needs to be standardized. The
average edge length of the dataset images is calculated.
While maintaining the aspect ratio of the original image,
the length or width of the original image is randomly
deflated to the average edge length, and white pixel dots
are used to fill in the empty pixel areas of the image.

2.2.3. Classification and Filtering of Unlabeled Samples. semi-
supervised learning based on self-training for classification
usually requires combining multiple classifiers to filter unla-
beled images. There are two ways to combine classifiers, one
is to compare the classification effects of multiple classifiers
and select the best performing classifier as the recognition
model for the first screening of unlabeled data; the other is
to fuse multiple classifiers according to certain rules and
use the fused classifier as the recognition model for the sec-
ond screening.
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Figure 5: Confusion matrix of fusion classifier.

Table 4: Record of loss value of each group.

Epoch A1 A2 B1 B2

0 1.275 1.091 1.313 1.285

50 0.148 0.101 0.134 0.131

100 0.068 0.037 0.061 0.05

150 0.06 0.042 0.022 0.019

200 0.064 0.04 0.025 0.013
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The first filtering process is as follows: multiple models
are used to predict all the unlabeled data, the classification
results of each classifier for each unlabeled image and its
set of confidence levels were output, and then a maximum
confidence threshold was set. Different deep learning net-
works have different sensitivities to different classes of cervi-
cal cells when the amount of data is insufficient. Therefore,
the confidence of the prediction results of different classifiers
for the same unlabeled image was compared with the maxi-
mum confidence threshold, and the prediction class label of
the image with confidence greater than the maximum confi-
dence threshold was used as the pseudolabel of the data and
added to the high-confidence dataset.

The secondary filtering process is as follows. The first
step is to fuse multiple classifiers according to the following
equation.

Result = ∑m
i=0wiMi

∑m
i=0wi

,Mi =

p0

⋯

pn

2
664

3
775, ð3Þ

where wi denotes the weight of the i-th classifier, which
is determined by the accuracy of the classifier in the valida-
tion set, m is the number of classifiers, Mi denotes the clas-
sification confidence vector of the i-th classifier, and n is the
number of label categories. In the next step, the fusion model
is used to predict all unlabeled data, outputting predicted
labels, and confidence levels. Then, minimum trust thresh-
old is set, and the confidence levels of the unlabeled data
are compared to the minimum trust threshold in turn. If
the confidence level is greater than the minimum threshold,
the classification label corresponding to this image is treated
as a pseudolabel, and this image is added to the high-
confidence dataset; otherwise, the data is put back into the

unlabeled dataset. In addition, if the number of unlabeled
images falls below a certain proportion of the initial number
of unlabeled images during the filtering process, the low con-
fidence data are discarded directly.

2.2.4. Balance of Training Samples. To address the problem
of unbalanced annotated samples of different categories in
semi-supervised learning, we perform data balancing on
annotated data (including original annotated data and
high-confidence data) by means of upsampling and down-
sampling, as shown in Figure 3.

First, the label information of the annotated data
(including real labels and pseudo-labels) is counted to obtain
the total number of label categories l, the number of cells in
each class ci (0 ≤ i < l), the cell class with the highest number
of images cmax, and the cell class with the lowest number of
images cmin.

Second, the average of the number of images in each
class (excluding cmax and cmin) is calculated to obtain the
ideal number cmean. The number of cell categories larger
than cmean was called rich, and those less were called rare.

Then, rich classes were randomly unduplicated down-
sampled several times. In the downsampling, two similar cell
images were randomly selected for pairing. The cosine sim-
ilarity of each pair of cell images was calculated by the fol-
lowing equation.

cos ui, �uð Þ = ui − �uð Þ uj − �u
� �

ui − �uk k uj − �u
�� �� , ð4Þ

where ui and uj are the feature vectors of the two selected
cells, respectively, and �u is the average of the feature vectors
of all cells in the category of the two cells. The smaller the
cosine angle between the two vectors, the more similar the
two cells are. If the cosine angle is less than the similarity
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threshold, either cell is added to the training dataset and the
other cell is added to the unlabeled dataset; otherwise, both
cells are added to the training dataset. Integrated optical
density (IOD) represents the sum of the absorbance of a cer-
tain object in the area on the picture. The calculation for-
mula for IOD is shown in the following equation.

