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Background. Immune checkpoint inhibitors are a promising therapeutic strategy for breast cancer (BRCA) patients. The tumor
microenvironment (TME) can downregulate the immune response to cancer therapy. Our study is aimed at finding a TME-
related biomarker to identify patients who might respond to immunotherapy. Method. We downloaded raw data from several
databases including TCGA and MDACC to identify TME hub genes associated with overall survival (OS) and the progression-
free interval (PFI) by WGCNA. Correlations between hub genes and either tumor-infiltrating immune cells or immune
checkpoints were conducted by ssGSEA. Result. TME-related green and black modules were selected by WGCNA to further
screen hub genes. Random forest and univariate and multivariate Cox regressions were applied to screen hub genes (MYO1G,
TBC1D10C, SELPLG, and LRRC15) and construct a nomogram to predict the survival of BRCA patients. The C-index for the
nomogram was 0.713. A DCA of the predictive model revealed that the net benefit of the nomogram was significantly higher
than others and the calibration curve demonstrated a good performance by the nomogram. Only TBC1D10C was correlated
with both OS and the PFI (both p values < 0.05). TBC1D10C also had a high positive association with tumor-infiltrating
immune cells and common immune checkpoints (PD-1, CTLA-4, and TIGIT). Conclusion. We constructed a TME-related
gene signature model to predict the survival probability of BRCA patients. We also identified a hub gene, TBC1D10C, which
was correlated with both OS and the PFI and had a high positive association with tumor-infiltrating immune cells and
common immune checkpoints. TBC1D10C may be a new biomarker to select patients who may benefit from immunotherapy.

1. Introduction

Breast cancer (BRCA) is the leading cause of death by
female malignancy tumors, and the morbidity is increasing
in urban areas each year [1, 2]. With advances in multidis-
cipline therapies including immunotherapy, the prognosis
of patients with BRCA has improved dramatically. How-
ever, due to the significant variability in tumor heterogene-
ity, almost 62,667 patients died of BRCA in 2018 [3].

Immunotherapy is a promising strategy for cancer ther-
apy that has a significant survival benefit in some BRCA
patients. Immune checkpoint inhibitors such as anti-PD-1

and anti-PD-L1 that were approved as therapeutics for some
malignant tumors have participated in various clinical trials,
but only some patients responded well [4]. Selecting BRCA
patients who will respond to immunotherapy is a critical
topic right now.

The tumor microenvironment (TME) consists of tumor
cells, immune cells, fibroblasts, extracellular matrix, chemo-
kines, cytokines, etc. However, the immune and stromal cells
in the TME are the primary nontumor components [5, 6].
Research on the TME demonstrates that it can downregulate
the immune response to cancer therapy, which reduces the
infiltration of dendritic cells and inhibits effector T cell
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activation [7, 8]. However, which factors regulate the com-
ponents of the TME and influence the immune response to
immunotherapy is unclear. Patients with melanoma, colon,
or lung cancer along with a high tumor mutational burden
(TMB) could benefit from immunotherapy [9–11]. How-
ever, the association between the TMB and tumor immuno-
genicity in BRCA patients is also unclear. Therefore,
understanding the relationship between prognosis, the
TME, and the TMB is crucial to identifying potentially effec-
tive immunotherapies.

Advances in bioinformatics and machine learning have
enabled the widespread screening of cancer therapy bio-
markers using high-throughput sequencing data [12]. The
weighted gene coexpression network analysis (WGCNA)
performed on genetic clusters and constructed coexpression
modules provides the relationship between genes and mod-

ules, enabling an association between modules and the phe-
notypic traits of tumors [13, 14]. Therefore, we have the
tools to identify TME-related genes related to the pheno-
typic traits of tumors for further study.

Overall survival (OS) is an appropriate endpoint for
many clinical studies, especially for research on glioblastoma
multiform [15]. However, for studies involving the least
aggressive breast cancer subtype, luminal A, the
progression-free interval (PFI) is suitable [16]. After inte-
grating TCGA Pan-Cancer clinical database, Liu et al. [16]
recommended OS and the PFI as the best endpoint events
for TCGA analysis. In our study, we used both OS and the
PFI as endpoints for further study of BRCA patients.

