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Background. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancers. As cuproptosis, a new cell
death mechanism proposed recently, differs from all other known mechanisms regulating cell death, we aimed to create
prognostic markers using cuproptosis-related long non-coding ribonucleic acids (RNAs; lncRNAs) and elucidate the molecular
mechanism. Methods. Data from transcriptome RNA sequencing of ccRCC samples and the relevant clinical data were
downloaded from The Cancer Genome Atlas, and Pearson’s correlation analysis was implemented to obtain the cuproptosis-
related lncRNAs. Then, univariate Cox, multivariate Cox, and Least Absolute Shrinkage and Selection Operator Cox analyses
were performed to construct the risk signatures. The cuproptosis-related lncRNAs predictive signature was evaluated with
receiver operating characteristic curves and subgroup analysis. Finally, Gene Set Enrichment Analysis (GSEA), single-sample
GSEA (ssGSEA), tumor immune microenvironment (TIME), and immune checkpoints were performed to explore the
relationship between immunity and patient prognosis. Results. Five cuproptosis-related lncRNAs, including FOXD2-AS1,
LINC00460, AC091212.1, AC007365.1, and AC026401.3, were used to construct the signature. In the training and test sets,
low-risk groups (as identified by a risk score lower than the median) demonstrated a better prognosis with an area under the
curve for 1-, 3-, and 5-year survival being 0.793, 0.716, and 0.719, respectively. GSEA analysis suggested significant enrichment
of the tricarboxylic acid cycle and metabolism-related pathways in the low-risk group. Besides, both ssGSEA and TIME
suggested that the high-risk group exhibited more active immune infiltration. Conclusion. We proposed a cuproptosis-related
lncRNAs signature, which had the potential for prognoses and prediction. Our findings might contribute to elucidating
potential genomic biomarkers and targets for future therapies in the cuproptosis-related signaling pathways.

1. Introduction

The most frequent parenchymal lesion of the kidney is renal
cell carcinoma (RCC), which takes up about 90% of all renal
malignancies [1] and 3% of all cancers [2]. According to
European Association of Urology (EAU) guidelines, RCC
incidence rises on an annual basis with the annual growth
rate being about 2% [2]. Particularly, clear cell renal cell car-
cinoma (ccRCC) is responsible for around 75% of all RCC
cases and more than 175,000 deaths each year in the world,

thereby being the most commonly seen histological subtype
of RCC [2, 3]. Distant metastases have been reported in 30–
35% of surgical patients [3]. Cancer prognoses and survival
prediction, on the other hand, are important to both doctors
and patients. Most current prognostic analyses of RCC are
primarily based on clinical data, ignoring changes in the
microenvironment with the progression of ccRCC. The
microenvironment frequently changes during tumor devel-
opment, resulting in significant expression differences of
the specific genes [4]. As a result, developing prognostic
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prediction models of the microenvironment is in demand to
identify potential biomarkers and therapeutic targets.

Cuproptosis, a new cell death mechanism proposed
recently, differs from all the other recognized mechanisms
of programmed cell death [5]. A previous study has dem-
onstrated that it is the protein lipidation that mediates
copper-induced cell death, which is a highly conserved
post-translational modification of lysine known to occur
in merely four cell death-related enzymes. Although the tri-
carboxylic acid (TCA) cycle is inhibited, excess copper can
promote the aggregation of lipidated proteins, thereby dis-
rupting the TCA cycle, destabilizing Fe–S cluster proteins,
inducing proteotoxic stress, and eventually leading to cell
death [5]. However, whether copper-mediated cell death
is involved in ccRCC remains unknown.

Long non-coding ribonucleic acids (RNAs; lncRNAs)
are RNA chains longer than 200 base pairs without provid-
ing protein-coding capacities. Even so, these RNAs partici-
pate in regulating target gene expression as well as many
cellular processes, linked to the occurrence of cancer
[6–8]. Many studies have shown that lncRNAs, such as
lnc-ROR [9], lnc-ITGB1 [10], and Lnc-DYNC2H1-4 [11],
are involved in regulating tumor metastasis. These findings
suggest that regulating lncRNAs may become a new thera-
peutic approach for human cancers. However, no studies
have focused on a systemic evaluation of cuproptosis-
related lncRNAs signatures as well as their association with
the overall survival (OS) of ccRCC patients. Therefore, this
study addresses such a problem by first creating prognostic
markers for multiple differentially expressed lncRNAs
related to cuproptosis in ccRCC with The Cancer Genome
Atlas (TCGA) data.