IOD = 〠
i,jð Þ∈Ω

γ i, jð Þ, ð5Þ

where γði, jÞ is absorbance of position ði, jÞ. The IOD
value reflects the DNA content of the cells which abnormal
cells have 2.5 times more than normal cells. The integrated
optical density of the nucleus is chosen as the feature vector
of the cell. At the same time, to ensure that the number of
images filtered out at each downsampling does not exceed
half of cmin, the number of downsampling N is determined
by the following equation, where the value of k is chosen
randomly.

N =
ci

kcmin
, k =

1
2
,
1
3
or

1
4
: ð6Þ

Upsampling of rare classes is achieved by self-replication
of real data, random rotation, and grey value transformation.
Grey value transformation methods include grey stretching,
inversion, logarithmic transformation, inverse logarithmic
transformation, and gamma transformation. Finally, to
ensure that the annotated data is balanced, the above steps
are repeated before each expansion of the training set.

3. Results and Discussion

3.1. Experiments and Analysis of Results

3.1.1. Introduction of Experimental Data and Groups. The
public cervical cell datasets include Herlev and SIPaKMeD.

Herlev is divided into 7 categories based on nucleoplasm
ratio and nucleoplasm brightness. This dataset consists of
917 cell images of 128 pixels in length and width. SIPaKMeD
is divided into 5 categories based on cell characteristic mor-
phology and contains of 4049 labeled data. The staining
method used by Herlev and SIPaKMeD is not suitable for
DNA ploidy analysis. Public cervical cell datasets are difficult
to meet the needs of deep learning networks in terms of data
amount. In addition, the variety of these datasets is less.
Therefore, in-house data from third-party testing centers
are used in our experiments. The in-house dataset covers
more categories of cervical cell images. There is greater
imbalance between the data. For cell classification, this is a
more difficult challenge.

The experimental dataset was divided into 10 classes,
with a total of 70,000 32 × 32 cervical cell images, 7,000
images per class. The classes are as follows: single epithelial
cells (SEC), two epithelial cells (TEC), clumped epithelial
cells (CEC), lymphocytes and karyopyknosis (LAK), single
neutrophils (SN), multiple neutrophils (MN), neutrophils
and epithelial cells (NAEC), abnormal epithelial cells
(AEC), black spot garbage and glass layer garbage
(BSGAGLG), and other garbage (OG). Typical images of dif-
ferent classes are shown in Figure 4.

The experiments were divided into two groups (A and
B). Group A used supervised learning, and group B used
semi-supervised learning. Group A consists of group A1
and group A2, with A1 containing 50,000 real-label data in
the training set and A2 containing 10,000 real-label data.
Group B consists of groups B1 and group B2, with the train-
ing set in B1 including low confidence data and that in B2
excluding low confidence data.

3.1.2. Evaluation Metric, Loss Function, and Optimizer of
Experiment. The evaluation metric for these experiments is
the macrochecking rate (in top-1) given by the following
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Figure 7: Comparison with the results of other methods.
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equation.

P =
TP

TP + FP
, macro‐P =

1
n
〠
n

i=1
Pi, ð7Þ

where TP is the number of true cases, FP is the number
of false-positive cases, P is the accuracy rate, and n is the
number of cell categories.

The experiments used cross-entropy as a loss function
with the following equation.

loss = −〠
n

i=1
yi log yið Þ, ð8Þ

where yi is the true probability distribution of the train-
ing data of i-class, and yi is the predicted probability distri-
bution of the training data of i-class.