In the present study, we adapted bioinformatics and
machine learning to construct a nomogram to predict the
survival probability of BRCA patients and screening hub

Raw data obtained (TCGA BRCA RNA-seq data,
clinical characteristics, immune/stromal score, PFI, TMB)

Compare the association between traits and OS/PFI

WGCNA
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Figure 1: A schematic of the workflow for this study.
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Figure 2: Continued.
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gene related with TME, which could be a new biomarker for
selecting patients who might be a more likely response to
immune checkpoint blockade therapies.

2. Materials and Methods

2.1. Data Source. The RNA-Seq data and related clinical
phenotypes were downloaded from TCGA database (http://
cancergenome.nih.gov/). The PFI information was obtained
from a previous study [17]. The immune score and stromal
score of breast cancer samples were downloaded from
MDACC (MD Anderson Cancer Center). The TMB data
were obtained from the “tmb_data” source for the R package
“UCSCXenaShiny.” Hallmark gene sets applied to the gene
set enrichment analysis (GSEA) were sourced from the
“msigdbr” package. Incomplete TNM stage samples were
excluded, and 940 breast cancer samples were screened for

further study. However, only 898 matched samples had
PFI information available, which was required for a clinical
study. Potential mRNA sequences were selected based on
an RNA-Seq expression level greater than zero in at least half
of the analyzed BRCA tissues (see Figure 1 for a workflow
schematic).

2.2. Construction of the Weighted Gene Coexpression
Network and Screening for Hub Genes. The R package
“WCGNA” was used for the gene coexpression network
analysis [18]. We set 200 as the height cut-off for the sample
clustering analysis and log-transformed (log(count+1)) the
RNA-Seq count value for further gene clustering analysis.
We next calculated the optimal soft threshold for the adja-
cency computation. Twelve modules were screened for the
WGCNA package one-step process. Gene significance (GS)
was defined as the correlation between each trait and the
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Figure 2: Immune score, stromal score, and TMB are associated with OS and the PFI. The K-M analysis and log-rank test were performed.
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Figure 3: Correlation of the immune score with the stromal score and TMB.
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gene expression level. The module membership (MM) was
defined as the correlation between each module Eigengene
(ME) and the gene expression level [13, 14]. The criteria
for screening genes in relevant modules were a MM> 0:8
and a GS > 0:6 (p < 0:05). We also applied univariate and
random forest analyses to screen for hub genes.

2.3. Construction and Calibration of the Nomogram. First,
the stepwise multivariate Cox regression analysis was per-
formed to construct the risk score formula, and the R pack-
age “survival” was applied (a model was chosen by AIC
using a stepwise model selection) [3, 19, 20]. The following
four-gene signature formula was constructed based on gene
expression levels and coefficients (β):

risk score = 〠
N

i=1
Expi × βi: ð1Þ

Second, the risk score was stratified into high-risk and
low-risk groups based on the median. The risk score, M
stage, N stage, tumor size, TNM stage, TMB, immune score,
and age were selected as variables to construct the nomo-
gram with the R package “rms.” We used the decision curve
analysis (DCA), an emerging method for predicting the
effectiveness of a model, to evaluate the discrimination of
our nomogram [21]. The bootstrap method, a fast-
development method based on random sampling with
replacement, was used to internally validate the nomogram.

2.4. Hub Gene Pathway Enrichment Analysis and
Correlation with Tumor-Infiltrating Immune Cells.We made
a gene list to rank the correlation between a hub gene and
others. Hallmark gene sets from the R package “msigdbr”
were applied. A gene set enrichment analysis (GSEA) was
then conducted with the “clusterProfiler” package [22]. We
also performed a single-sample GSEA (ssGSEA) to identify
the score of tumor-infiltrating immune cells in each sample
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Figure 4: Construction of the WGCNA. (a) Cluster dendrogram. Each color represents a module, and branches represent genes. (b)
Relationship between each module and trait. (c) Soft-threshold selection. (d) Association between MM in the green module and GS with
immune scores. (e) Association between MM in the black module and GS with immune scores. MM: module membership. GS: gene
significance.
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using the “GSVA” package [23]. We next calculated the dif-
ferential expression and correlation of tumor-infiltrating
immune cells with the hub genes. We used the R package
“circlize” to visualize the association between the hub genes
and common immune checkpoint inhibitors.