2. Method

2.1. Data Acquisition and Preprocessing. The Fragments Per
Kilobase Million data of transcriptome RNA sequencing of
samples from 611 ccRCC patients and the relevant clinical
data were acquired from TCGA (https://portal.gdc.cancer
.gov/). To minimize statistical bias, patients who lacked OS
data or revealed poor OS (<30 days) were ruled out, and data
of 513 ccRCC patients were included in the subsequent anal-
ysis. 10 cuproptosis-related genes were adopted from recent
studies [5]. The 513 ccRCC patients were randomized into
one test set and one training set at a ratio of 1 : 1 by the caret
R package.

2.2. Data Processing of lncRNAs and Cuproptosis-Related
Genes. The correlations between candidate lncRNAs and
cuproptosis-related genes were calculated via the Pearson’s
correlation analysis. Cuproptosis-related lncRNAs were
defined as having correlation coefficient (|R|)> 0.4 and p <
0:05. Following that, lncRNAs with differential expressions
between the tumor group and the paracancer group were
identified with a threshold of log2 fold change (logFC)> 1
and false discovery rate< 0.05 using the limma R package
in the R software V-4.1.0 (https://www.rproject.org/).

2.3. The Cuproptosis-Related lncRNAs Predictive Signature.
The training set was implemented to establish a cuproptosis-
related lncRNAs signature, which was validated with the
test set and all available data. First, univariate Cox
(uni-Cox) regression analysis revealed 62 cuproptosis-
related lncRNAs that are significantly correlated with
ccRCC prognosis (p < 0:05). The glmnet R package was
applied to perform the Least Absolute Shrinkage and
Select Operator (LASSO) Cox analysis with an estimated
penalty parameter of 10-fold cross-validation to prevent
over-fitting. From the LASSO Cox analysis, 9 optimal
lncRNAs associated with ccRCC prognosis were identi-
fied. Finally, multivariate Cox (multi-Cox) regression
analysis was implemented to get the cuproptosis-related
lncRNAs for the construction of the predictive signature,
and the calculation formula for risk scores was:

Risk score = 〠
n

i=1
EXPi × coefficienti: ð1Þ

The coefficients EXPi and coefficienti represented
each lncRNA expression level and the regression coeffi-
cients of the multi-Cox regression analysis for each
lncRNA, respectively. With the constructed predictive
signature, each patient was given a risk score, and
patients were assigned into either the high-risk or low-
risk group based on the comparison results between
their risk scores and the median score.

2.4. Evaluation of the Cuproptosis-Related lncRNAs
Predictive Signature. The Kaplan–Meier (KM) method was
implemented to assess the survival of the two risk groups,
and log-rank statistical methods were applied to compare
the survival data. The patients were separated into sub-
groups to analyze model stability by clinicopathological fac-
tors. The forest maps were used to illustrate the findings of
uni-Cox regression and multi-Cox analyses to see if the risk
score is an independent indicator of ccRCC prognosis. The
receiver operating characteristic curves were depicted to
evaluate the model accuracy. Besides, a nomogram was cre-
ated with the clinicopathological parameters (e.g., age, gen-
der, disease grade, and disease stage) and the risk scores to
predict the 1-, 3-, and 5-year survival of ccRCC patients. A
calibration curve was used to see if the anticipated survival
rate fitted the authentic one.

2.5. Estimation of the Tumor Immune Microenvironment
with the Prognostic Signature. The prognostic differences
between different groups were studied with the Gene Set
Enrichment Analysis (GSEA) software V4.2.1. Following
that, using the GSVA R package, ccRCC-infiltrating immune
cells and immunological function were scored using single-
sample GSEA (ssGSEA). Multi-boxplots are used to display
the scores of the two groups in terms of their immune cells
and functions. To find out if there is a correlation between
the established signature and tumor immune microenviron-
ment (TIME), seven techniques were implemented to gener-
ate immune cells infiltration data for TCGA-KIRC dataset
samples, namely XCELL, MCPCOUNTER, QUANTISEQ,
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Figure 1: Identification of cuproptosis-related differential long non-coding ribonucleic acids (lncRNAs) in clear cell renal cell carcinoma. (a)
Heatmap of 50 most significantly regulated cuproptosis-related lncRNAs between tumor and paracancer samples, respectively. (b) A
volcano map of differential cuproptosis-related lncRNAs.
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EPIC, CIBERSORT, TIMER, and CIBERSORT-ABS [12–18].
The association between the immune cell subpopulations
and the risk score was investigated with the Spearman’s
correlation analysis. The quantity of stromal and immune
cells in different groups was then investigated using the
estimate R package. Each patient’s StromalScore, Immu-
neScore, and ESTIMATE Score (StromalScore + Immune-
Score) were determined. To estimate the response of high-
and low-risk groups to immune-checkpoint blockade
(ICB), Immune Cell Abundance Identifier (ImmuCellAI)
(http://bioinfo.life.hust.edu.cn/ImmuCellAI/) was used.
The Wilcoxon signed-rank test was implemented to eval-