The experiments used the Adam [20] function as the
optimizer, with the initial first-order moment estimation
β1 set to 0.9, initial second-order moment estimation β2
set to 0.999, ϵ set to 1e‐08, and the initial learning rate set
to 0.001.

3.1.3. Experiments and Analysis of Results. The data set is
divided into training set, validation set, and test set by a ratio
of 5 : 1 : 1, and the training set is further divided into unla-
beled data set and labeled data set by a ratio of 4 : 1. Each
group of experiments has a 0.5 probability of performing
operations such as center cropping, random angle rotation,
modification of luminance, and modification of contrast
during the training process to enhance model robustness.
Each group of experiments uses the classical deep learning
networks VGG19, ResNet18, ResNet50, ResNeXt29_2∗64d,
and ResNeXt29_4∗64d to train the classifiers. It trains 200
times in total and 50 times per round. The trust threshold
is set at 0.9 for the first round of training and then reduces
by 0.1 for each additional round of training until 0.5.

The experimental data are shown in Table 1.
The training records of the semi-supervised experimen-

tal group are shown in Table 2.
The macrochecking rate values for several classifiers in

different experimental groups are recorded in Table 3. From
Table 3, the ResNeXt29_4∗64 model has the highest classifi-
cation accuracy. The accuracy of the best recognition model
for A1 is 0.57% higher than that for B2. The average accu-
racy of classifiers in group B2 was 1.004% higher than that
of group B1. Comparing group A and group B, it can be seen
that “pseudo-labeled” data can improve the accuracy of all

Table 5: Network structures of VGG.

ConvNet configuration
A A-LRN B C D E

11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers

Input (224 × 224 RGB image)

Conv3-64 Conv3-64 LRN
Conv3-64
Conv3-64

Conv3-64 Conv3-64 Conv3-64 Conv3-64 Conv3-64 Conv3-64

Maxpool

Conv3-128 Conv3-128
Conv3-128
Conv3-128

Conv3-128 Conv3-128 Conv3-128 Conv3-128 Conv3-128 Conv3-128

Maxpool

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256
Conv3-256

Conv3-256 Conv3-256
Conv1-256

Conv3-256 Conv3-256
Conv3-256

Conv3-256 Conv3-256 Conv3-
256 Conv3-256

Maxpool

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512 Conv3-512
Conv1-512

Conv3-512 Conv3-512
Conv3-512

Conv3-512 Conv3-512 Conv3-
512 Conv3-512

Maxpool

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512
Conv3-512

Conv3-512 Conv3-512
Conv1-512

Conv3-512 Conv3-512
Conv3-512

Conv3-512 Conv3-512 Conv3-
512 Conv3-512

Maxpool

FC-4096

FC-4096

FC-1000

Soft-max

1×1,64

1×1,256

3×3,64

+

relu

relu

relu

256-d

3×3,64

3×3, 64

+

relu

relu

64-d

Figure 8: Basic units of ResNet.
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types of deep learning models. Comparing group B1 and
group B2, we can see that discarding the data with low con-
fidence and avoiding the incorrectly “pseudo-labeled” data
can effectively improve the recognition rate of the classifier.

The confusion matrix of the fusion classifier on the test set
in the B2 group condition is shown in Figure 5. Fusion classi-
fier performs well in cervical multiclassification task. The clas-
sification accuracy of more than half of the classes exceeds
90%. The accuracy of the best-performing SEC class is as high
as 98.4%, and the accuracy of the worst-performing
BSGAGLG class also reaches 85.7%. The average accuracy rate
reaches 91.9% for the cell class (the first eight classes) and
88.85% for the garbage class (the last two classes). We can
see that it is easy to make error in classifying classes CEC,
SN, and MN. BSGAGLG class and OG class are also easy to
be classified as each other. It should be noted that the AEC
samples can be misclassified into all other classes except
NAEC. Affected by precancerous conditions, the AEC cells
keep some features similar to those of other classes.

In Table 4, the changes in the loss values are summa-
rized. The initial and final values are for the first and 200th
training times, respectively.