2.5. Statistical Analysis. The Mann-Whitney U-test was used
to compare the relationship of continuous variables in two
groups; otherwise, the Kruskal-Wallis H-test was used. If
the variables were categorical, the χ2 test (or Fisher’s exact
test) was applied. All data and figures were analyzed and
plotted with R (version 3.6.3).

3. Results

3.1. Association between the TME, the TMB, and Prognosis in
BRCA Patients. The immune scores were divided into high-
immune and low-immune score groups according to the

optimal cut-off value. The K-M survival analysis and log-
rank test were performed to identify the relationship
between either OS or the PFI with the immune score. The
survival probability of the high-immune score group was
significantly higher than the low-immune score group, with
a p value of 0.0028 (Figure 2(a)). The probability of a
progression-free interval was also significantly higher for
the high-immune score group than the low-immune score
group (p value = 0:0084) (Figure 2(d)). Similarly, the stromal
score and the TMB were classified into high-stromal and
low-stromal score groups and high-TMB and low-TMB
groups, respectively. The K-M survival analysis and log-
rank test demonstrated that patients with a high-stromal
score had no statistical difference with either OS
(Figure 2(b)) or the PFI (Figure 2(e)) compared to patients
with a low-stromal score. While patients with high-TMB
have a lower survival probability than patients with low-
TMB (p value = 0:0055) (Figure 2(c)), patients with high-
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TMB had no statistical difference with PFI compared to
patients with low-TMB (p value = 0:86) (Figure 2(f)).
Patients in the high-immune score group had a significantly
higher stromal score and TMB than patients in the low-
immune score group (Figure 3).

3.2. Construction of the WGCNA and Identification of
Corresponding Modules. Setting the criterion of protein-
coding genes expressed in at least half of BRCA tissues, a
total of 13721 mRNA sequences were screened for the
WGCNA. The screen identified 12 modules (Figure 4(a)).

The association between modules and traits was constructed
and identified correlations between the green module and
immune score (0.94) and the black module and stromal-
score (0.77). Both p values were less than 0.001
(Figure 4(b)). In the present study, eight was defined as a
set point for the soft-threshold power, and the related
scale-free topology index was 0.9 (Figure 4(c)). Therefore,
we further analyzed the green and black modules. The rela-
tionships between GS and MM were identified for both the
green and black modules; the correlation was 0.99 and
0.85, respectively (p values < 0.001) (Figures 4(d) and
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4(e)). In the green and black modules, 753 and 180 mRNA
sequences were identified, respectively. We defined the cut-
off as a MM> 0:8 and a GS > 0:6, narrowing our results
for further study to 191 and 40 mRNA sequences in the
green and black modules, respectively.

3.3. Calculation of the Risk Score by Random Forest,
Univariate, and Multivariate Cox Analysis. Random forest
was performed for a survival analysis of the 191 mRNA
sequences from the green module and 40 mRNA sequences
from the black module, respectively. A univariate Cox anal-
ysis was used to examine the relationships between the
expression of the 191 mRNA sequences in the green module,
and the expression of the 40 mRNA sequences in the black
module, with OS. Based on these results, 37 mRNA
sequences (Figure 5(a)) were selected for a stepwise multi-
variate Cox analysis. In addition, a four-mRNA risk score
formula was established (Figure 5(b)). Risk score = ð−0:259

× expression level of “MYO1G”Þ + ð−0:27 × expression level
of “TBC1D10C”Þ + ð0:292 × expression level of “SELPLG”Þ +
ð−0:11 × expression level of “LRRC15”Þ. Based on the median
value, the risk score was classified into high-risk and low-
risk groups. A K-M survival analysis and log-rank test dem-
onstrated that the high-risk group had a lower probability of
survival than the low-risk group (p value < 0.001)
(Figure 5(c)).

