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Ferroptosis, as a form of programmed cell death independent of apoptosis, has been demonstrated that plays a major role in
tumorigenesis and cancer treatment. A comprehensive analysis of ferroptosis-related genes (FRGs) may lead to a novel choice
for the treatment of Ewing sarcoma (ES). Here, 148 differentially expressed FRGs (DEFRGs) were identified between
normal and ES tissue. And the GO and KEGG analyses of DEFRGs indicated that these genes were enriched in cancer
and immune-related signaling pathways. Then, the GSE17679 cohort was randomly divided into train and test cohorts.
Based on the train cohort, AURKA, RGS4, and RIPK1 were identified as key genes through the univariate Cox regression
analysis, the random survival forest algorithm, and the multivariate Cox regression analysis and utilized to establish a
prognostic FRG signature. The validation results demonstrated that the gene signature has not only excellent prediction
performance and generalization ability but is also good at predicting the response of immunotherapy and chemotherapy.
Subsequent analysis indicated that all 3 key genes play key roles in tumor immunity and prognosis of ES. Of these,
AURKA was highly associated with EWSR1, which was verified by a single-cell dataset (GSE130019). Therefore, the 3
genes may be potential therapeutic targets for ES. At the end of this study, we also constructed an accurate nomogram
that helps clinicians to assess the survival time of ES patients. In conclusion, our study constructed an excellent gene
signature, which is helpful in improving the prognosis of ES patients.

1. Introduction

Ewing sarcoma (ES) is the second most common bone or
soft-tissue tumor affecting children, adolescents, and young
adults; is characterized by pathognomonic FET/ETS gene
fusions (85% of cases are EWSR1/FLI1); and is an invasive
tumor with characters of early metastatic spread, high recur-
rence, and low 5-year survival [1–3]. Although the treatment
of localized disease has been demonstrated effectively, the
long-term survival of patients with metastatic or relapsed
ES remains unacceptably low [4, 5]. A British cohort of
patient study reported that the 5-year survival rate of
patients with ES was only 55% [6]. Coupled with lacking

reliable statistical tools, the diagnosis and treatment of ES
remain a challenge [7].

Ferroptosis, as a form of programmed cell death inde-
pendent of apoptosis, is a process of cytological changes
caused by the accumulation of iron-dependent lipid hydro-
peroxide [8]. Studies have demonstrated that ferroptosis
plays a role in various tumors, such as prostate cancer, renal
cell carcinoma, head and neck cancer, and soft tissue sar-
coma [9–12]. Additionally, there are also many studies that
revealed that ferroptosis plays a role in tumor suppression
by regulating metabolic processes and promoting cell death
[13, 14]. With an increased understanding of ferroptosis in
recent years, the induction of ferroptosis has gradually
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emerged as a promising therapeutic option, especially for
malignant tumors that are resistant to traditional treatments
[15, 16]. A deeper understanding of the mechanism of fer-
roptosis in ES may develop novel treatments for ES. Hence,
we conducted this study, which aimed to find key genes
from ferroptosis-related genes (FRGs) and construct an
accurate prognostic FRG signature.

In this study, we first randomly divided the GSE17679
dataset into train and test cohorts. Then, based on the train
cohort, 3 key FRGs were screened out by utilizing three ana-
lytical methods (univariate Cox regression analysis, random
survival forest algorithm, and multivariate Cox regression
analysis). Next, we used the 3 genes to establish a prognostic
FRG signature, which has excellent prediction performance
and generalization ability. Subsequent analysis demonstrated
that the gene signature also owns potential applications in
predicting the response of immunotherapy and chemother-
apy, and the 3 pivotal genes were potential therapeutic
targets. Therefore, our study is helpful in improving the
prognosis of ES.