In Figure 6, the trend of the loss curves of the fusion clas-
sifier in different experimental groups is shown. The trend of
decreasing loss is obvious in the first training round, then
the rate of decreasing loss becomes slower in the second
training round, and the third and fourth training rounds
the loss value only oscillates in a small range and gradually
tends to a stable state.

We further design experiments to compare GoogLeNet,
DenseNet121, FS-GCN-MIL, and SA_SVM with the pro-
posed fusion model.

GoogLeNet introduces the Inception structure, connect-
ing 1 × 1, 3 × 3, and 5 × 5 convolutional structures, using
averaged pooling layers instead of fully connected layers,
and aggregating visual features after extraction at different
scales to improve model accuracy. DenseNet121 concate-
nates multiple Dense Blocks, with convolutional pooling
between each block to maximize information flow. FS-
GCN-MIL [21] uses graph convolutional networks to learn
bag-level features for bag-level classification. In the method
proposed in the literature [22], polynomial and radial basis
function-based SA-SVM and deep network are trained using
training samples randomly chosen via a bootstrap technique,

Table 6: Network structures of ResNet.

Layer name Output size 18-layer 34-layer 50-layer 101-layer 152-layer

Conv1 112 × 112 7 × 7, 64, stride 2

Conv2_x 56 × 56

3 × 3 max pool, stride 2

3 × 3, 64

3 × 3, 64

" #
× 2

3 × 3, 64

3 × 3, 64

" #
× 3

1 × 1, 64

3 × 3, 64

1 × 1, 256

2
664

3
775 × 3

1 × 1, 64

3 × 3, 64

1 × 1, 256

2
664

3
775 × 3

1 × 1, 64

3 × 3, 64

1 × 1, 256

2
664

3
775 × 3

Conv3_x 28 × 28
3 × 3, 128

3 × 3, 128

" #
× 2

3 × 3, 128

3 × 3, 128

" #
× 4

1 × 1, 128

3 × 3, 128

1 × 1, 512

2
664

3
775 × 4

1 × 1, 128

3 × 3, 128

1 × 1, 512

2
664

3
775 × 4

1 × 1, 128

3 × 3, 128

1 × 1, 512

2
664

3
775 × 8

Conv4_x 14 × 14
3 × 3, 256

3 × 3, 256

" #
× 2

3 × 3, 256

3 × 3, 256

" #
× 6

1 × 1, 256

3 × 3, 256

1 × 1, 1024

2
664

3
775 × 6

1 × 1, 256

3 × 3, 256

1 × 1, 1024

2
664

3
775 × 23

1 × 1, 256

3 × 3, 256

1 × 1, 1024

2
664

3
775 × 36

Conv5_x 7 × 7
3 × 3, 512

3 × 3, 512

" #
× 2

3 × 3, 512

3 × 3, 512

" #
× 3

1 × 1, 512

3 × 3, 512

1 × 1, 2048

2
664

3
775 × 3

1 × 1, 512

3 × 3, 512

1 × 1, 2048

2
664

3
775 × 3

1 × 1, 512

3 × 3, 512

1 × 1, 2048

2
664

3
775 × 3

1 × 1 Average pool, 1000-d fc, softmax

256, 1x1, 4 256, 1x1, 4 256, 1x1, 4

4, 3x3, 4 4, 3x3, 44, 3x3, 4

4, 1x1, 256 4, 1x1, 256 4, 1x1, 256

total 32
paths
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+

256-d in

256, 1x1, 4 256, 1x1, 4 256, 1x1, 4

4, 3x3, 4 4, 3x3, 44, 3x3, 4
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paths

ę

concatenate

128, 1x1, 256
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256, 1x1, 128

128, 1x1, 256

128, 3x3, 128
group = 32

+ 256-d out

256-d in

Figure 9: Basic units of ResNeXt.
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and then the results are aggregated using least square estima-
tion weighting.

