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Background. Colorectal cancer is one of the most common gastrointestinal malignancies globally. Necroptosis has been proved to
play a role in the occurrence and development of the tumor, which makes it a new target for molecular therapy. However, the role
of necroptosis in colorectal cancer remains unknown yet. Our study aims to build a prognostic signature of necroptosis-related
lncRNAs (nrlncRNAs) to predict the outcomes of patients with colorectal cancer and facilitate in anticancer therapy. Method.
We obtained RNA-seq and clinical data of colorectal adenocarcinoma from the TCGA database and got prognosis-related
nrlncRNAs by univariate regression analysis. Then, we carried out the LASSO regression and multivariate regression analysis
to build the prognostic signature, whose predictive ability was tested by the Kaplan-Meier as well as ROC curves and verified
by the internal cohort. Moreover, we divided the cohort into 2 groups based on median of risk scores: high- and low-risk
groups. By analyzing the difference in the tumor microenvironment, microsatellite instability, and tumor mutation burden
between the two groups, we explored the potential chemotherapy and immunotherapy drugs. Results. We screened out 9
nrlncRNAs and built a prognostic signature based on them. With its good prognostic ability, the risk scores can act as an
independent prognostic factor for patients with colorectal cancer. The overall survival rate of patients in high-risk group was
significantly higher than the low-risk one. Furthermore, risk scores can also give us hints about the tumor microenvironment
and facilitate in predicting the response to the CTLA-4 blocker treatment and other chemotherapeutic agents with potential
efficacy such as cisplatin and staurosporine. Conclusions. In conclusion, our prognostic signature of necroptosis-related
lncRNAs can facilitate in predicting the prognosis and response to the anticancer therapy of colorectal cancer patients.

1. Introduction

Colorectal cancer is the third most common cancer in the
world [1]. There are about 900,000 deaths each year, which
make it the second leading cause of cancer death worldwide
[2]. Due to the lack of biomarkers for early screening and
prognostic prediction, many patients are not diagnosed until
to an advanced stage when they cannot be surgically treated
[3]. For those patients, systemic treatments are the only
choice. Although the advances in diagnosis and treatment,
especially the application of molecular therapeutic targeted
drugs and immune checkpoint inhibitors, have relatively
extended the overall survival time of patients with advanced

cancer, the overall prospect for those patients is not bright.
Since immunotherapy is only effective in patients with specific
genotypes [4]. Therefore, it is important to identifymore novel
biomarkers for diagnosis and targets for anticancer therapy.

Resistance to apoptosis is one of the main hallmarks of
cancer and has long been a major impediment to anticancer
therapy [5, 6]. Therefore, inducing programmed death by
other mechanisms is recognized as an alternative approach
to overcome this obstacle [7]. Necroptosis is a caspase-
independent regulatory cell death mode [8]. It could activate
the mixed lineage kinase domain-like protein (MLKL) by
phosphorylation signaling pathway, which is mediated by
receptor-interacting protein 1/3 (RIPK1/RIPK3) [9]. Recent
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studies suggest that tumor cells with resistance to apoptosis
may be sensitive to the necroptosis pathway [10, 11], which
is expected to be a new target for anticancer therapy. As a
coalescence of necrosis and apoptosis, necroptosis is
regarded to play a dual role in tumors: on one hand, necrop-
tosis can induce “necrotic” death of tumor cells, bypassing
the apoptotic pathway and elicit strong adaptive immune
responses via damage-associated molecular patterns
(DAMPs) to stem tumor development [12]; on the other
hand, necroptosis can promote tumor metastasis and pro-
gression through destruction of endothelial cells or inflam-
matory response [13, 14]. Additionally, necrosis-associated
inflammation enhances the immunogenicity of cancer cells,
which can promisingly synergize with ICBs to create new
immunotherapeutic [15].

Long non-coding RNAs (lncRNAs), defined as non-
protein coding RNA transcripts of over 200 nucleotides,
are engaged in various cellular biological processes, includ-
ing tumor progression and immune cell infiltration [16,
17]. lncRNAs play a significant regulatory part in the devel-
opment of colorectal cancer. For example, some studies
showed that LINC01021 [18] could affect cell cycle, prolifer-
ation, apoptosis, epithelial-mesenchymal transformation,
and other processes in colorectal cancer cells, and lncRNA-
p21 [19] could inhibit the invasion and metastasis of colo-
rectal cancer cells. Moreover, lncRNAs have also been
reported to be involved in tumor cell necroptosis. Tran
et al. [20] found that liver cancer cells could regulate micro-
RNA and its target genes to induce necroptosis by express-
ing LINC00176. However, there are few literature reports
on the role of lncRNAs in the necroptosis pathway of colo-
rectal cancer; thus, further studies are needed.

