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Background. To investigate the relationship between primary ovarian insufficiency and autophagy, we detected and got the expression
profile of human granulosa cell line SVOG, which was with or without LPS induced. The expression profile was analyzed with the
focus on the autophagy genes, among which hub genes were identified. Results. Totally, 6 genes were selected as candidate hub
genes which might correlate with the process of primary ovarian insufficiency. The expression of hub genes was then validated by
quantitative real-time PCR and two of them had significant expression change. Bioinformatics analysis was performed to observe
the features of hub genes, including hub gene-RBP/TF/miRNA/drug network construction, functional analysis, and protein-protein
interaction network. Pearson’s correlation analysis was also performed to identify the correlation between hub genes and
autophagy genes, among which there were four autophagy genes significantly correlated with hub genes, including ATG4B, ATG3,
ATG13, and ULK1. Conclusion. The results indicated that autophagy might play an essential role in the process and underlying
molecular mechanism of primary ovarian insufficiency, which was revealed for the first time and may help to provide a molecular
foundation for the development of diagnostic and therapeutic approaches for primary ovarian insufficiency.

1. Introduction

Primary ovarian insufficiency (POI), also known as premature
menopause or premature ovarian failure (POF), is character-
ized by cessation of menstruation before the expected age of
menopause [1] and is a frequent cause of female infertility.
POI is typically defined as at least a 4-month history of oligo-
menorrhoea and elevated plasma levels of follicle-stimulating
hormone (FSH; >25 IU/L) [2]. Numerous complications are
found in POI patients, consisting of not only infertility but also
sexual dysfunction, vasomotor symptoms, Alzheimer’s dis-
ease, osteoporosis, and cardiovascular diseases [3]. Respec-
tively, it affects approximately 1 in 100 women at the ages of
40 while 1 in 1000 women at the age of 30 [4].

POI is highly heterogeneous in etiology, such as genetic,
autoimmune, iatrogenic, and infectious factors. However,
the exact causes of POI remain unknown despite of its
strong genetic link, indicating that genes likely to be associ-

ated with this condition are yet to be discovered [5]. Cur-
rently, the medical treatment of POI is mostly by estrogen
supplementation, which has some side effects such as
increasing risk of endometrial carcinoma and breast cancer
[6]. Hence, it is essential to explore underlying mechanism
of POI, which can contribute to elucidate the role of genes in
pathogenesis and generate applicable insights to develop pre-
ventive strategies, novel diagnostic modalities, and targeted
therapeutics. Lipopolysaccharide (LPS) has been revealed to
play an essential role in causing hormonal imbalance, ovarian
dysfunction, and even infertility [7]. It can be utilized to
induce primary ovarian insufficiency (POI) in mouse through
causing fibrosis, inflammation, and granulosa cell apoptosis
[8]. The exposure to LPS can lead to cell programed death of
granulosa cells such as apoptosis and pyroptosis, which con-
tribute to steroidogenesis dysfunction and reproduction fail-
ure finally [9]. However, the relationship between LPS-
induced POI and autophagy has not been identified.
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Autophagy, a lysosomal degradative process of damaged
cytoplasmic organelles or cytosolic components, occurs in all
eukaryotic cells from yeast to mammals and takes part in
numerous physiological processes such as differentiation,
development, and aging and contributes to both innate and
adaptive immunity [10]. Autophagy was proved to be
involved in various diseases based on genetic studies, con-
sisting of inflammatory diseases, neurodegenerative diseases,
autoimmune disorders, and cancers. Autophagy could play
essential roles in multiple types of tumor through affecting
tumor growth, regulating tumorigenesis, giving an adaptive
response to cancer cells, and so on [11]. For instance,
autophagy participated in breast cancer through regulating
tumor immune response [12], involved in uveal melanoma
by regulating the expression of Beclin-1 [13, 14], and plays
important roles in ovarian cancer through causing cisplatin
resistance via mediating ERK [15]. Autophagy is active in
cells in a basal state but can also be induced in response to
multiple forms of cellular stress, such as nutrient or growth
factor deprivation, reactive oxygen species, hypoxia, protein
aggregates, DNA damage, damaged organelles, or intracellu-
lar pathogens [16]. Basal autophagy is important for main-
taining cell function by controlling the quality of proteins
and organelles, while under stressful conditions, autophagy
plays the principal role to supply nutrients for survival
[17]. Macroautophagy starts when a double membrane cis-
terna envelops cytosolic material, consisting of organelles
and proteins, expanding into a vesicle called the autophago-
some which then fuses with the endosomal–lysosomal sys-
tem to form an autolysosome [18]. Multiple autophagy
proteins take part in controlling this process [19]. In the
ovary, autophagy act as a cell survival mechanism, which is
involved in maintaining the endowment of female germ cells
prior to establishing primordial follicle pools [20]. Autoph-
agy has also been reported to be involved in follicular atresia,
which is cell and developmental stage specific [21].