Among them, GoogLeNet and DenseNet121 are deep
learning methods, using 40,000 labeled samples for model
training. FS-GCN-MIL and SA_SVM are semi-supervised
learning methods, using 10,000 labeled samples and 30,000
unlabeled samples to complete the model training. The
results of the comparison test are shown in Figure 7.

The experimental results show that the proposed
method can effectively filter out qualified “pseudo-labeled”
data from unlabeled data to train the classifier, and its accu-
racy is very close to that of the supervised learning group. In
addition, the accuracy of this method is higher than that of
the methods proposed in the literature [21, 22]. Cervical cell
classification uses this paper’s method instead of supervised
learning to maintain high accuracy while effectively reducing
the amount of annotated data.

4. Conclusions

To solve the problem of few data annotations for intelligent
assisted diagnosis systems, a semi-supervised deep learning
method for cervical cell classification is proposed. The
method can accurately classify cervical cells by using a clas-
sification model trained on a small amount of labeled data
and a large amount of unlabeled data. Low confidence data
are difficult to identify in semi-supervised learning. If these
data are used wisely, there may be a greater improvement
in the recognition accuracy of the system. Our future work
is to select valuable data from these data for manual annota-
tion and to study active and semi-supervised learning with
small samples. In addition, only clarity is currently selected
as a reference condition in the data filtering and enhance-
ment, and further work will consider adding other criteria,
such as uniformity of illumination.

Appendix

A. Deep Learning Networks

The VGG framework contains six deep convolutional neural
networks with different structures, which are shown in
Table 5. The VGG network uses several consecutive 3 × 3
convolutional kernels instead of the larger convolutional
kernels in AlexNet to better preserve image features and
improve neural network results. In the same sensory field,
the stacked small convolutional kernel structure allows for
deeper networks, lighter network weight, and faster training.
VGG19 consists of 16 convolutional layers and 3 fully con-
nected layers, which is selected as one of the experimental
networks.

ResNet is an ultra-deep network of up to 256 layers. It is
modified from the VGG19 by adding residual units. That is,
the introduction of constant shortcut connection channels in
feature transfer allows features to skip one or more layers
directly, ensuring the integrity of the information.

The idea of residual unit is to sum the inputs and out-
puts of the unit, which has two structures in its implementa-
tion. When the input dimension and the output dimension

are equal, the inputs and outputs in the residual cell are
added directly. The structure of this residual cell is shown
in the left panel of Figure 8. When the input and output
dimensions are different, there are two coping strategies.
(1) zero-padding can be used to increase the dimensionality
so that the input and output dimensions are equal. This
strategy is applicable to shallow networks. (2) a 1 × 1 convo-
lutional layer is used to connect the input and output layers
and leads to an increase in the number of parameters and
the amount of computation. This strategy is applicable to
deep networks, and its structure is shown in the right panel
of Figure 8.

ResNet is a truly deep learning network, solving the
problem of gradient dissipation and gradient explosion that
occurs as the network layers deepen. ResNet includes net-
works of different depths, as shown in Table 6. Considering
the time cost, ResNet18 and ResNet50 are selected as the
experimental networks.

ResNeXt proposes a strategy called grouped convolution,
which achieves a balance between ordinary convolution and
deeply separable convolution by controlling the number of
variable bases in the group. The idea of grouped convolution
originated from inception. The topology of each branch of
inception is designed by hand, and it combines multiple
convolutions of different sizes to obtain multiple sensory
field information, improving the feature extraction capabil-
ity. ResNeXt extracts the advantages of inception and
ResNet. On the basis of inception, the topology of each
branch is changed to the same structure containing multiple
convolutions of different sizes. The residual units are
replaced with blocks of the same topology stacked in parallel
on ResNet. The basic unit block structure of ResNeXt is
shown in Figure 9.

The ResNeXt improves accuracy effectively on the pre-
mise of reducing the parameter complexity and super
parameters. ResNeXt29_2∗64d and ResNeXt29_4∗64d are
selected as the experimental networks.
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