Given that, it is necessary to shed light on interactions
between necroptosis-related lncRNAs and the clinicopatho-
logical characteristics, tumor microenvironment, anticancer

therapy, and tumor mutation in colorectal cancer. In sum-
mary, our work can help fill the research gap on
necroptosis-related lncRNAs of colorectal cancer and pro-
vide new insights into the possible pathogenesis of colorectal
cancer.

2. Method and Materials

2.1. Data Collection and Preprocessing. The RNA tran-
scriptome data (HTSEQ-FPKM format) of colorectal adeno-
carcinoma were obtained from TCGA-COAD and TCGA-
READ projects of the Cancer Genome Atlas (TCGA) data-
base (https://portal.gdc.cancer.gov/) [21], including mRNA
and lncRNA expression levels of tumor samples (n=568)
and normal samples (n=44), as well as corresponding clini-
cal data (XML format), such as survival information, sex,
age, TNM stage, and tumor stage. We processed the data
using the limma package of R language software (version
4.1.2) and Perl language (version 5.30.3) and obtained colo-
rectal adenocarcinoma gene expression and clinical informa-
tion matrix. Simple nucleotide variation data of colorectal
adenocarcinoma were also downloaded from the database,
and the data type was Masked Somatic Mutation, calculated
by VARSCAN software (MAF format). To control the bias,
patients with overall survival (OS) of less than 30 days were
excluded, and 507 colorectal adenocarcinoma patients were
included. We randomly divided them into the train set and
test set by R caret package, with a ratio of 1 : 1. The clinical
characteristics of train set, test set, and entire set are shown
as Table 1.

2.2. Selection of Necroptosis-Related Genes and lncRNAs. We
obtained 67 necroptosis-related genes (NRG) from the Gene
Set Enrichment Analysis (GSEA) database (http://www
.gsea-msigdb.orggseaindex.jsp) [22, 23] and previous

Table 1: The clinical information in train set, test set and entire set.

Characteristic Type Entire set Train set Test set

Age
≤65 225 (44.4%) 103 (40.6%) 122 (48.2%)

>65 282 (55.6%) 151 (59.4%) 131 (51.8%)

Sex
Male 227 (54.6%) 135 (53.1%) 142 (56.1%)

Female 230 (45.6%) 119 (46.9%) 111 (43.9%)

Stage

Stage I-II 279 (55.0%) 145 (57.1%) 134 (53.0%)

Stage III-IV 213 (42.0%) 100 (39.4%) 113 (44.7%)

Unknown 15 (3.0%) 9 (3.5%) 6 (2.3%)

T

Tis 1 (0.2%) 0 (0) 1 (0.4%)

T1-2 105 (20.7%) 53 (20.9%) 52 (20.6%)

T3-4 401 (80.1%) 201 (79.1%) 200 (79.0%)

N

N0 296 (58.4%) 152 (59.8%) 144 (56.9%)

N1 124 (24.4%) 67 (26.4%) 57 (22.5%)

N2 86 (17.0%) 35 (13.8%) 51 (20.2%)

Unknown 1 (0.2%) 0 (0) 1 (0.4%)

M

M0 380 (75.0%) 197 (77.6%) 183 (72.3%)

M1 72 (14.2%) 31 (12.2%) 41 (16.2%)

Unknown 55 (10.8%) 26 (10.2%) 29 (11.5%)
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literature [24]. Pearson’s correlation analysis was performed
(|Pearson R|>0.5, P < 0:001) to get necroptosis-related
lncRNAsm (nrlncRNAs), using R limma package. We
furtherly conducted the differential analysis (Log2fold
change (FC)>1, false discovery rate (FDR)<0.05, and P <
0:05) to identify the nrIncRNAs that were significantly dif-
ferentially expressed between tumor and normal samples.