The studies mentioned above strongly indicated that
autophagy variants could also originate primary ovarian
insufficiency in human. However, to our knowledge, there
is little known about the relationship between POI and
autophagy. In our study, we detect the human granulosa cell
line (SVOG), which was with or without LPS induced. The
expression profiles were analyzed, with an especial focus
on the autophagy genes and their function. Moreover, the
expression of hub genes was validated by quantitative real-
time PCR (qRT-PCR).

2. Material and Methods

2.1. Study Design. In order to illustrate the data preprocess-
ing, analysis, and validation, a schematic flow diagram of
the study is presented in Figure 1.

2.2. RNA-Sequence Analysis. In our research, the human
granulosa cell line (SVOG) was divided into LPS treatment
group and normal control group with four samples in each
group. The LPS treatment group was performed with LPS,
while the normal control group was performed with PBS.
Total RNA isolation was performed using RNeasy Plus Mini

Kit (QIAGEN), which was followed with RNA-seq. Raw
reads in fastq format were analyzed with perl and finally
turned into read count of mRNA.

2.3. Identification of DEGs. According to the above groups
based, we performed normalization and differential gene
expression analysis using the “DESeq2” R package. The nor-
malization was based on the “Relative Log Expression”method,
which is specifically implemented in the “DESeq2” [22]. The
scaling factors were calculated using the median ratio between
gene abundances and the geometricmean. As amethod for dif-
ferential analysis of transcriptome count data, DESeq2
improves the interpretability and stability of estimation because
of shrinkage estimators for fold change (FC) and dispersion
[22]. The differential gene expression analysis was conducted.
Then, we specified logFC > 0:5 and P value < 0.05 as upregu-
lated genes while logFC < −0:5 and P value < 0.05 as downreg-
ulated genes, and both upregulated genes and downregulated
genes were defined as differentially expressed genes (DEGs).
“ggplot2” and “ComplexHeatmap” R package [23] were used
to generate the volcano plot and heatmap.

2.4. Identification and Functional Analysis of ARGs. Search
for the word “autophagy” on the GeneCards (https://www
.genecards.org/) to retrieve autophagy-related genes (ARGs),
which were downloaded and intersected with DEGs. The
intersection was autophagy DEGs.

The GO biological processes were shown in three
aspects, including biological processes (BP), cellular compo-
nents (CC), and molecular functions (MF) [24]. P value <
0.05 as the cut of criterion was considered statistically signif-
icant [24]. GO enrichment analysis of autophagy DEGs was
implemented by clusterProfiler package [25], and items were
considered as significantly different if they meet the condi-
tions of P value < 0.05 (BH method). R package GOplot
[26] was used to integrate the quantitative information by
implementing high-quality and novel plotting, which pro-
vided us with a collection of multilayered and prespecified
charts. Valuable information was added to each layer to dis-
play the intended message.

2.5. PPI Network Construction and Module Analysis.
STRING (https://string-db.org/) is a website about protein
interaction, whose aim is to achieve a comprehensive and
objective global network and present them with a unique
set of computational predictions [27]. In order to explore
the mutual relationship between proteins encoded by differ-
ent genes, autophagy DEGs were imported into STRING
website for further analysis. Next, we output the analysis
results to a TSV format file and used Cytoscape software
(version 3.8.0) for detail processing and module analysis.
CytoHubba [28] is a plug-in downloaded from Cytoscape
App Store, which can find hub genes in PPI. Therefore, we
applied this plug-in to detect top 10 hub genes in PPI net-
work with the process of MMC, DMNC, MNC, Degree,
EPC, BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, Stress, and ClusteringCoefficient. After filter-
ing and visualizing with the Upset diagram, STRING website
was used again for achieving PPI network of hub genes.
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2.6. Hub Gene-RBP/TF/miRNA/Drug Network Construction.
RNAInter (http://rnainter.org/) provides a more comprehen-
sive and readily accessible RNA interactome platform to inves-
tigate the regulatory landscape of cellular RNAs [29].
RNAInter was used to facilitate elucidating the role of RNA-
binding protein (RBP), whose score was more than 0.15.