uate the differences between these scores, and a p < 0:05
was considered significant. Finally, the Wilcoxon signed-
rank test (the limma R package) was implemented to
compare the expression levels of the immune checkpoints
between the two risk groups.

2.6. Statistical Analysis. The R 4.1.0 was used for statistical
analysis. The Wilcoxon test was implemented to find the dif-
ferences in expression of cuproptosis-related lncRNAs
between tumor and normal. The correlations between candi-
date lncRNAs and cuproptosis-related genes were calculated
via the Pearson’s correlation analysis. The KM method was

Table 1: Characteristics of clear cell renal cell carcinoma patients.

Characteristics Entire cohort (513), N (%) Training cohort (257), N (%) Validation cohort (256), N (%) p-Value

Age (years)

≤60 262 (51.1) 134 (52.1) 128 (50) 0.628

>60 251 (48.9) 123 (47.9) 128 (50)

Gender

Female 176 (34.3) 89 (34.6) 87 (34.0) 0.878

Male 337 (65.7) 168 (65.4) 169 (66.0)

Stage

I 255 (49.7) 121 (47.1) 134 (52.3) 0.700

II 56 (10.9) 28 (10.9) 28 (10.9)

III 117 (22.8) 62 (24.1) 55 (21.5)

IV 82 (16.0) 45 (17.5) 37 (14.5)

Unknown 3 (0.6) 1 (0.4) 2 (0.8)

Stage T

T1 261 (50.9) 125 (48.6) 136 (53.1) 0.401

T2 68 (13.3) 35 (13.6) 33 (12.9)

T3 173 (33.7) 89 (34.6) 84 (32.8)

T4 11 (2.1) 8 (3.1) 3 (1.2)

Stage N

N0 229 (44.6) 114 (44.4) 115 (44.9) 0.566

N1 16 (3.1) 6 (2.3) 10 (3.9)

Unknown 268 (52.2) 137 (53.3) 131 (51.2)

Stage M 0.430

M0 407 (79.3) 198 (77.0) 209 (81.6)

M1 78 (15.2) 43 (16.7) 35 (13.7)

Unknown 28 (5.5) 16 (6.2) 12 (4.7)

Grade 0.290

G1 12 (2.3) 4 (1.6) 8 (3.1)

G2 219 (42.7) 108 (42.0) 111 (43.4)

G3 201 (39.2) 106 (41.2) 95 (37.1)

G4 78 (15.2) 39 (15.2) 39 (15.2)

Unknown 3 (0.6) 0 (0.0) 3 (1.2)

Aeoadjuvant treatment 0.464

Yes 17 (3.3) 10 (3.9) 7 (2.7)

No 496 (96.7) 247 (96.1) 249 (97.3)

Alive status 0.901

Alive 344 (67.1) 173 (67.3) 171 (66.8)

Died 169 (32.9) 84 (32.7) 85 (33.2)
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implemented to assess the survival of the different risk
groups. The uni-Cox regression and multi-Cox regression
analyses were used to see if the risk score is an independent
indicator of ccRCC prognosis. The association between the
immune cell subpopulations and the risk score was investi-
gated with the Spearman’s correlation analysis. The Wil-
coxon test was implemented to evaluate the differences
between two group in tumor immune microenvironment
and immune checkpoints aspects. The p < 0:05 was consid-
ered statistically significant.