2.3. Establishment and Validation of the Prognostic
Signature. First, the necroptosis-related lncRNAs that are
closely related to prognosis were screened out by univariate
Cox regression analysis (P < 0:05). Then, to avoid overfitting
and ensure the minimum amount of lncRNAs as well as
complete information, the least absolute shrinkage and
selection operator (LASSO) regression was performed with
10-fold cross-validation and 1000 random circles. Finally,
we conducted multivariate Cox regression to identify the
nrlncRNAs that could serve as independent prognostic fac-
tors for modeling. The following formula was devised based

on the risk model to calculate the risk score of each patient:

Risk score = 〠
n

i
Expi ∗ Coefið Þ, ð1Þ

where the n was the number of lncRNAs, Expi was the
expression level of lncRNAs, and Coefi was the correlation
coefficient between lncRNAs and survival data. Based on
the median risk score of the train set, subgroups were estab-
lished including low-risk and high-risk groups. The network
between nrlncRNAs and NRGs was drawn using Cytoscape
software (V3.8.0) and the survival curve and receiver opera-
tor characteristic (ROC) curve were established through R
survival, survminer, and timeROC package to evaluate the
predictive performance of the signature.

2.4. Clinical Applicability of the Signature and Construction
of Nomogram. We drew the survival curves to compare the
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Figure 1: The main analysis process of this study.
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differences in survival between different clinical subgroups
based on previously obtained clinical information. The risk
scores were verified by univariate and multivariate COX
regression to decide whether it is an independent prognostic
factor. ROC curves were utilized to compare the predictive
efficacy of risk scores and different clinical variables. Fur-
thermore, the nomogram was made, using R rms package
to predict the 1-, 3-, and 5-year survival rate, with age, gen-
der, TNM stage, and risk score as variables. Meanwhile, the
Hosmer-Lemeshow test was carried out to test the consis-
tency of the predicted results with the actual situation, and
decision curve analysis (DCA) was performed to compare
the applicability of different clinical variables and
nomograms.

2.5. Gene Set Enrichment Analyses. We conducted the gene
enrichment analysis to uncover the biological processes that
might differ significantly between the high- and low-risk
groups. The Gene Ontology (GO) Gene Set (c5.go.v7.5.1.-
symbols.gmt) was downloaded from the Gene Set Enrich-
ment Analysis website (http://www.gsea-msigdb.org/),
including cellular component (CC), molecular function
(MF), biological process (BP) gene set data, and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) (KEGG.v7.4. sym-
bols. GMT) gene set data. We analyzed the enrichment of
two risk groups in different pathways and functions using
GSEA software (version 4.1.0), whose differences were statis-
tically significant when P < 0:05 and FDR <0.25.

2.6. Tumor Microenvironment and Immune Checkpoints. In
order to know more about the tumor microenvironment
(TME), we calculated the stromal score, immune score,
and ESTIMATE score of the samples to deduce the tumor
purity via the R estimate package. We then downloaded
the immune cell infiltration files from the Timer 2.0 [25]
database (http://timer.cistrome.org/). The results of the
immunization assessment calculated by Timer, CIBER-
SORT, XCELL, QUANTISEQ, MCPcounter, and EPIC soft-
ware platforms were included, and a correlation analysis was
conducted between the results and risk score (P < 0:05).
Finally, we evaluated the distribution of immune cells and
immune function in two groups and compared the expres-
sion differences of immune checkpoints between the high-
and low-risk groups by performing single sample Gene Set
Enrichment Analysis (ssGSEA) and T-test. The above
results were presented by box plot, bubble plot, and relation-
ship diagram using R ggplot2, ggpubr, and packages.

2.7. Immunotherapy and Chemotherapeutics Sensitivity
Analysis. To evaluate the performance of the prognostic sig-
nature in guiding immunotherapy, we downloaded the
immunophenoscore (IPS) data of colorectal adenocarci-
noma from the Cancer Immune Altas (TCIA, https://tcia
.at/home) [26] database to compare the responses of patients
to PD-1 and CTLA-4 blockers treatment in high- and low-
risk groups. Moreover, we compared the half-maximal
inhibitory concentration (IC50) of different chemotherapy
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Figure 2: Extraction of necroptosis-related lncRNAs in CRC patients. (a) The Sankey diagram of necroptosis-related genes (=67) and
related lncRNAs (=1425) (correlation coefficients >0.5 and P < 0:001). (b) The volcano plot of 747 differentially expressed necroptosis-
related LncRNAs. (LogFC>1 and DFS<0.05).
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drugs to identify the promising therapeutic substances, of
which data were obtained from Genomics of Drug Sensitiv-
ity in Cancer database (GDSC) (https://www.cancerrxgene
.org/) and analyzed by oncoPredict package [27].