2. Materials and Methods

2.1. Data Collection and Preprocessing. We downloaded the
GSE17679 [17] dataset, including gene expression profiles
and clinical data of 88 ES samples and gene expression pro-
files of 18 normal tissue, from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. Mean-
while, we also downloaded the GSE63157 dataset [18]
(including gene expression profiles and clinical data of 85
ES samples) from the GEO database and the TCGA-SARC
dataset from the UCSC browser (including gene expression
profiles and clinical data of 255 soft tissue sarcoma samples,
https://xena.ucsc.edu/) as external validation cohorts. Addi-
tionally, in order to explore the correlation between
EWSR1/FLI1 and key genes, we downloaded a single-cell
dataset, GSE130019 [19], and processed it by the “Seurat”
R package. Doxycycline can inhibit the expression of
EWSR1/FLI1, and the GSE130019 dataset contains the gene
expression profile of A673 cells during the period of contin-
uous doxycycline use for 7 days and drug withdrawal for
15 days.

2.2. Cell Lines and Cell Culture. The human ES cell line
(A673) and the human bone marrow stroma cell line
(HS5) were obtained from the American Type Culture Col-
lection (ATCC, USA). The cells were grown in DMEM
(HyClone; Cytiva) supplemented with 10% FBS (Shanghai
ExCell Biology, Inc.) and 1% penicillin-streptomycin
(100 IU/ml; HyClone; Cytiva) at 37°C in 5% CO2.

2.3. Identification of Differentially Expressed FRGs and
Functional Annotation. We collected the list of FRGs from
a published article [20] and the FerrDb database (http://
www.zhounan.org/ferrdb) [21]. Then, we used the “limma”
R package to perform the differential gene expression
analysis between normal and tumor tissue, and FRGs with
a false discovery rate ðFDRÞ < 0:05 were considered as differ-
entially expressed FRGs (DEFRGs). Then, to explore the

biological function of DEFRGs, we performed Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses using the “clusterProfiler” R
package [22], and the results of adjust P value < 0.05 were
considered statistically significant.

2.4. Construction of a Prognostic FRG Signature. Here, the
GSE17679 dataset was randomly divided into train and test
cohorts, and the train cohort was used to identify key genes
and construct a prognostic FRG signature. We established
the gene signature according to the following steps: first,
we performed the univariate Cox regression analysis of
DEFRGs and selected the genes with P value < 0.05 for the
subsequent dimension reduction analysis. Next, we used
the random survival forest algorithm to further reduce the
number of candidate genes. The variable importance
(VIMP) and minimal depth are two quantitative indicators
calculated by the random survival forest algorithm, which
can be used to evaluate the prognostic value of genes. The
larger the VIMP or the smaller the minimal depth is, the
higher the prognostic value is [23]. In this study, we selected
the genes that are not only ranked in the top 15 of VIMP but
also ranked in the top 15 of minimal depth for the next
dimension reduction analysis. Finally, we performed a mul-
tivariate Cox regression analysis, and the genes with P value
< 0.05 were used to construct the prognostic FRG signature.

2.5. Validation of the Prognostic FRG Signature. Patients in
the train cohort were given a riskScore. The riskScore was
calculated as follows:

riskScore = 〠
n

i=0
βi ∗Gi, ð1Þ

where βi represents the coefficient for gene i in the multivar-
iate Cox regression analysis, Gi represents the expression
value of gene i, and n represents the total number of genes
in the gene signature.

Based on the median riskScore, patients were divided into
high-risk and low-risk groups. Then, the Kaplan-Meier
(K-M) survival analysis and the receiver operating charac-
teristic (ROC) curve were utilized to validate the accuracy
of the gene signature. Finally, to further evaluate the accuracy
and generalization of the gene signature, we also performed
the same analysis in the test cohort, the entire GSE17679
cohort, and two independent datasets (GSE63157 and
TCGA-SARC cohorts).