hTFtarget (http://bioinfo.life.hust.edu.cn/hTFtarget)
provides a comprehensive, reliable, and user-friendly
resource for exploring human TF-target regulations, which
is useful for a wide range of users in the transcription factors
(TF) and gene expression regulation community [30].
KnockTF (http://www.licpathway.net/KnockTF/index.html)
constructs a TF-differentially expressed gene network and
performs network analyses for genes of interest, which can
help elucidate TF-related functions and potential biological
effects [31]. We predicted transcription factors through
hTFtarget and KnockTF with the criterion of logFC ≤ −1
and network was constructed according to those TFs.

ENCORI (The Encyclopedia of RNA Interactomes, http://
starbase.sysu.edu.cn/index.php) showed extensive and com-
plex RNA–RNA and protein–RNA interaction networks by
analyzing a large set of Ago and RBP binding sites derived
from all available CLIP-Seq experimental techniques (PAR-
CLIP, HITS-CLIP, iCLIP, and CLASH) [32]. The Drug-Gene
Interaction Database (DGIdb, http://www.dgidb.org) is a
web resource that provides information on drug-gene interac-
tions and druggable genes from publications, databases, and
other web-based sources [33]. They were both used to explore
the miRNA interaction networks and potential drugs. The
results were visualized by Cytoscape.

2.7. Delineation of Association between Hub Genes and
Autophagy Genes. Autophagy is a lysosomal degradation
pathway, which is essential for survival, differentiation,

development, and homeostasis. We examine and filter the
expression profile, through which we get the autophagy
genes: ATG5, ATG16L1, ATG12, ATG13, ULK1, LAMP1,
LAMP2, UVRAG, ATG3, ATG4A, ATG4C, ATG4D,
ATG4B, ATG7, and ATG10. Pearson’s correlation analysis
was used between hub genes and autophagy genes men-
tioned above.

2.8. Validation of Autophagy and Expression of Hub Genes.
Samples of human granulosa cell line SVOG, consisting of
the normal control group and LPS-treated group, were col-
lected and lysed in RIPA lysis buffer (PC101, EpiZyme,
China) and then proteins were extracted. The BCA protein
assay kit (NCM Biotech, China) was employed to detect
the protein concentration. The proteins (15μg) were loaded
and electrophoresed on 12.5% SDS-polyacrylamide gels and
then transferred to PVDF membranes. After blocking with
protein-free rapid blocking buffer (PS108P, EpiZyme, China)
for 30min at room temperature, the PVDF membranes were
probed with primary antibodies against LC3 (1 : 2000, CST)
or P62 (1 : 2000, CST) at 4°C overnight. And the anti-β-actin
antibody (1 : 5000, Abclonal, China) was used as the internal
control. Then, the membranes were incubated with secondary
antibodies for 90min at room temperature. The ECL western
blotting kit (NCMBiotech, China) was applied to visualize the
targeted protein bands. We used the ImageJ software to evalu-
ate the protein band densities.

Total RNA was isolated from the human granulosa cell
line SVOG, which was with or without LPS induced, using
TRIzol (RNAiso Plus; Takara, Japan) according to the
manufacturer’s instructions. We also obtained RNA sam-
ples from another human granulosa cell line KGN in
order to avoid deviation. One microgram of RNA was
reversely transcribed into cDNA using a PrimeScript™
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Figure 1: Schematic flow diagram.
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RT reagent kit (Takara). Amplification was performed
using TB Green® Premix EX Taq™ II (Takara) and
gene-specific primers (Sangon, Shanghai, China) on a
qRT-PCR device (QuantStudio 5, Thermo Fisher Scientific,
Waltham, MA, USA). β-Actin was used as an internal

control. The relative expression of the genes was calculated
using the 2-ΔΔCT method.