2.8. Microsatellite Instability and Tumor Mutation Burden.
Similarly, we obtained the data related to microsatellite
instability (MSI) in patients with colorectal adenocarcinoma
from the TCIA database and used R ggplot package to draw
the percentage chart of microsatellite stability (MSS), MSI-L,
and MSI-H in high- and low-risk groups. A waterfall map
was drawn through R maftools package to display the muta-
tion frequency and mutation type of tumor mutation genes
in the two risk groups based on the previously downloaded
data. Ultimately, we compared the tumor mutation burden

(TMB) and its effect on the prognosis by difference analysis
and survival curve. TMB is determined by the ratio of the
frequency of somatic mutations to the length of exon effec-
tive regions [28], and the somatic mutation data were
derived from TCGA-COREAD mutation data.

3. Results

3.1. Identification of Necroptosis-Related lncRNAs. The entire
analysis process is shown in Figure 1. We obtained 568 colo-
rectal adenocarcinoma samples and 44 normal samples from
the TCGA database and sorted out the expression matrix of
56461 lncRNAs and 67 necroptotic-related genes (NRG)
corresponding to each sample. 1425 necroptosis-related
IncRNAs (nrlncRNAs) were identified by Pearson’s
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Figure 3: Construction of necroptosis-related lncRNAs’ prognostic signature for CRC. (a) The forest map of prognostic nrlncRNAs
extracted by univariate Cox regression analysis. (b) The expression profiles of 19 prognostic nrlncRNAs. (c) The partial likelihood
deviance plot presented the minimum number corresponding to the covariates used for multivariate Cox analysis. (d) LASSO coefficient
profiling of the 13 nrlncRNAs. (e) The Sankey diagram of the relationship between NRG, nrlncRNAs, and risk type. (f) Network showed
the interaction of 9 nrlncRNAs for signature and NRG. (g) The column diagram showed the 9 nrlncRNAs for signature and
corresponding coefficients.
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correlation analysis (|Pearson R|>0.5, P < 0:001). The San-
key diagram (Figure 2(a)) showed the connections between
67 NRGs and nrlncRNA gene sets. Through differential
analysis (LogFC>1, DFS<0.05), we found 747 significantly
differentially expressed nrlncRNAs between tumor and nor-
mal samples. The volcano plot (Figure 2(b)) showed that 679
nrlncRNAs were significantly up-regulated and 68
nrlncRNAs significantly down-regulated in tumor samples.

3.2. Establishment and Verification of Prognostic Signature.
In order to screen out nrlncRNAs that can predict the prog-

nosis of patients, we used univariate COX regression analysis
to obtain 19 nrlncRNAs that significantly affected the overall
survival rate (OS) of patients (all P < 0:05). The forest map
(Figure 3(a)) showed the hazard ratio (95% confidence inter-
val) of these 19 nrlncRNAs, and the heat map (Figure 3(b))
reflected their expression levels in tumor or normal samples.
To reduce the overfitting combination of linear regression
and improve the model’s accuracy, we adopted LASSO
regression to reduce dimensionality and got the variables
corresponding to the minimum partial likelihood deviance
(Figure 3(c)), namely, the identified 13 nrlncRNAs. Through
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Figure 5: Continued.
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multivariate COX regression, 9 nrlncRNAs (Figure 3(g))
that could be used as independent prognostic factors were
finally obtained for modeling. The Sankey diagram
(Figure 3(e)) and network diagram (Figure 3(f)) showed
the corresponding connections between these nrlncRNAs
and necroptosis mRNAs. The risk scores based on the
expression level of nrlncRNAs was as follows: Risk Score = -
MYOSLID expi× (3.2358) +AC006111.2 expi×
(-1.9913) +AC245100.5 expi × (0.5341) +AL161729.4 expi

× (1.1819) +AL355312.2 expi × (-3.0215) +AL137782.1 expi
× (-0.8773) +NSMCE1-DT expi × (2.9534) + LINC02257
expi × (0.8564) + LINC00513 expi × (-0.3655).