3.4. Development of the Nomogram for Predicting Survival
Probability. A multivariate Cox regression was performed
to construct the prediction model (Figure 6(a)). The nomo-
gram illustrates that the M stage made a robust contribution
to the prediction of survival probability, followed by age, the
tumor size, and the risk score. The score for each variable
subtype was presented on a point scale. By calculating the
total score and identifying it on the scale for the total possi-
ble points, we can easily obtain the survival probability of a
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Figure 7: Correlation between all four hub genes and the BRCA endpoints: OS and PFI.
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Figure 8: Distribution of TBC1D10C expression of breast cancer subtypes. The box plot shows that there is a significant association between
breast cancer subtypes and the level of TBC1D10C expression.
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patient. The DCA (decision curve analysis) is an emerging
method to evaluate the discrimination of a predictive model
[21]; it is widely used in many top journals, such as BMJ,
JAMA, and NATURE. In our study, DCA to evaluate the
predictability of our model demonstrated that the net benefit
of our nomogram was significantly higher than others
(Figure 6(b)). The C-index for the nomogram was 0.713,
and the calibration curve demonstrated good performance
by the nomogram (Figure 6(c)).

3.5. Relationship between Four TME Genes and BRCA
Endpoints. We divided four genes (MYO1G, TBC1D10C,
SELPLG, and LRRC15) into high and low groups based on
the median expression value. The K-M analysis and log-
rank test were applied. SELPLG and MYO1G expression
had statistically significant correlations with OS in both the
high and low expression groups, but not with the PFI
(Figures 7(a), 7(b), 7(e), and 7(f)). The differential expres-
sion of LRRC15 was not correlated with either OS or the
PFI (Figures 7(c) and 7(g)). The TBC1D10C high-
expression group had a higher positive association with OS
and the PFI than the low-expression group (Figures 7(d)
and 7(h)). These data demonstrated that TBC1D10C is a
protective marker. Meanwhile, we found there is a signifi-
cant association between breast cancer subtypes and the
level of TBC1D10C expression (p < 0:0001) (Figure 8).

We next calculated the differential expression of all four
genes in tumor tissue from TCGA database and normal tis-
sue from the GTEx database. These data indicated that all

four genes were more highly expressed in tumor tissues than
in normal tissue (Figure 9).

3.6. Enrichment Pathway Analysis of TBC1D10C. Consider-
ing the differential prognosis for differential expression of
TBC1D10C, we made a gene list to rank the correlation
between TBC1D10C and other genes. GSEA indicated that
it primarily correlated with, and thereby might be involved
in, the allograft rejection, interferon-gamma response,
inflammatory response, K-Ras signaling, TNFA signaling
via the NFKB, and complement pathways (Figure 10(a)).
The top 6 of the high enrichment score pathway is displayed
in Figure 10(b).

3.7. Tumor-Infiltrating Immune Cells and Immune
Checkpoints Correlation with TBC1D10C in BRCA Patients.
We next evaluated the relationship of TBC1D10C expres-
sion levels with tumor-infiltrating immune cells in the breast
cancer microenvironment using ssGSEA (Figure 11(a)).
Only 3 of 28 immune cell types (central memory CD8 T
cells, memory B cells, and neutrophils) that were differen-
tially expressed had no statistical significance. The tumor-
infiltrating immune cells, e.g., activated CD8 T cells and acti-
vated B cells, had a robust correlation with TBC1D10C (p
value < 0.05) (Figure 11(b)).

Immune checkpoint blockade therapies are emerging
and effective strategies for treating cancer [24]. We next
explored the associations between TBC1D10C and immune
checkpoints including PD1, PD-L1, TIGIT, CTLA-4, TIM-
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Figure 9: Differential expression of four hub genes between tumor and normal tissues. The tumor sample originated from TCGA database.
The normal sample was downloaded from the GTEx database.
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3, and LAG-3. The chord chart indicated that TBC1D10C
had a robust positive correlation with PD1, TIGIT, and
CTLA-4 (Figure 11(c)).