2.9. Statistical Analysis. The statistical analyses were per-
formed using R 4.0.2 (https://www.r-project.org/, version
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Figure 2: Identification of differentially expressed genes. (a) The differentially expressed genes. (b) Venn diagram of ARGs and DEGs. (c)
The upregulated DEGs. (d) The downregulated DEGs.
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3.6.3). All the statistical tests were 2-sided, and P < 0:05 was
considered statistically significant. In addition, results were
analyzed statistically using the Mann-Whitney U test and
Wilcoxon t-test (P < 0:05).

3. Results

3.1. Identification of Differentially Expressed Genes. After
standardization of microarray results, the differentially
expressed genes (DEGs) were identified, and the results illus-
trated that there were 29 upregulated genes and 46 downreg-
ulated genes (Figures 2(a)–2(c)). Then, we downloaded
autophagy genes from GeneCards. The overlap among the
autophagy genes and DEGs contained 22 genes as shown
in the Venn diagram (Figure 2(d)).

3.2. GO Enrichment Analyses of DEGs. To analyze the biolog-
ical classification of DEGs, functional and pathway enrich-
ment analyses were performed, and the results are shown in
Table 1. GO analysis results showed that changes in biological
processes (BP) of DEGs were significantly enriched in cGMP-
mediated signaling, regulation of tube diameter, regulation of
blood vessel size, regulation of blood vessel diameter, regula-

tion of tube size, vascular process in circulatory system, nega-
tive regulation of smooth muscle cell proliferation, positive
regulation of secretion, and regulation of synaptic vesicle cycle
(Figures 3(a) and 3(d)–3(f)). Changes in cell component (CC)
of DEGs were mainly enriched in transport vesicle, presy-
napse, neuron projection terminus, clathrin-coated vesicle,
excitatory synapse, exocytic vesicle, transport vesicle mem-
brane, late endosome, coated vesicle, ruffle membrane, synap-
tic vesicle membrane, and exocytic vesicle membrane
(Figure 3(b)), while changes in molecular function (MF) were
mainly enriched in amine binding, serotonin binding,
syntaxin-1 binding, neurotransmitter binding, syntaxin bind-
ing, and ammonium ion binding (Figure 3(c)).

3.3. PPI Network Construction and Hub Gene Selection. The
PPI network of autophagy DEGs was constructed
(Figure 4(a)), which illustrated that there were 22 autophagy
DEGs correlated with POI as well as 22 protein-protein inter-
actions. CytoHubba was used to filtrate data for hub genes
(Figure 4(b)). A total of 6 genes were identified as hub genes
with significance in all 11 arithmetic, which indicated that they
might play important role in the process of POI (Table 2).

Table 1: GO enrichment analysis.

Ontology ID Description Gene ID Count

BP GO:0019934 cGMP-mediated signaling HTR2B/NPR1/PRKG1 3

BP GO:0035296 Regulation of tube diameter HTR2B/NPR1/PRKG1/SLC6A4 4

BP GO:0050880 Regulation of blood vessel size HTR2B/NPR1/PRKG1/SLC6A4 4

BP GO:0097746 Regulation of blood vessel diameter HTR2B/NPR1/PRKG1/SLC6A4 4

BP GO:0035150 Regulation of tube size HTR2B/NPR1/PRKG1/SLC6A4 4

BP GO:0003018 Vascular process in circulatory system HTR2B/NPR1/PRKG1/SLC6A4 4

BP GO:0048662 Negative regulation of smooth muscle cell proliferation IL12A/NPR1/PRKG1 3