2.6. Assessing the Potential of the Prognostic FRG Signature
in Immunotherapy. A large number of studies indicated that
ferroptosis is closely related to tumor immunity [24, 25].
Meanwhile, the results of biological enrichment analysis also
showed that DEFRGs are enriched in immune-related path-
ways. This evidence suggested that the gene signature may
have potential application value in immunotherapy for ES,
so we conducted an in-depth analysis. First, we studied the
difference in immune cell infiltration abundance between
distinct risk groups. The abundance of each immune cell
infiltration was quantified by the single-sample gene-set
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enrichment analysis (ssGSEA), and the list of marker gene
sets was obtained from a published article [26]. Then, we
also did the correlation analysis to study the relationship
between 3 key genes and immune infiltrating cells. As a
hot topic of immunotherapy, the analysis of immune check-
points is essential. Therefore, our study also explored the
relationship between this gene signature and 5 immune
checkpoints (PD-1, PD-L1, CTL4A, LMTK3, and LAG3)
[27–29] by performing a correlation analysis and using the
STRING (https://string-db.org) which is currently the most
comprehensive and authoritative database for exploring
protein-protein interactions.

2.7. Assessing the Potential of the Prognostic FRG Signature
in Chemotherapy. To explore the application value of this
gene signature in chemotherapy, we used the “oncoPredict”
R package [30], which can predict the half maximum inhib-
itory concentration (IC50) of chemotherapeutic drugs in ES
patients according to the data on the Genomics of Drug Sen-
sitivity in Cancer (GDSC) website. Based on this R package,
we can not only find the drugs sensitive to ES (IC50 < 50) but
also explore the sensitivity differences of different drugs in
high-risk and low-risk groups, thus contributing to the
development of personalized chemotherapy plans for ES
patients.

2.8. Comprehensive Analysis of Key Genes. To further explore
the prognostic value of key genes in ES, we performed a
comprehensive analysis. First, we performed K-M survival
analysis to explore the effects of high and low expressions
of key genes on the prognosis of patients in the GSE17679
cohort. The high and low expression groups were deter-
mined by an optimal cut-off point which was calculated by
the “survminer” R package. Meanwhile, we also utilized a
box plot to observe the differences in the expression levels
of the key genes in the normal and tumor tissues. EWSR1
and FLI1 are well-known oncogenes of ES; hence, we per-
formed a correlation analysis between key genes and
EWSR1/FLI1 and validated it with the single-cell dataset
(GSE130019).

2.9. Real-Time Quantitative PCR (RT-qPCR). After 48 h of
cell culture, TRIzol (Invitrogen, USA) was used to isolate
total RNA. And the RNA was reverse transcribed into cDNA
using a reverse transcriptase kit (TaKaRa, Japan). The
expression levels of AURKA, RGS4, and RIPK1 were ampli-
fied by real-time fluorescence quantitative PCR (Bio-Rad,
USA). GADPH is the internal reference, with 2-ΔΔ CT value
indicates the relative expression level of target gene mRNA.
All primer sequences are as follows:

AURKA: forward primer: 5′-TTCAGGACCTGTTAAG
GCTACAGC-3′ and reverse primer: 5′-GAGCCTGGCCA
CTATTTACAGGT-3′

RGS4: forward primer: 5′-ACATCGGCTAGGTTTC
CTGC-3′ and reverse primer: 5′-GTTGTGGGAAGAAT
TGTGTTCAC-3′

RIPK1: forward primer: 5′-TGGGCGTCATCATAGA
GGAAG-3′ and reverse primer: 5′-CGCCTTTTCCATGT
AAGTAGCA-3′

GADPH: forward primer: 5′-GGCTGCCCAGAACATC
AT-3′ and reverse primer: 5′-CGGACACATTGGGGGT
AG-3′

2.10. Construction and Evaluation of the Nomogram. At the
end of this study, clinical data, including gender, age, state,
event, and survival time, were incorporated with the gene
signature to construct a nomogram. Meanwhile, calibration
curves were also generated to verify the accuracy of the
nomogram.

2.11. Statistical Analysis. In this study, the student t-test and
the Wilcoxon signed-rank test were performed to compare
differences between groups. The key genes were identified
through the univariate Cox regression analysis, the random
survival forest algorithm, and the multivariate Cox regres-
sion analysis. And these key genes were used to construct
the prognostic FRG signature based on the multivariate
Cox regression analysis. The K-M curve analysis was used
to evaluate the survival differences between patients in dif-
ferent risk groups, and the area under the curve (AUC) value
was calculated from the ROC curve using the “timeROC” R
package. The R software (version 4.0.3) and GraphPad
Prism software (version 8.2.1) were used to perform all data
processing. The parameter settings of all R packages used in
this study are all default values. And P value < 0.05 was
considered statistically different unless otherwise specified.