The median risk score of patients in the train set acted as
the node to divide the cohort into high- and low-risk groups,
while the test set was used for in-cohort verification. Figure 4
shows the nrlncRNAs expression level, risk score, and sur-
vival time distribution of high- and low-risk groups in the
entire set, train set, and test set. Survival curve indicated that
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Figure 5: Clinical applicability of prognostic signature. (a, b) Univariate and multivariate Cox regression analysis of the correlation between
the risk scores and clinicopathological features. (c) ROC curve analyses of the risk scores and clinicopathological features. (d) The heat map
and clinicopathological factors of high- and low-risk subgroups. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. (e) The Kaplan–Meier survival analyses
of prognostic signature in different clinical subgroups based on age, gender, stage, grade, and TMN stage with the log-rank test.
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overall survival rate in the high-risk group was significantly
lower than low-risk group (entire set: P < 0:001, train set: P
< 0:001, test set: P = 0:009). The ROC curve showed that
the one-year prognosis area under the curve (AUC) was
0.751, 0.860, and 0.657, three years 0.767, 0.893, and 0.646,
and five years 0.751, 0.860, and 0.657 in the three cohort sets,
respectively. In addition, the cohort was divided into 9 pairs
of high- and low-expression groups based on each of the
selected nrlncRNAs, respectively, and 7 nrlncRNAs showed
significant differences in overall survival rate (Supplemen-
tary 1).

3.3. Clinical Applicability of Prognostic Signature. It was
found that risk scores could serve as an independent risk fac-
tor for prognosis among clinical factors including age, gen-

der, tumor stage, and TNM stage (Figures 5(a) and 5(b)),
by univariate COX regression analysis and multivariate
COX regression analysis, with respective hazard ratio 1.055
(95% CI: 1.039-1.072) and 1.051 (95% CI: 1.034-1.069).
ROC curve (Figure 5(c)) showed that the area under the sig-
nature curve was 0.751, greater than the 0.741 of the clinical
staging, which was widely used as a prognostic predictor in
clinical practice. According to the heat map (Figure 5(d)),
the expression levels of nrlncRNAs for the signature varied
greatly in different tumor stages or TNM stages. Further-
more, we compared the Kaplan-Meier curves of the high-
and low-risk groups under different clinical conditions
(Figure 5(e)) and found that the overall survival rate of the
high-risk group was far worse than that of the low-risk
group, except in the case of early T stage (T1-T2) and distant
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Figure 6: Establishment and validation of the nomogram. (a) The nomogram for predicting the 1-, 3-, and 5-year OS of CRC in the cohort
based on the risk score and other clinical factors. (b) Principal component analysis (PCA) plot for nrlncRNAs. (c) Calibration plots for
assessing the accuracy of the 1-, 3-, and 5-year survival rates. (d) Decision curve analysis (DCA) diagram of nomogram and other
clinical factors. (e) GSEA of the top 10 pathways of GO and KEGG database significantly enriched in the high-risk group and of the
tumor-associated and immune-associated pathways significantly enriched in the high-risk group.
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metastasis (M1), possibly due to the insufficient number of
patients. All this indicated that the prognostic signature
applied to patients with different clinical conditions.

3.4. Construction and Verification of Nomogram. Using var-
iables such as age, sex, clinical stage, TNM stage, and risk
score, we constructed a nomogram that predicted 1-, 3-,
and 5-year survival. In Figure 6(a), a 67-year-old female
CRC patient with stage T3N0M0 II was grouped into the
high-risk group with a total score of 197. The predicted 1-

year survival rate of this patient was 88.7%, 3-year survival
rate 71.2%, and 5-year survival rate 49.8%. Principal compo-
nent analysis (PCA) diagram (Figure 6(b)) showed that it is
easy to distinguish the patients between high- and low-risk
groups. We also used 1-, 3-, and 5-year calibration curves
(Figure 6(c)) to demonstrate that the nomograms were
broadly consistent with the observed OS. Decision curve
analysis (Figure 6(d)) showed that the nomogram was more
effective than other clinical factors in predicting patient
outcomes.
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Figure 7: The investigation of tumor microenvironment and function. (a) The comparison of the stromal score, immune score, and
ESTIMATE score between low- and high-risk groups. (b) The bubble and scatter diagrams showed correlation between risk scores and
immune cells infiltration. (c) The box plot displayed the differences of enrichment scores 13 immune-related pathways in high- and low-
risk groups. (d) The box plot exhibited the differences of 15 checkpoints expression in risk groups.
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3.4.1. Gene Set Enrichment Analysis. Compared with the
low-risk group, genes in the high-risk group were signifi-
cantly enriched in multiple biological functions and path-
ways, including extracellular matrix structure and some
inflammatory pathways (Figure 6(e)), which justified the
necessity of further research in the tumor microenvironment
and associated immunity. However, no significant gene
enrichment was found in the low-risk group. Additionally,
we found that some high-risk genes were significantly
enriched in tumor pathways and immune pathways, such
as MAPK, Wnt, TGF-β, Toll-like receptor signaling path-
way, and the like.