We further analyzed the relationship between the clinical
characteristics of BRCA patients and TBC1D10C expression
levels. These data indicated that the differential expression of
TBC1D10C had a statistically significant difference accord-
ing to the PAM50 subtype, M stage, N stage, stromal score,
and immune score (Table 1).

4. Discussion

Recently, the relationship between the TME and immune
therapy has become an increasingly hot issue. Differential
quantities of tumor-infiltrating immune cells result in
diverse responses to immunotherapy [25, 26]. We applied

the immune and stromal scores downloaded from MD,
which were calculated by the ESTIMATE algorithm [27],
to represent the status of the TME. We next performed
WGCNA to identify modules correlated with immune and
stromal scores. Finally, four hub genes (MYO1G,
TBC1D10C, SELPLG, and LRRC15) that correlated with
the TME were selected to construct a nomogram to predict
the survival probability using a univariate and multivariate
Cox regression and random forest. The only gene to have a
clear correlation with both OS and the PFI was TBC1D10C.
We further focused on the function of TBC1D10C and its
association with tumor-infiltrating immune cells and com-
mon immune checkpoints.

Overall survival (OS) is a vital endpoint with less ambi-
guity in defining an overall survival event. However, OS as
an endpoint can attenuate a clinical study since noncancer
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death also qualifies as an endpoint event [28, 29]. The
progression-free interval (PFI), characterized as the mini-
mum follow-up time needed, is also used in many clinical
trials [28], as patients with disease recurrence or progression
usually have a long lifespan. In the present study, both OS
and the PFI as endpoint events were included in our study
to screen OS-related and PFI-related hub genes. Only the
gene TBC1D10C had a clear correlation with both OS and
the PFI. This indicates that TBC1D10C may be a potential
biomarker in cancer recurrence and progression.

We also found that TBC1D10C is an immune-related
gene using the Immport database (https://www.immport
.org) [30]. TBC1D10C, also known as Carabin or EPI64C,
is overexpressed in blood leukocytes and the spleen and
negatively regulates the NF-κB signaling pathway via activity
as a Ras GTPase-activating protein [31]. Moreover,
TBC1D10C physically interacts with CaN T cells and H-
Ras in addition to inhibiting Ras/MAPK signaling [31, 32].
Our GSEA indicated that TBC1D10C6 regulated the K-
Ras-signaling pathway, which is consistent with the existing
research [33]. Moreover, ssGSEA revealed that TBC1D10C
has a high positive correlation with B cells and T cells, which
is consistent with the research of Jiang et al. [31] but contra-
dicts Schickel et al. [32]. The opposing results may be due to
study differences; one focused on lymphoid disease while the
other was interested in myocardial disease.

TMB is a vital promising biomarker that plays a key role
in predicting the response to immune checkpoint blockade
therapy in several cancer types [34]; however, few studies

have focused on the significance of TMB in BRCA. Mei
et al. [35] revealed that high TMBs occur at a low frequency
in BRCA. Narang et al. [36] demonstrated that triple-
negative breast cancers have the highest TMB, followed by
the HER2-positive subtype. In our study, higher TMBs have
a lower survival probability than lower TMB patients but
have no statistical significance with the PFI. Conflicting
results may be due to high tumor heterogeneity in BRCA
and varying therapies.

Tumor immune checkpoint inhibitors have been proven
as effective therapies for many malignant tumors. BRCA,
however, has highly heterogeneous tumors, preventing
many patients from benefiting from immunotherapy [37].
Misidentifying patients who cannot respond to immuno-
therapy is potentially fatal. TBC1D10C was highly correlated
with three common immune checkpoints (PD-1, CTLA-4,
and TIGIT) in our study and associated with OS and the
PFI. These data suggest that TBC1D10C may be a new
immune checkpoint.