BP GO:0051047 Positive regulation of secretion HTR2B/NPR1/SLC6A4/SYT1/UNC13D 5

BP GO:0098693 Regulation of synaptic vesicle cycle SLC2A4/SYT1/BSN 3

CC GO:0030133 Transport vesicle PTPRN/SLC2A4/SYT1/BSN/UNC13D 5

CC GO:0098793 Presynapse PTPRN/SLC2A4/SLC6A4/SYT1/BSN 5

CC GO:0044306 Neuron projection terminus PTPRN/SYT1/BSN 3

CC GO:0030136 Clathrin-coated vesicle SLC2A4/SYT1/UNC13D 3

CC GO:0060076 Excitatory synapse SYT1/BSN 2

CC GO:0070382 Exocytic vesicle SYT1/BSN/UNC13D 3

CC GO:0030658 Transport vesicle membrane PTPRN/SYT1/BSN 3

CC GO:0005770 Late endosome IL12A/SLC2A4/UNC13D 3

CC GO:0030135 Coated vesicle SLC2A4/SYT1/UNC13D 3

CC GO:0032587 Ruffle membrane LCP1/PSD4 2

CC GO:0030672 Synaptic vesicle membrane SYT1/BSN 2

CC GO:0099501 Exocytic vesicle membrane SYT1/BSN 2

MF GO:0043176 Amine binding HTR2B/SLC6A4 2

MF GO:0051378 Serotonin binding HTR2B/SLC6A4 2

MF GO:0017075 Syntaxin-1 binding SLC6A4/SYT1 2

MF GO:0042165 Neurotransmitter binding HTR2B/SLC6A4 2

MF GO:0019905 Syntaxin binding SLC6A4/SYT1 2

MF GO:0070405 Ammonium ion binding HTR2B/SLC6A4 2
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3.4. Construction of Hub Gene-RBP/TF/miRNA/Drug
Network. Public databases were used to explore potential
RBP, TF, and miRNA and predict potential therapeutic
agents, which might possibly interact with hub genes. The
results indicated that DKC1 was the most potential gene
according to RNAInter database (Figure 5(a)). The hTFtar-
get database and KnockTF database were used to predict
the potential transcription factors (Figure 5(b)). The results
revealed that FOXP1 could activate PTPRN, PRKG1, and
SLC2A4, while GATA1 was able to activate SLC2A4,
SLC6A4, and SYT1. Furthermore, regulatory microRNAs
(miRNAs) were predicted for hub genes and used to estab-
lish a potential hub gene-miRNA regulation network using
the ENCORI platform (Figure 5(c)). We uploaded hub genes
to the DGIdb database, and all drug options have been
approved, among which there were two kinds of drugs that
could target two hub genes simultaneously, namely, HALO-
PERIDOL and COCAINE. The hub gene-drug network is
constructed and shown in Table 3.

3.5. Correlation between Hub Genes and Autophagy Genes.
To explore the impact of hub genes on POI, we analyzed
the correlation between hub genes and autophagy genes by
Pearson’s correlation (Figure 6(a)). The results indicated
that there was notable significant correlation between
autophagy genes and some hub genes.

3.6. Expression Analysis of Hub Genes and Validation of
Autophagy. The differential expression of hub genes was
revealed based on FPKM datasets. Compared to normal con-
trol, the gene expression changed in LPS-treated group, in
which BSN, PTPRN, and SLC6A4 downregulated while
PRKG1, SLC2A4, and SYT1 notably upregulated
(Figure 7). The results were validated in human granulosa
cell lines KGN and SVOG by qRT-PCR, revealing upregu-
lated expression of PRKG1, SLC2A4, and SYT1 and down-
regulated gene expression of BSN, PTPRN, and SLC6A4,
among which the expression changes of SYT1 and SLC6A4
in SVOG cell line were of significance (Figure 8 and

Figure S1). The primer sequences of hub genes were shown
in Table 4.

After treated with LPS, the expression of proteins related
to autophagy significantly changed (Figure 9). The ratio of
LC3 II/I increased while the expression of P62 decreased,
which both indicated that autophagy was promoted after
LPS treatment.

4. Discussion

POI is characterized by marked heterogeneity, which is with a
significant genetic contribution. However, it is challenging to
identify exact causative genes because of numerous undupli-
cated discoveries. It is essential and necessary to take stock of
the field, frame the progress, outline the controversies, and
evaluate future directions in elucidating the genetics of POI.
Multidisciplinary approaches could help to explore molecular
signatures [34], which accounts for the progression of disease
and contribute to searching for specific treatment [35]. Identi-
fication of effective and novel therapy strategies based on mul-
tiomics methods can make it possible to have a better
management and improve the prognosis of patients [36].
Hence, we applied various approaches to reveal the underlying
mechanism of POI, consisting of bioinformatics, cellular biol-
ogy, and molecular biology.