3.5. Tumor Microenvironment and Immune Infiltration.
Using the ESTIMATE algorithm, we found that the stromal
score, immune score, and estimate score in the high-risk
group were significantly higher than those in the low-risk
group (Figure 7(a)). In terms of immune cell infiltration
(Figure 7(b)), the expression data of immune cells on differ-
ent software platforms showed that the number of most

immune cells infiltrated was positively correlated with risk
scores, including cancer-associated fibroblast (EPIC), Mac-
rophage M2 (CIBERSORT_ABS), T Cell Regulatory (Tregs)
(QUANTISEQ), Myeloid Dendritic Cell (TIMER), and the
like, while the number of some immune cells infiltrated
was negatively correlated with the risk scores, such as NK
cell (QUANTISEQ) and T cell CD4+ Th1 (XCELL). Simi-
larly, ssGSEA scores (Figure 7(c)) of multiple immune func-
tions were significantly higher in the high-risk group than in
the low-risk group.

3.6. Immune Checkpoints and Anticancer Therapy. The
expression levels of 24 immune checkpoints were signifi-
cantly higher in the high-risk group than the low-risk group
(Figure 7(d)), including CD274 (PD-1) and other novel
immune checkpoints such as NRP1, BTLA, TIGIT, and
VTCN1. It indicated that the high-risk group might have
greater immunotherapy promises. As shown in Figure 8(b),
the half-maximal inhibitory concentration (IC50) of thera-
peutic substances in the high-risk group, including cisplatin,
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staurosporine, and cyclophosphamide, was notably lower
than that of the low-risk group, which showed that patients
in the high-risk group were more sensitive to these com-
pounds. However, there were no significant differences in
drug sensitivity to 5-fluorouracil, oxaliplatin, and irinotecan
between the two groups. Furthermore, by comparing the
immunophenoscore (IPS) of two groups when treated with
PD-1 blocker and CTLA-4, we found that the low-risk group
had a better response to the latter, while no significant differ-
ence was observed in response to PD-1 blocker or the com-
bination of the two between the two groups.

3.7. Microsatellite Instability and Tumor Mutation. Com-
pared with the low-risk group, the high-risk group had larger
proportions of microsatellite instability-high (MSI-H), micro-
satellite instability-low (MSI-L) (19% vs.12%, 18% vs.15%),
and lower microsatellite stability (MSS) (63% vs.73%)
(Figure 7(c)), while there was no significant difference in risk
scores betweenMSS/MSI-L andMSI-H patients. In the two risk
groups, APC, TP53, TTN, KRAS, and SYNE1 were the top five
mutation genes, of which the proportion of APC was higher in
the low-risk group, and the proportion of TP53, TTN, KRAS,
and SYNE1 in the high-risk group was higher (Figure 7(d)).
The high-risk group’s tumor mutation burden (TMB) was
higher than that of the low-risk group, although there was no
significant statistical difference. The TMB remarkably impacted
the overall survival rate. Survival was worse in the TMB-H
group than TMB-L group at 1 to 5 years, but at 5 to 7 years, it
was the other way around. However, the effect appeared weaker
than risk scores, for patients in the high-risk group had much
worse outcomes than those in the low-risk group, even at a
low tumor low mutation burden.

4. Discussion

Colorectal cancer is a highly malignant digestive system
tumor with high morbidity and mortality. Although a sys-
temic treatment protocol has been formed on the basis of
surgery, chemotherapy, and radiotherapy, the prognosis is
still not optimistic. One of the reasons is chemotherapy
resistance, directly or indirectly [29]. Necroptosis is consid-
ered to be an alternative for apoptosis, which plays a role
in inducing necrotic cell death when tumor cells develop
drug resistance due to dysregulation of the apoptosis mech-
anism [30]. Moreover, more and more studies have shown
that necroptosis also got involved in tumorigenesis.