3. Results

3.1. Identification of Differentially Expressed FRGs and
Functional Annotation. As shown in Figures 1(a) and 1(b),
148 genes were identified as DEFRGs, including 67 upregu-
lated genes and 81 downregulated genes. Performing
functional annotation analysis of DEFRGs is important for
understanding the mechanisms of ferroptosis in ES. Thus,
we performed GO and KEGG analyses. The GO analysis
results showed that the DEFRGs were mainly involved in
response to oxidative stress (BP), mitochondrial outer
membrane (CC), and ubiquitin protein ligase binding (MF)
(Figure 1(c)). The top five pathways of KEGG analysis
results were autophagy-animal, Kaposi sarcoma-associated
herpesvirus infection, FoxO signaling pathway, mitophagy-
animal, and central carbon metabolism in cancer (Figure 1(d)).
All results suggested that the DEFRGs play an important
role in tumorigenesis. Furthermore, we also found an
intriguing phenomenon that DEFRGs were also enriched
in various immune-related signaling pathways, including
PD-L1 expression and PD-1 checkpoint pathway in cancer,
B cell receptor signaling pathway, T cell receptor signaling
pathway, etc. (Table 1). This gave us some insight into
establishing a new immunotherapy strategy for ES.

3.2. Construction of a Prognostic FRG Signature. Here, we
selected key prognostic genes from 148 DEFRGs based on
univariate Cox regression analysis, random survival forest
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Figure 1: Identification of DEFRGs and functional annotation. (a) A heatmap to show the expression of DEFRGs in normal and tumor
tissues. (b) A volcano plot to show the results of differential analysis. (c) GO enrichment analysis for DEFRGs. BP: biological process;
CC: cellular component; MF: molecular function. (d) KEGG pathway enrichment analysis for DEFRGs.
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algorithm, and multivariate Cox regression analysis to
construct an accurate prognostic FRG signature. First, we
performed preliminary dimensionality reduction for 148
DEFRGs through the univariate Cox regression analysis,
and 38 DEFRGs with P value < 0.05 (Supplementary Table
1) were selected and used to construct the random survival
forest. The out-of-bag (OOB) prediction error plot showed
that the random survival forest based on 38 DEFRGs owns
a low error rate and excellent stability (Figure 2(a)). This
result proved that the 38 DEFRGs indeed had prognostic
value. Then, through the random survival forest algorithm,
13 genes were selected for the next dimension reduction
analysis. These genes ranked in both the top 15 VIMP and
the top 15 minimal depth (Figure 2(b)). Finally, by perform-
ing a multivariate Cox regression analysis of the 13 genes
(Supplementary Figure 1), we identified 3 key prognostic
genes (AURKA, RIPK1, and RGS4) and used them to
establish an accurate prognostic FRG signature (Figure 2(c)).

3.3. Validation of the Prognostic FRG Signature. First,
patients were divided into low- and high-risk groups based
on median riskScore (the riskScore of each patient = 1:1060
× expression level of AURKA − 2:2701 × expression level of
RIPK1 + 1:0264 × expression level of RGS4). Then, we veri-
fied the accuracy and generalization ability of the gene signa-
ture through the K-M survival analysis and the ROC curve.
The validation results of the train cohort showed that
patients in the low-risk group lived significantly longer than
those in the high-risk group (Figure 3(a)), and the AUC
value was 0.90, 0.98, and 0.93 for 1, 3, and 5 years
(Figure 3(b)). Meanwhile, the gene signature also showed
excellent prediction performance in the test cohort and
the entire GSE17679 cohort (Figures 3(c)–3(f)). Further-
more, the validation results by two independent cohorts
(GSE63157 and TCGA-SARC) revealed that the generali-
zation ability of the gene signature was also excellent. As
shown in Figures 4(a) and 4(c), the results of the K-M
survival analysis showed that worse survival was signifi-
cantly associated with the high-risk group (GSE63157, P
value = 0.04, and TCGA-SARC, P value = 0.00029). And
as shown in Figures 4(b) and 4(d), the AUC values of
the GSE63157 cohort for predicting 1, 3, and 5 years were
0.70, 0.67, and 0.61, respectively; the AUC values of the
TCGA-SARC cohort for predicting 1, 3, and 5 years were
0.70, 0.70, and 0.63, respectively. All results proved that

the gene signature has excellent prediction performance
and can play a stable predictive prognostic role in different
cohorts.