3. Results

3.1. Cuproptosis-Related lncRNAs in ccRCC Patients. We
found 14,056 lncRNAs in the ccRCC transcriptome data
retrieved from TCGA using GTF files. Through co-
expression analysis, 417 cuproptosis-related lncRNAs were
obtained based on the 10 cuproptosis-related genes. A total
of 184 cuproptosis-related differential lncRNAs, comprising
103 downregulated lncRNAs and 81 upregulated lncRNAs,
were discovered in tumor and paracancer samples
(Figures 1(a) and 1(b)). The clinical information of 513
ccRCC patients was displayed in Table 1. The diagram of
our study flow is provided in Supplementary Figure S1.

3.2. The Cuproptosis-Related lncRNAs Predictive Signature
Was Created. We found 62 cuproptosis-related lncRNAs
that were substantially linked with OS in the train set using
uni-Cox regression analysis and created a forest map and
heat map using them (Figures 2(a) and 2(b)). We used
LASSO regression analysis and identified 9 cuproptosis-
related lncRNAs in ccRCC with the first-rank value of log(λ)
being the least likelihood of deviation (Figures 2(c) and
2(d)). Following that, we used multi-Cox regression analysis
to create a prediction signature consisting of 5 cuproptosis-

related lncRNAs (FOXD2-AS1, LINC00460, AC091212.1,
AC007365.1, and AC026401.3; Supplementary Table S1).
Following that, each ccRCC patient had their risk score
determined with the correlation coefficients from multi-
Cox regression analysis, and they were assigned into one of
the two risk groups based on their risk scores.

3.3. Cuproptosis-Related lncRNAs Signature Prognosis
Values. Five cuproptosis-related lncRNAs were evaluated
for their risk score distributions, survival times, survival sta-
tus, and relevant expression in the two risk groups in the
training and test sets as well as the overall data set to assess
the risk signature’s predictive capacity (Figures 3(a), 3(b),
3(c), 3(d), 3(e), 3(f), 3(g), 3(h), and 3(l)). Consistent with
the former subgroup analyses by clinicopathological factors,
the results suggested a better prognosis in the low-risk group
apart from N1 and M1, confirming the stability of our signa-
ture (Figures 4(a), 4(b), 4(c), 4(d), 4(e), 4(f), 4(g), 4(h), and
4(l)).

3.4. The Cuproptosis-Related lncRNAs Signature Is an
Independent Indicator for ccRCC Prognosis. The predictive
applicability of our signature as an independent feature for
ccRCC prognosis was evaluated by uni-Cox regression anal-
ysis, which revealed that ccRCC patients’ OS was substan-
tially related to their stage and risk score in the training
(Figure 5(a)) and test set (Figure 5(c)), as well as the overall
data set (Figure 5(e)). Multi-Cox regression analysis sug-
gested that disease stage and risk score are all capable to
independently predict OS in three data sets (Figures 5(b),
5(d), and 5(f)). Then, in the complete collection, we vali-
dated the signature’s sensitivity and specificity via area under
the curve (AUC) analysis. Our signature’s AUC was 0.793,
which was the second best predictor of patient survival after
disease stage (Figure 5(g)). The 1-, 3-, and 5-year survival
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Figure 2: The prognostic model for cuproptosis-related long non-coding ribonucleic acids (lncRNA) signatures. (a) and (b) The heatmap
and forest plot of prognosis-related lncRNAs as obtained from uni-Cox analysis. (c) and (d) The Least Absolute Shrinkage and Select
Operator regression results for further lncRNA screening.
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AUCs were 0.793, 0.716, and 0.719, respectively, all of which
indicate reliable predictions (Figure 5(h)). These findings
suggested that our signature is a biomarker for ccRCC
prognosis.

3.5. The Prognostic Nomogram. A nomogram with clinico-
pathological characteristics and risk scores taken into

account was created to predict the prognosis of ccRCC
patients after 1, 3, and 5 years (Figure 6(a)). All the calibra-
tion curves revealed a good match between the anticipated
and actual survival rates (Figure 6(b)).

3.6. The Cuproptosis-Related lncRNAs signature’s TIME. The
GSEA results showed a significant enrichment in the TCA
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cycle, pyruvate metabolism, butanoate metabolism, citrate
cycle, glycolysis gluconeogenesis, peroxisome, propanoate
metabolism, and tryptophan metabolism of the low-risk
group. On the other hand, glycosaminoglycan biosynthesis
chondroitin sulfate, cytokine–cytokine receptor interactions
(CCRIs), and homologous recombination are biological pro-
cesses highly enriched in the high-risk group (Figure 7(a)).
Besides, ssGSEA results found that tumor-infiltrating lym-
phocytes, macrophages, plasmacytoid dendritic cells (pDCs),

T helper cells, T follicular helper (Tfh) cells, Th1, Th2, and
CD8+ T cells were markedly more prevalent in the high-
risk group (Figure 7(b)). Moreover, the high-risk group also
demonstrated more advanced levels of several immune func-
tions than the low-risk group (Figure 7(c)).