Given that, Huang et al. [31] used necroptosis-related miR-
NAs to predict the prognosis of colon cancer patients, which
have shown fair performance. However, we only have a limited
understanding of the interactions between lncRNAs and
necroptosis in colorectal cancer, which requires further study.
This study identified 9 necroptosis-related lncRNAs
(nrlncRNAs) from the public database, established a prognostic
signature, and grouped them by risk scores to explore the signa-
ture’s performance in predicting immune infiltration and guid-
ing immunotherapy. Our study suggested that prognostic
signature based on necroptosis-related lncRNAs can be used
for prognostic stratification of colorectal cancer patients and
help to decipher the molecular mechanism of colorectal cancer.

Previous researches have proved that necroptosis-related
lncRNAs are closely related to gastric cancer patient’s prog-
nosis and can be used to distinguish between cold and hot
tumors and guide immunotherapy [24]. This has demon-
strated nrlncRNAs’ research potential in gastrointestinal
tumors. Through statistical analysis and screening, we man-
aged to obtain 9 nrlncRNAs that can be utilized to predict
prognosis, including MYOSLID, AC006111.2, AC245100.5,
AL161729.4, AL355312.2, AL137782.1, NSMCE1-DT,
LINC02257, and LINC00513, of which the former five
lncRNAs were risk factors and the latter four were protective
factors. MYOSLID, with the highest hazard ratio, has the
most significant correlation with survival rate (coeffi-
cient =3.236, hazard ratio =16.54 (2.92-93.64), P = 0:0020),
which has been reported to regulate the biological processes
of various tumor cells. Han et al. [32] demonstrated the crit-
ical role of the MYOSLID-miR-29c-MCL-1 axis in the
tumorigenesis of gastric cancers. Xiong et al. [33] found that
MYOSLI can promote the invasion and metastasis of squa-
mous cell carcinomas of the head and neck by regulating
epithelial-mesenchymal transformation. Moreover,
LINC02257 [34] has also been used for predicting the out-
comes of colorectal cancers, whose expression level is associ-
ated with the immune state. LINC00513 [35] is considered
to play a part in systemic lupus erythematosus and acts as
a positive regulator of interferon signaling pathways. Other
nrlncRNAs are not reported in relevant literature, whose
biological effects need to be explored. There are close inter-
actions between these nrlncRNAs and necroptotic genes,
indicating that they share some common mechanisms in
necroptotic pathways. Although the expressions of these
lncRNAs are all significantly positively correlated with
necroptotic genes, they have different effects on prognosis,
which is consistent with the contradiction of necroptosis in
tumors.

The prognostic signature based on these nrlncRNAs has
good predictive performance. Clinically, the most widely
used prognostic indicators of colorectal cancer are TNM
stage and clinical stage, while our signature is superior to
these indicators and applicable to different ages, genders,
and stages, whose effectiveness is furtherly verified by the
internal cohort. Besides, we also drew a nomogram that
included risk scores and clinical indicators to facilitate the
prediction of the 1-, 3-, and 5-year survival rate of a single
patient, whose prediction results had good consistency with
the actual situation.

Gene enrichment analysis revealed that genes in the
high-risk group were significantly enriched in common sig-
naling pathways of tumors and immune signaling pathways,
which may be the underlying molecular mechanisms behind
the worse prognosis of patients in the high-risk group. In
addition, genes in the high-risk group are also involved in
extracellular matrix related biological processes. Extracellu-
lar matrix is a protein network surrounding normal cells
and cancer cells, acting as an important component of tumor
microenvironment, which greatly influences tumor prolifer-
ation, angiogenesis, adhesion, movement, invasion, and
metastasis [36, 37]. Thus, it is necessary to probe into the
tumor microenvironment.
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Immune cell infiltrated in tumor tissue could influence
the onset and development of tumor and its response to
immunotherapy [38–41]. Overall, the high-risk group is
burdened with higher tumor cell purity and more immune
cell infiltration than the low-risk group. Specifically, the
infiltration of M2-type macrophages, Tregs, and dendritic
cells is significantly positively correlated with the risk
scores. Studies have shown that massive M2-type macro-
phages in tumor tissues signified poor prognosis [42].
On one hand, Tregs cells exert greater immunosuppressive
function by upregulating the expression of cytotoxic T
lymphocyte antigen-4 (CTLA-4) and programmed death
receptor-1 (PD-1) in colorectal cancer [43]. On the other
hand, the migration of T cells to the tumor is inhibited
by Treg cells by regulating chemokines [44] and secreting
cytokines that block antitumor immunity [45]. The degree
of dendritic cell infiltration is positively correlated with the
metastasis and stage of colorectal cancer [46, 47]. In part,
NK cells and Th1 cells are negatively correlated with the
risk scores, which perform an antitumor function [48, 49].