In our study, we performed RNA sequence analysis
between the LPS-treated group and normal control group,
whose results were then used to identify the differentially
expressed genes. Functional and pathway enrichment analy-
sis and PPI network were performed to analyze the biologi-
cal classification of DEGs. According to arithmetic in
CytoHubba, six genes were identified as hub genes, namely,
BSN, PTPRN, SLC6A4, PRKG1, SLC2A4, and SYT1. The
expression of hub genes was revealed based on FPKM data-
sets as well as validated by qPCR, while various characteris-
tics of hub genes were also identified, such as potential RBP,
TF, miRNA, drugs, and correlation with autophagy genes.

Compared to normal control, some hub gene expression
downregulated in LPS-treated group, including BSN,
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PTPRN, and SLC6A4, while some upregulated, consisting of
PRKG1, SLC2A4, and SYT1. The expression change was val-
idated through qRT-PCR, which demonstrated the same
regulated tendency of bioinformatic analysis and proved

the significant upregulated expression of SYT1 and notable
downregulated expression of SLC6A4. We also accessed
autophagy through identifying P62 and LC3 protein expres-
sion. The expression of P62 decreased while LC3 II/I
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Table 2: The list of hub genes.

Gene symbol Description logFC Degree

BSN Bassoon presynaptic cytomatrix protein -0.563326995 5

PRKG1 Protein kinase cGMP-dependent 1 2.017667849 5

PTPRN Protein tyrosine phosphatase receptor type N -3.054326758 3

SLC2A4 Solute carrier family 2 member 4 1.794934871 4

SLC6A4 Solute carrier family 6 member 4 -4.23050068 4

SYT1 Synaptotagmin 1 2.983723141 5
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Table 3: Hub gene-drug network.

Gene Drug Interaction types Sources

SYT1 Cocaine PharmGKB

SLC2A4 Streptozocin NCI

SLC2A4 Genistein NCI

SLC2A4 Insulin NCI

SLC2A4 CHEMBL35482 NCI

SLC2A4 Irbesartan NCI

SLC2A4 Acetylcysteine NCI

SLC2A4 Phentolamine NCI

SLC2A4 Clofibrate NCI

SLC2A4 Verapamil NCI

SLC2A4 Sorbitol NCI

SLC2A4 Nystatin NCI

SLC2A4 Glufosfamide TdgClinicalTrial

SLC2A4 Dexamethasone NCI

SLC2A4 Glyburide NCI

SLC2A4 Psyllium seed husks NCI

SLC2A4 Dipyridamole NCI

SLC2A4 Staurosporine NCI

SLC2A4 Glipizide NCI

SLC2A4 Etoposide phosphate NCI

SLC2A4 Penicillamine NCI

SLC2A4 UCN-01 NCI

SLC2A4 Fludeoxyglucose-F18 NCI

SLC2A4 Estradiol NCI

SLC2A4 Indinavir NCI

SLC2A4 Heparin NCI

SLC2A4 Neomycin NCI

SLC2A4 Wortmannin NCI

SLC2A4 Resveratrol NCI

SLC2A4 Acarbose NCI

SLC2A4 Liothyronine sodium NCI

SLC2A4 Epigallocatechin gallate NCI

SLC2A4 Prasterone NCI

SLC2A4 Uridine NCI

SLC2A4 Mirtazapine NCI

SLC2A4 Soybean oil NCI

SLC2A4 Curcumin NCI

SLC2A4 Imatinib NCI

SLC2A4 Omapatrilat NCI

SLC2A4 Progesterone NCI

SLC2A4 Indomethacin NCI

SLC2A4 Troglitazone NCI

SLC2A4 Haloperidol NCI

SLC2A4 Epinephrine NCI

SLC2A4 Colchicine NCI

SLC6A4 Doxepin Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Cocaine Inhibitor TdgClinicalTrial|TEND

SLC6A4 Amitriptyline Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Levomilnacipran Inhibitor TdgClinicalTrial|GuideToPharmacology

SLC6A4 Sibutramine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Dapoxetine Inhibitor TdgClinicalTrial|GuideToPharmacology

SLC6A4 Fluvoxamine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Protriptyline Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology
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Table 3: Continued.