Additionally, more immune cells were found positively
correlated with the risk score (Figure 7(d); Supplementary
Table S2), and high-risk patients also revealed greater
StromalScore, ImmuneScore, and ESTIMATE than the
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Figure 7: The correlations between risk signatures and immune infiltration. (a) Top 10 most enriched pathways in both risk groups as
analyzed by Gene Set Enrichment Analysis (GSEA). (b) Infiltration of immune cells in the two groups as obtained by single-sample
GSEA. (c) The immune functions of the two groups as obtained by single-sample GSEA. (d) Bubble plot of the correlations between risk
scores and immune cells under different platforms. *p < 0:05, **p < 0:01, and ***p < 0:001.
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low-risk ones (Figure 8(a)). Immune checkpoint (ICP) is an
immunological modulator that has been linked to cancer
therapy as an indicator of immune response. As a result, we
looked at the expression of ICP-related modulatory genes in the
TCGA database (Figure 8(b)). 36 ICP-related genes were found
to express differently between the two groups, and several
immune checkpoint inhibitors showed high expression in the
high-risk group. These findings all showed that the more
activation of immune system was found in high-risk group.
Furthermore, ImmuCellAI’s predictions showed how patients
respond to ICB. A higher immune score indicated a better
response to ICB, so the patients in the low-risk group responded
better to ICB than those in the high-risk group (Figure 9(a)). In
addition, in the low-risk group, a higher proportion of patients
responded to ICB, but a higher proportion of patients did not
respond to ICB in the high-risk group.

4. Discussion

Considering the multifactorial proteogenomic and genetic
features, ccRCC is a highly heterogeneous RCC subtype,
leading to worse prognoses [19]. Previous studies reported
lncRNAs in the oncogenesis of ccRCC importantly, which
could help the treatment of ccRCC as effective and potential
molecular targets [20]. lncRNA has been shown to regulate
cell processes like metabolism, inflammation, immune
response, and autophagy [21–24]. As of today, studies have
revealed that some lncRNAs could participate in ccRCC pro-
gression by regulating the occurrence [25]. Research studies
have been established on the relationship between ferroptosis
and ccRCC with some achievements. Until now, the
cuproptosis-related lncRNAs signature has not been found in
other known studies. Therefore, we proposed a cuproptosis-
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related lncRNAs signature that may have the potential for
prognosis and prediction. Our findings might contribute to
elucidating therapeutic targets and potential genomic bio-
markers in the cuproptosis-related signaling pathways.

First, we used multivariate, LASSO, and univariate Cox
regression analyses to identify 5 cuproptosis-related lncRNAs
(FOXD2-AS1, LINC00460, AC091212.1, AC007365.1, and
AC026401.3) in the end, which were included in the predic-
tive signature. FOXD2-AS1 has been reported to modulate
PI3K/AKT and HMGA2 downstream signaling by sponging
miR-185-5p, thereby promoting tumorigenesis and tumor
progression in glioma [26]. Another study found that the
expression of LINC00460 is independently associated with
the OS in terms of the lymph node metastasis and Tumor
Node Metastasis (TNM) stages [27]. Besides, this lncRNA
has been proved to participate in ccRCC pathogenesis and
development through the ferroptosis signal passway, which
suggests the significance of prognosis potential [28]. We also
applied three other lncRNAs (AC091212.1, AC007365.1, and
AC026401.3), which have not been previously reported in
ccRCC, and further studies are needed to elucidate their
mechanisms in oncogenesis. Furthermore, we investigated
how TIME, immune checkpoint inhibitors, and immune
infiltrating cells affect ccRCC prognosis.