Immune checkpoint inhibitors (ICIs) enhance the
cytotoxicity effect of T cells on tumor cells by acting on
co-inhibitory receptors such as CTLA-4 and PD-1 or their
ligands such as programmed death ligand-1 (PD-L1) [50].
The application of ICIs in colorectal cancer is beneficial in
a minority of patients with high immunogenicity. In our
study, the low-risk group had better response to the
CTLA-4 blocker treatment, even though there is a larger
proportion of MSI-H patients. In the high-risk group,
more immune checkpoint genes were expressed. The high
exposure of these immune checkpoints and infiltration of
M2 macrophages, Treg cells, and MODS cells constitute
the immunosuppressive environment in the high-risk
group. Research has shown that necroptosis-induced
CXCL1 and Mincle signaling promote macrophage-
induced adaptive immune suppression enabling pancreas
oncogenesis [51].

Therefore, the five lncRNAs highly expressed in the
high-risk group may be involved in the regulation of
necroptosis-induced immunosuppression in colorectal can-
cer, which may account for the patients’ relative insensitivity
to ICIs in the high-risk group.

Recent studies have found that some compounds can
play a role in anticancer therapies by inducing necroptosis,
which may provide us a new promising therapeutic
approach for bypassing the acquired or intrinsic apoptosis
resistance. For example, cisplatin can induce necroptosis in
esophageal and lung cancer cells [52, 53] without being
affected by apoptosis resistance. Staurosporine has been
reported to induce RIPK1 and MLKL-dependent necroptotic
cell death in leukemia cells when caspase activation is com-
promised [54]. In this study, the patients in the high-risk
group were more sensitive to cisplatin and staurosporine,
which implies the value of both compounds in the treatment
of colorectal cancer and the role of lncRNAs in the regula-
tion of necroptosis induction. However, the guidance for
the use of chemotherapy drugs including 5-fluorouracil, oxa-
liplatin, irinotecan, and raltitrexed is limited, which are com-
monly used in colorectal cancer.

Tumor mutations are not rare in colorectal cancers, and
the tumor cells with a high tumor mutation burden (TMB)
express more tumor antigens, which intensifies the
immune-killing effect [55]. However, TMB did not differ sig-
nificantly between the high- and low-risk group, suggesting
similar immunogenicity due to mutation exposure between
the two groups. Moreover, the tumor mutation burden also
has an impact on prognosis. Studies [56] have shown that
patients with high TMB have a longer overall survival time
compared with colorectal cancer patients with low TMB,
which is consistent with the long-term survival prospects
in our cohort.

Our study had some limitations: Firstly, the prognostic
signature and the nomogram lacked external queue verifica-
tion [57]. We tried to download gene chips from the Gene
Expression Omnibus (GEO) database for external verifica-
tion, but the expression level of key lncRNAs could not be
extracted due to the incomplete sequencing genes. Secondly,
only limited data analysis cannot fully elucidate the specific
regulatory role of 9 nrlncRNAs in necroptosis of colorectal
cancer and further exploration in vivo and in vitro experi-
ments is needed. Finally, our data mainly came from the
TCGA database, and the missing data is not random, which
may cause some bias.

5. Conclusion

In conclusion, our study established a relatively reliable
prognostic signature on the basis of necroptosis-related
lncRNAs, which facilitates in predicting the prognosis as
well as tumor immune microenvironment, and guiding the
antitumor treatment of colorectal cancer patients according
to the risk stratification. Our study also showed that
lncRNAs may get involved in the double nature of necropto-
sis in colorectal cancer, and its molecular mechanisms
require further experiment verification.
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