Gene Drug Interaction types Sources

SLC6A4 Sertraline Inhibitor|binder|negative modulator TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Ziprasidone Inhibitor GuideToPharmacology

SLC6A4 Nortriptyline Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Atomoxetine Inhibitor|binder GuideToPharmacology

SLC6A4 Amoxapine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Trimipramine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Dexfenfluramine Inhibitor TdgClinicalTrial|TEND

SLC6A4 Nefazodone Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Phentermine Inhibitor TdgClinicalTrial|TEND

SLC6A4 Milnacipran Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Lofepramine Inhibitor GuideToPharmacology

SLC6A4 Vortioxetine Inhibitor TdgClinicalTrial|GuideToPharmacology

SLC6A4 Trazodone Inhibitor TdgClinicalTrial|TEND

SLC6A4 Methylphenidate Inhibitor TdgClinicalTrial|TEND

SLC6A4 Citalopram Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Zotepine Inhibitor|antagonist GuideToPharmacology

SLC6A4 Vilazodone Inhibitor GuideToPharmacology

SLC6A4 Phenelzine Inhibitor GuideToPharmacology

SLC6A4 Imipramine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Duloxetine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Desvenlafaxine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Venlafaxine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Desipramine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Dothiepin Inhibitor GuideToPharmacology

SLC6A4 Fluoxetine Inhibitor TdgClinicalTrial|NCI|TEND|GuideToPharmacology

SLC6A4 Lumateperone Inhibitor TdgClinicalTrial|GuideToPharmacology

SLC6A4 Clomipramine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology|PharmGKB

SLC6A4 Pseudoephedrine Inhibitor TdgClinicalTrial

SLC6A4 Methamphetamine Negative modulator TdgClinicalTrial

SLC6A4 Tramadol Inhibitor TdgClinicalTrial|TEND

SLC6A4 Minaprine Inhibitor TdgClinicalTrial|TEND

SLC6A4 Paroxetine Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Escitalopram Inhibitor TdgClinicalTrial|TEND|GuideToPharmacology

SLC6A4 Solriamfetol TdgClinicalTrial

SLC6A4 4-Methylthioamphetamine DTC

SLC6A4 Olanzapine PharmGKB

SLC6A4 Tedatioxetine TdgClinicalTrial

SLC6A4 Ribavirin PharmGKB

SLC6A4 Ondansetron PharmGKB

SLC6A4 Quetiapine PharmGKB

SLC6A4 Haloperidol PharmGKB

SLC6A4 Morphine PharmGKB

SLC6A4 Bupropion PharmGKB

SLC6A4 Methadone PharmGKB

SLC6A4 Tesofensine TdgClinicalTrial

SLC6A4 Evodiamine PharmGKB

SLC6A4 Clozapine PharmGKB

SLC6A4 Berberine PharmGKB

SLC6A4 Alcohol PharmGKB

SLC6A4 Buprenorphine PharmGKB

SLC6A4 Risperidone PharmGKB

PRKG1 GSK-690693 Inhibitor GuideToPharmacology

PRKG1 Ipatasertib Inhibitor GuideToPharmacology
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Table 3: Continued.

Gene Drug Interaction types Sources

PRKG1 GSK-269962A DTC

PRKG1 CHEMBL225519 DTC

PRKG1 Linifanib DTC

PRKG1 Sotrastaurin DTC

PRKG1 Cenisertib DTC

PRKG1 GW843682X DTC

PRKG1 TAE-684 DTC
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Figure 6: Correlation between hub genes and autophagy genes. (a) Landscape of the correlation between hub genes and autophagy genes.
(b) The correlation between BSN and ATG4B. (c) The correlation between SLC2A4 and ATG3. (d) The correlation between SLC6A4 and
ATG13. (e) The correlation between SYT1 and ULK1.
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increased after LPS treatment, indicating that LPS promoted
autophagy in granulosa cells [37].

SYT1 is an important presynaptic vesicle protein
which binds Ca2+ to regulate synaptic vesicle exocytosis
and was revealed to act as an important regulator in
mouse oocyte activation events consisting of cortical
granule exocytosis and the generation of Ca2+ signals
[38]. SLC6A4 encodes an integral membrane protein,
which act as the role to transport the neurotransmitter
serotonin from synaptic spaces into presynaptic neurons.