Our GSEA analysis showed that the chondroitin sulfate
biosynthesis pathway, CCRIs, and homologous recombina-
tion pathway were highly enriched in high-risk patients.
The TCA cycle and other related pathways, such as the pyru-
vate metabolism pathway, gluconeogenesis pathway, and the
tryptophan metabolism pathway, were primarily enriched in
low-risk patients [29]. AURKB can promote the ccRCC
development via CCRI as one of the signaling pathways
[30]. CXCL5 also has a higher expression in ccRCC [31],
which role in metastasis, tumor development, and angiogen-
esis [32], has led to its designation as a key biomarker and
supplementary antiangiogenic treatment target [33]. In
venous tumor thrombus cases, there was an increased inci-
dence of homologous recombination repair genes in ccRCC
patients [34]. These results indicated that pathways that
enriched in high-risk patients are correlated with poorer
prognosis.

Recently, a study showed cuproptosis in human cells
mainly by affecting lipoylated TCA cycle proteins [5].
FDX1, one of the related genes, encodes a reductase to acti-
vate production of Cu1+, which has higher toxicity than
Cu2+, playing an important role in the cuproptosis signal
pathway [35]. Depleting mitochondrial copper can switch
metabolism from respiration to glycolysis to lower energy
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output, which has been shown to be beneficial against can-
cers depending on oxidative phosphorylation [36]. In previ-
ous studies, the expression level of copper transporters 1 and
2 has been related to the prognosis of ccRCC, probably by
hypoxia-inducible factor imbalance [37, 38]. Consistent
with our results, overexpression of cuproptosis-related genes
may increase necrosis in tumor cells, leading to a better
ccRCC prognosis.

Subsequent ssGSEA results showed that Tfh, Th1, Th2,
neutrophils, macrophages, Tregs, and mast cells revealed
greater scores in the high-risk group. Besides, this group dem-
onstrated greater expressions of inflammation-promoting
and parainflammation factors as well as more intense type I
Interferon (IFN) response, indicating a decreased autoimmu-
nity function and a poor prognosis. If tumor-associated mac-
rophages reveal a high infiltration, a poor OS in metastatic
ccRCC could be expected [39]. In ccRCC patients, tumor-
infiltrating mast cells secret IL-10 and TGF-β to decrease
anti-tumor immunity, leading to a worse prognosis [40].

RCC lesions are highly infiltrated by immune cells, espe-
cially CXCL13+CD8+ T cells, which enclose a higher level of
immune checkpoints. In ccRCC patients, higher infiltration
of CXCL13+CD8+ T cells weakens the total immunological
function, and intratumoral CXCL13+CD8+ T cell infiltration
can lead to a worse clinical prognosis [41]. The high CD8+ T
cell infiltration found in this study was consistent with the
previous findings [42].

Besides, the cuproptosis-related lncRNAs signature pro-
posed in this study was correlated with CD44, CD70, CTLA4,
and other ICIs, all of which were expressed at a greater
amount in the high-risk group [43]. Immunotherapy has
become promising as a treatment strategy for ccRCC cur-
rently [44]. With the advent of molecular and genomic
research, ICB immunotherapy, as a novel strategy, has been
proved in the improvement of ccRCC patients [45]. Accord-
ing to our results, compared with the low-risk group, patients
in the high-risk group with elevated immune checkpoint-
related gene expression and CD8+ T cell infiltration were less
sensitive to ICB therapy, which is consistent with previous
results that both the CD8+ T cells infiltration and PD-1
expression [42, 46] cannot define ccRCC prognosis and
guide ccRCC therapies, our prognostic signature would
help fill this blank. Our results may contribute to the devel-
opment of personalized immunotherapy for patients with
ccRCC. However, deeper and wider elucidations are needed
with regard to the functions of cuproptosis-related genes in
ccRCC. Overall, these findings suggested that the
cuproptosis-related lncRNAs signature may predict the
level of immune checkpoints expression and guide the
ICB immunotherapy process.

However, there were certain limitations to the study.
First, independent external validation datasets were lacked,
and clinical sample sizes were limited, which could lead to
untrustworthy results. Second, complicating factors, such
as comorbidities, might influence signature accuracy and
robustness. Finally, our research was limited to theoretical
research based on bioinformatics and statistical analysis.
Future studies would require biochemical studies and animal
experiments to corroborate the findings.

5. Conclusion

We proposed a specific cuproptosis-associated lncRNAs sig-
nature for the outcome of ccRCC patients, which could inde-
pendently predict the prognosis. Our signature might help
explore the mechanism of cuproptosis-related lncRNAs in
ccRCC and offer ccRCC patients potential therapeutic targets.
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