3.4. Assessing the Potential of the Prognostic FRG Signature
in Immunotherapy. Here, we, respectively, evaluate the land-
scape of 28 kinds of immune cell infiltration in high- and
low-risk samples. As shown in Figure 5(a), we found 10
kinds of immune cells, including activated B cell, activated
CD4 T cell, activated CD8 T cell, CD56 bright natural killer
cell, central memory CD4 T cell, macrophage, memory B
cell, natural killer T cell, regulatory T cell, and type2 T helper
cell, presented significant infiltration difference between
high- and low-risk groups, and 9 of them were higher infil-
tration in the high-risk group than those in the low-risk
group, except central memory CD4 T cell. And the degree
of infiltration of 7 kinds of immune cells has a significant
correlation with riskScore (Supplementary Figure 2). The
next analysis showed that key genes are closely associated
with various immune cells (Figure 5(b)). Furthermore, to
explore the relationship between the gene signature and
immune checkpoints, we uploaded these genes to the
STRING database and performed a correlation analysis.
The results showed that RIPK1 and 5 immune checkpoints
were in the same protein interaction network (Figure 5(c)).
Meanwhile, the results of the correlation analysis also
revealed that the 3 key genes and the riskScore all have
significant correlations with immune checkpoints (Figure 5(d)).
Based on the above results, we have reason to believe that
3 key genes are closely related to tumor immunity, and the
gene signature is helpful in improving the immunotherapy
for ES.

3.5. Assessing the Potential of the Prognostic FRG Signature
in Chemotherapy. According to the results of the “oncoPre-
dict” R package, we found that 118 kinds of chemotherapeu-
tic drugs were sensitive to ES (Supplementary Figure 3), and
39 of them showed significant differences between the high-
and low-risk groups. As shown in Figures 6(a) and 6(b),
patients in the high-risk group were more sensitive to 18
types of chemotherapeutic drugs than those in the low-risk
group, and patients in the low-risk group were more
sensitive to 21 types of drugs. This result demonstrated
that the gene signature was also helpful for the formulation
of a personalized chemotherapy strategy for ES.

Table 1: Immune-related signaling pathways in the results of KEGG analysis.

ID Description Gene Log10 (adj. P)

hsa05235
PD-L1 expression and PD-1
checkpoint pathway in cancer

HIF1A, MAPK1, EGFR, KRAS, HRAS, NRAS, MAPK14, PIK3CA -3.733

hsa04662 B cell receptor signaling pathway MAPK1, KRAS, HRAS, NRAS, PIK3CA -1.865

hsa04660 T cell receptor signaling pathway MAPK1, MAPK8, KRAS, HRAS, NRAS, MAPK9, MAPK14, PIK3CA -3.346

hsa05166
Human T-cell leukemia

virus 1 infection
TP53, MAPK1, SLC2A1, MAPK8, KRAS, CDKN2A, HRAS, NRAS,

TGFBR1, MAPK9, ZFP36, CDKN1A, PIK3CA
-4.08

hsa04657 IL-17 signaling pathway MAPK1, MAPK8, ELAVL1, TNFAIP3, MAPK9, MAPK14 -2.249

hsa04659 Th17 cell differentiation HIF1A, MAPK1, MAPK8, TGFBR1, MAPK9, MAPK14 -1.997