SLC6A4 5HTTLPR polymorphism was revealed to be
related to insulin blood levels and insulin secretion dur-
ing OGTT in patients with polycystic ovary syndrome
(PCOS) [39]. Recent research has implied that BSN acted
in concert to control presynaptic autophagy [40]. PTPRN
encodes a member of the protein tyrosine phosphatase
(PTP) family, which is known to be signaling molecules that
regulate a variety of cellular processes including cell growth,
differentiation, mitotic cycle, and oncogenic transformation.
Protein tyrosine phosphatase-1B (PTP1B), encoded by
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Figure 7: Expression analysis of hub genes. (a–f) The expression level of hub genes.
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PTPRN, serves as an essential negative regulator for insulin
signaling, whose ablation was reported to protect against ER
stress-induced cardiac anomalies through regulation of
autophagy [41]. Protein kinase cGMP-dependent 1(PRKG1)
was involved in cGMP-mediated signaling [42], which was
also revealed in the biological process enrichment. The activity

of PRKG1 in follicular cells was demonstrated to be essential
for oocyte maturation [43] and was proved to play important
role in the glucose uptake of granulosa cells mediated by nitric
oxide [44]. The expression of SLC2A4 might be suppressed in
PCOS women, which may consequently alter endometrial
function [45].
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Figure 8: Validation of the expression of hub genes in SVOG.

Table 4: The primer sequences of hub genes.

Forward primer sequence (5′→3′) Reverse primer sequence (5′→3′)
SYT1 AAAGTCCACCGAAAAACCCTT CCACCCAATTCCGAGTATGGT

PRKG1 GGACAGGACTCATCAAGCATAC CTTCACGAGTGACATTTACCGTT

SLC6A4 TGACACACGGCACTCTATCC AGCCAATCACTGAGAGAAGGA

PTPRN TTGAGCATGACCCTCGGATG GCCAGAAGTCTGCGATGGTAT

BSN GCCCTCTATCCACCAAGGC GTCTTGCTGGGTTCAGAAGC

SLC2A4 GCCATGAGCTACGTCTCCATT GGCCACGATGAACCAAGGAA
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Figure 9: Autophagy promotion after LPS treatment.
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To demonstrate whether POI was correlated with
autophagy, Pearson’s correlation was utilized to explore
between hub genes and autophagy genes. It was found that
the expression levels of BSN had a high negative correlation
with ATG4B and the expression levels of SYT1 also had a
high negative correlation with ULK1. High expression levels
of SLC2A4 were correlated with high expression levels of
ATG3, while high SLC6A4 expression was related with low
expression levels of ATG13. Therefore, we demonstrated
that there might be various correlations between POI and
autophagy, which lead to the notable expression changes of
autophagy genes.

For patients with genetic risk of POI, novel methods
aiming at fertility preservation can benefit them a lot
through early diagnosis. Recent research, for instance,
revealed that there was close correlation between POI and
the mutations of BRCA [46]. BRCA can bind to various
essential regulatory proteins and regulate gene expression
[47], which make it possible for BRCA to play a novel role
in the regulation of autophagy [48]. The assessment of
BRCA mutations could be detected by next-generation
sequencing or droplet digital PCR [49]. Novel techniques
applied for disease early diagnosis could help patients to
get a better management and prognosis. It is important to
perform further study to identify the correlation between
gene regulation and disease, while it is equally essential to
search for and validate the application of novel techniques.

However, there were some limitations in our study.
Firstly, the pathogenesis of POI is multidimensional, and it
is not convincing enough to demonstrate POI only in the
aspect of autophagy. Secondly, more clinical characteristics
of POI patients should be included in subgroup analysis
and future study. Thirdly, though we validated the expres-
sion of hub genes in mRNA expression level through qRT-
PCR, it is necessary to validate the protein expression and
perform more multicenter and prospective studies to evalu-
ate the possible applications of molecular signatures in the
future. In addition, further studies containing in vivo and
in vitro experiments are required to elucidate the molecular
mechanisms of hub genes for clinical applications.

5. Conclusion

In conclusion, we performed RNA sequence analysis to
extract the DEGs, based on which we constructed PPI net-
work and identified six hub genes. The expression of hub
genes was not only revealed based on FPKM datasets but
validated by qPCR, while numerous characteristics of hub
genes were also identified, consisting of potential RBP, TF,
miRNA, drugs, and relationship with autophagy genes. The
results indicated that autophagy might play an essential role
in the process and underlying molecular mechanism of POI.
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