There are still many gaps left to be understood. First, we
only conducted an internal validation of the nomogram with
bootstrapping. However, the lack of external validation
limits the generalization of our results. Second, TCB1D10C
was overexpressed in tumor tissue from TCGA database
compared with normal tissue from the GTEx database; how-
ever, studies, such as RT-PCR and Western blot, are needed
to validate TCB1D10C expression. Third, the function of
TCB1D10C and the mechanism by which it regulates the
K-Ras signaling pathway needs further exploration.
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Figure 11: Correlation between TBC1D10C and either tumor-infiltrating immune cells or immune checkpoints. (a) 28 tumor-infiltrating
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Table 1: Clinical characteristic of patients between high and low expressions of TBC1D10C.

Overall
TBC1D10C

p value
High expression Low expression

n 898 449 449

ER_Status (%) 0.065

Negative 196 (21.8) 112 (24.9) 84 (18.7)

Positive 658 (73.3) 314 (69.9) 344 (76.6)

Unknown 44 (4.9) 23 (5.1) 21 (4.7)

PR_Status (%) 0.954

Negative 280 (31.2) 142 (31.6) 138 (30.7)

Positive 571 (63.6) 284 (63.3) 287 (63.9)

Unknown 47 (5.2) 23 (5.1) 24 (5.3)

HER2_Status (%) 0.007

Negative 674 (75.1) 323 (71.9) 351 (78.2)

Positive 122 (13.6) 60 (13.4) 62 (13.8)

Unknown 102 (11.4) 66 (14.7) 36 (8.0)

PAM50 subtype (%) <0.001
Basal 118 (13.1) 61 (13.6) 57 (12.7)

Her2 62 (6.9) 30 (6.7) 32 (7.1)

LumA 362 (40.3) 160 (35.6) 202 (45.0)

LumB 166 (18.5) 59 (13.1) 107 (23.8)

Unknown 190 (21.2) 139 (31.0) 51 (11.4)

M stage (%) 0.004

M0 882 (98.2) 447 (99.6) 435 (96.9)

M1 16 (1.8) 2 (0.4) 14 (3.1)

N stage (%) 0.013

N0 413 (46.0) 212 (47.2) 201 (44.8)

N1 304 (33.9) 142 (31.6) 162 (36.1)

N2 119 (13.3) 53 (11.8) 66 (14.7)

N3 62 (6.9) 42 (9.4) 20 (4.5)

T stage (%) 0.09

T1 236 (26.3) 128 (28.5) 108 (24.1)

T2 532 (59.2) 259 (57.7) 273 (60.8)

T3 101 (11.2) 53 (11.8) 48 (10.7)

T4 29 (3.2) 9 (2.0) 20 (4.5)

TNM stage (%) 0.051

I 157 (17.5) 80 (17.8) 77 (17.1)

II 526 (58.6) 269 (59.9) 257 (57.2)

III 201 (22.4) 98 (21.8) 103 (22.9)

IV 14 (1.6) 2 (0.4) 12 (2.7)

Age [IQR]
58.00

[48.00, 67.00]
58.00

[49.00, 66.00]
58.00

[48.00, 67.00]
0.92

TMB [IQR]
0.97

[0.63, 1.78]
0.93

[0.58, 1.89]
1.01

[0.66, 1.71]
0.412

Stromal_score [IQR]
414.52

[-163.90, 838.41]
554.52

[90.80, 967.12]
204.14

[-339.70, 700.80]
<0.001

Immune_score [IQR]
121.41

[-362.02, 691.89]
638.86

[170.02, 1224.44]
-287.32

[-614.74, 72.88]
<0.001

ER: estrogen receptor; PR: progesterone receptor; HER2: human epithelial growth factor receptor 2. IQR: interquartile range. TMB: tumor mutational burden.
n: sample numbers.
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5. Conclusions

By performing WGCNA and machine learning, we con-
structed a TME-related gene signature model for predicting
the survival probability of BRCA patients. Subsequently, we
identified a hub gene, TBC1D10C, that correlated with OS
and the PFI and had a high positive association with
tumor-infiltrating immune cells and three common immune
checkpoints (PD-1, CTLA-4, and TIGIT). TBC1D10C may
be a new biomarker for identifying patients that would ben-
efit from immunotherapy.
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