hsa04658 Th1 and Th2 cell differentiation MAPK1, MAPK8, MAPK9, MAPK14 -1.127
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Figure 2: Continued.
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3.6. Comprehensive Analysis of Key Genes. As shown in
Figures 7(a)–7(c), we found that in the GSE17679 cohort,
the low expression group of AURKA or RGS4 survived lon-
ger than their high expression group; the survival time of
RIPK1 high expression group was longer than the low
expression. We also found that all 3 key genes were
significantly highly expressed in tumor tissue (Figure 7(d)).
Additionally, correlation analysis revealed that there was
a significant positive correlation between AURKA and
EWSR1 (Figure 7(e)). The subsequent single-cell analysis
also confirmed this result. As shown in Figure 7(f), during
the continuous period of continuous using doxycycline for
7 days (d0_Xeno-d7_Xeno), the expression of EWSR1 was
inhibited and gradually decreased, while the expression of
AURKA also showed a decreasing trend. Subsequently,
during the period of 15 days after discontinuation of the
drug (d7-d7+15), the expression of EWSR1 started to
recover, and the expression of AURKA also increased with
increasing expression of EWSR1. Thus, a close relationship
does exist between EWSR1 and AURKA. In conclusion,
our study showed that all 3 key genes play key roles in
tumor immunity and prognosis of ES, among which
AURKA is also closely related to the oncogenic process
of ES. Therefore, they are likely to be potential therapeutic
targets for ES.

3.7. Validation of Expression Level of Three Key Genes in ES
Cell. The results of the above analysis showed that 3 key
genes were highly expressed in ES. In order to verify that
the 3 genes are specifically highly expressed in ES tissue,
we performed RT-qPCR in the ES (A673) and normal bone
marrow stroma (HS5) cell lines. As shown in Figures 8(a)–
8(c), the expression of AURK1, RGS4, and RIPK1 in A673
was significantly higher than in HS5. Hence, this cell exper-

iment further verifies the reliability of the results of this bio-
informatics analysis.

3.8. Construction and Evaluation of the Nomogram. Based
on the clinical data and the gene signature, we constructed
a comprehensive prognostic nomogram that can help clini-
cians estimate the probability of survival for 1, 3, and 5 years
in ES patients (Figure 9(a)). Meanwhile, the calibration
curves of 1-, 3-, and 5-year survival showed that the pre-
dicted results of the nomogram were highly consistent with
the actual results (Figure 9(b)), which demonstrated that
the nomogram was accurate.

4. Discussion

Currently, ES patients with localized disease have a 5-year sur-
vival rate of 70–80%, but those with metastases have a signifi-
cantly lower survival rate of <30%. Regrettably, more often
than not, approximately 20–25% of ES patients present with
metastases at diagnosis [4]. Patients who cannot be surgically
treated have no choice but to receive systemic treatments.
However, side effects and treatment failures of common
systemic treatments (including chemotherapy and targeted
therapies, etc.) are also frequently reported [31, 32]. Combined
with no robust statistical tool to estimate the prognosis of ES
patients, the therapy of ES remains a challenge. It urges us to
develop novel therapeutic strategies. Ferroptosis, which is a
form of programmed cell death independent of apoptosis, is
modulated by several pathways and is closely related to
various diseases [33]. Recent evidence has indicated that
ferroptosis is closely related to tumorigenesis, the tumor sup-
pression process, and the treatment response [34]. Meanwhile,
we also found that many FRGs are abnormally expressed in ES
tissues, andmost of themwere related to prognosis. Therefore,
we carried out this research to find potential biomarkers from
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Figure 3: Evaluation of the performance of the gene signature by internal validation cohorts. In train cohort, test cohort, and entire
GSE17679 cohort: Kaplan-Meier curves (a, c, e) and ROC curves (b, d, f).
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FRGs and develop a prognostic FRG signature to improve the
prognosis of patients with ES.

In this study, we first did the differential expression anal-
ysis of genes between normal and ES tissues and screened

out 148 DEFRGs. Then, we did the GO and the KEGG anal-
yses of DEFRGs, and the results indicated that 148 DEFRGs
play an important role in tumorigenesis. And we also found
that these genes were also enriched in immune-related
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Figure 6: Differences in chemotherapeutic drug sensitivity between high-/low-risk group. (a) Drugs that are more sensitive to high-risk
patients. (b) Drugs that are more sensitive to low-risk patients (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001).
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pathways, which provide a new approach to immunotherapy
for ES. Hence, DEFRGs deserve further analysis.

We used three analysis methods step by step (univariate
Cox regression analysis, random survival forest algorithm,

and multivariate Cox regression analysis) to identify key
genes and used the identified genes to construct the gene
signature. In the construction process of the gene signature,
we did not adopt LASSO regression analysis but adopted the
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Figure 7: Comprehensive analysis of key genes. (a–c) Survival analyses of the 3 key genes. (d) Different expression of 3 key genes between
tumor and normal tissue (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001). (e) Correlation analysis between 3 key genes and EWSR1/
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random survival forest algorithm for the following reasons.
First, two forms of randomization were combined, including
case resampling and variable subsetting, which made the
prediction results robust and accurate [23]. Second, two
quantitative indicators, VIMP, and minimal depth could
help with key gene selection. The random survival forest
algorithm also has some disadvantages. It did not provide
explicitly formatted formulas and was unable to extract
information regarding the underlying process. Using genes
screened by random survival forest directly to construct
the gene signature is not reliable, so that is the reason why
we did further multivariate regression analysis. As expected,
the gene signature composed of 3 genes showed favorable
performance in both internal and external validation
cohorts. Next, we performed an in-depth analysis to further
explore the application potential of this gene signature.

Tumor immunoediting theory proposed that less immu-
nogenic cancer cells are selected during tumor development
to evade antitumor immune responses [35, 36]. Hence, the
tumors have several immunosuppressive mechanisms, such
as increased immunosuppressive cells (regulatory T cells
and tumor-associated macrophages), decreased expression
of cancer antigens, and increased expression of immune
checkpoints (CTL4A and PD-1) [37, 38]. In our study, we
found that high-risk ES patients generally had higher regula-
tory T cell and macrophage infiltration than low-risk
patients. As the most classical immune checkpoint, PD-1 is
a central regulator of CD8+ T cell exhaustion, whose overex-
pression can inhibit T cell immunity in several different
types of cancers [39, 40]. Our study found that RIPK1 and
PD-1 were not only in the same PPI network but also signif-
icantly negatively correlated. Furthermore, the 3 key genes
were also closely related to other different immune check-
points. Combined with the results of comprehensive analysis
and cell experiments of the 3 genes, we believe that this gene
signature and the 3 key genes have a bright future in ES
therapy. Hence, the 3 genes deserve further study.

Aurora kinase A (AURKA) belongs to the family of
serine/threonine kinases, which play essential roles in regu-
lating cell division during mitosis and has been a popular
target. Numerous studies have reported that AURKA was
function as oncogenes to promote tumorigenesis in multiple
types of cancer, including lung cancer [41], gastric cancer
[42], and pancreatic cancer [43]. Although AURKA has
attracted the attention of many researchers, few studies have
focused on the mechanism of AURKA in ES. To our knowl-
edge, ES is characterized by a recurrent balanced chromo-
somal translocation [44], which results in the fusion of
genes from the FET family and genes from the ETS family.
One study has reported that transcription of AURKA is pos-
itively regulated by E4TF1, which is a ubiquitously expressed
ETS family protein [45]. And in our study, we also found a
significant correlation between AURKA and EWSR1. This
reveals that AURKA is closely related to the carcinogenic
process of ES. Furthermore, a review study has indicated
that AURKA can become a target for cancer therapy and
found that most tumor types show significantly higher
AURKA expression than normal tissue in the TCGA data-
base. Meanwhile, AURKA inhibitors (AKIs) have been

tested in preclinical studies, and some of them have been
subjected to clinical trials as monotherapies or in combina-
tion with classic chemotherapy or other targeted therapies
[46]. Therefore, there is sufficient evidence that AURKA
plays an important role in the tumorigenesis of ES and can
be a promising therapeutic target. Hence, it deserves further
study.

Regulators of G-protein signaling (RGS) proteins are
G-protein-coupled receptors (GPCRs) mediated response
regulators in cells, which are important drug targets for
malignant tumors [47, 48]. To date, more than 20 proteins
from the RGS family have been identified. One of them is
RGS4, a negative regulator of GPCR that can block the
transmission of related signaling factors by accelerating
G-protein proteolysis. Many studies have reported that
RGS4 is associated with increased cancer cell viability,
invasion, and/or motility in glioma [49], triple-negative
breast cancer [47], etc. However, the role of RGS4 remains
poorly understood in ES, and the related mechanism
remains to be further explored.

Regarding receptor-interacting kinase 1 (RIPK1), it is a
key node in the TNF signal transduction pathway, actively
controlling the balance between gene activation and induc-
tion of cell death in the form of apoptosis and necroptosis
[50]. RIPK1 has now emerged as an important drug target
not only due to its key roles in TNF signaling but also
because its kinase structure is highly amenable to the
development of specific small molecule pharmacological
inhibitors [51]. Many studies have reported that RIPK1
inhibitors present an opportunity to treat a range of human
degenerative and inflammatory diseases, including colitis,
dermatitis, traumatic brain injury, stroke, lysosomal storage
diseases, amyotrophic lateral sclerosis (ALS), and multiple
sclerosis (MS) [52, 53]. However, studies associated with
cancer show that RIPK1 is a gene with “two faces” in both
pro- and anticarcinogenic functions [54]. In head and neck
squamous cell carcinoma and liver cancer, the low expres-
sion of RIPK1 is associated with poor prognosis, while in
breast cancer (BC) and glioblastoma, the high expression
of RIPK1 leads to poor prognosis. In this study, we found
that patients with high RIPK1 expression lived longer than
those with low expression, and the expression of RIPK1
was positively correlated with a variety of antitumor
immune cells (activated dendritic cell and type 1 T helper
cell) and was negatively correlated with a variety of immune
checkpoints (especially PD-1). Therefore, for ES, RIPK1 is
an important anticarcinogenic gene, and its high expression
can enhance anticancer immunity and prolong the survival
time of ES patients. An in-depth study of this gene may lead
to new options for ES treatment.

Chemotherapy has been the most commonly used can-
cer treatment, but failures and side effects of treatment are
frequently reported [55, 56]. Thereby, the selection of sensi-
tive chemotherapeutic drugs is critical for cancer treatment.
In our study, we not only found 118 agents which were
sensitive to ES but also found that 39 agents displayed signif-
icantly sensitive differences between high- and low-risk
patients. Among them, 18 kinds of chemotherapeutic drugs
were more sensitive to patients in the high-risk group, while
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the other 21 drugs were more sensitive to those in the low-
risk group. Thus, this gene signature is also helpful for the
formulation of a personalized chemotherapy strategy for
ES patients.

At the end of this study, we created a visual nomogram
quantitatively assessing the overall survival of ES patients
based on the gene signature and clinical characteristics.
And the results of the calibration curve suggest that the
nomogram was reliable. Therefore, our study also provides
a reliable and practical statistical tool which can help clini-
cians assess the survival time of patients with ES.

Of course, there are several limitations to our study.
First, since ferroptosis has always been a hot area, subse-
quent studies may report more FRGs than just the 205 genes
in this study. Second, due to the limited clinical data pro-
vided by public datasets, the study was unable to incorporate
a sufficient number of clinical characteristics, which may
result in potential biases in the performance of the gene
signature. Third, due to different sequencing platforms, the
expression levels of all genes are relative values, which brings
difficulties to the determination of absolute thresholds in
clinical practice.

5. Conclusions

In conclusion, by exploring the mechanism of ferroptosis in
ES, we identified 3 key genes significantly associated with the
tumor immunity and prognosis of ES patients and used
them to establish a prognostic FRG signature. Subsequent
analysis showed that 3 key genes are potential therapeutic
targets, and the established gene signature could act as a
robust and independent biomarker for predicting patient
prognosis and contribute to the development of more
effective immunotherapy and chemotherapy strategies. In
addition, we also constructed an accurate nomogram, which
contributes to clinicians evaluating the survival time of ES
patients. Therefore, our study helps improve the prognosis
of patients with ES.
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