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Tumor-associated macrophage (TAM) is a major component of tumor microenvironment (TME) and plays critical role in the
progression of cancer metastasis. However, TAM-mediated regulation in gallbladder cancer (GBC) has not been fully
characterized. Here, we found that exosomes derived from GBC cell polarized macrophage to M2 phenotype, which then
facilitated the invasion and migration of GBC cells. We discovered that leptin was enriched in GBC cell-derived exosomes.
Exosomal leptin levels promoted invasion and migration of GBC-SD cells. The inhibition of leptin not only attenuated M2
macrophage of polarization but also inhibited the invasive and migratory ability of GBC cell. In addition, GBC-SD cell-derived
exosomal leptin induced M2 polarization of macrophage via activation of STAT3 signal pathway. Taken together, our results
suggested that GBC cells secrete exosome-enclosed leptin facilitated cell invasion and migration via polarizing TAM.

1. Introduction

Gallbladder cancer (GBC) is the most common biliary tract
malignancy. However, the prognosis is poor for GBC. Thus,
it is important to understand the underlying mechanism of
gallbladder cancer and progression. Tumor-associated mac-
rophage (TAM), which is a major component of tumor
microenvironment (TME), plays critical role in the crosstalk
between cancer cells and TME. Macrophages are classified
into M1 and M2 macrophage. TAM is defined more closely
resemble M2-polarized macrophage [1]. Emerging evidence
indicated that M2 macrophage is able to enhance cancer

progression [2] and metastasis [3]. Moreover, the presence
of M2 macrophages is supposed to be correlated with a poor
prognosis for breast cancer [4], colorectal cancer [5], and
hepatocellular cancer [6]. However, the role of M2-subtype
macrophage in the development of GBC has not been fully
characterized.

Exosomes are a class of small membrane-bound vesicles
secreted by most cells and rich in RNAs, lipids, and proteins
[7]. It has been reported that exosome participates in the
communication of tumor cell and tumor microenvironment
[8, 9]. In turn, exosome is capable of promoting tumorigen-
esis [10], tumor growth [11, 12], and cancer malignant
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Figure 1: Continued.
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behavior [13, 14]. Recently, more efforts have been made to
use exosome as diagnostic marker of different cancers [15,
16]. Exosomes are able to deliver content derived from can-
cer cell to macrophages [17]. Accumulating evidence sug-
gested cancer cell-derived exosomes are closely related to
M2-subtype macrophage activation [18, 19]. Thus, the role
of GBC cell-derived exosome in M2 macrophage and GBC
development warrants further investigation.

Leptin, which is encoded by LEP gene, is considered to
be the first discovered adipokine [20]. Leptin is a critical fac-
tor in signal transduction such as AMPK [21, 22], PI3K/
AKT [23], ERK1/2 [24], and STAT3 [25]. In turn, leptin par-
ticipates in controlling energy balance [26], metabolism [27],
immune [28], tumorigenesis [29], and cancer metastasis
[30]. In particular, leptin is involved in macrophage polari-
zation [31]. Recent study indicated that leptin could pro-
mote invasion and migration of GBC cells [32]. However,
whether leptin transfer in exosomes derived from GBC cells
promotes M2 macrophage polarization and enhances GBC
cell invasion and migration remains unclear.

In the current study, we demonstrated that leptin is
upregulated in GBC cell-derived exosomes and can be deliv-
ered to macrophages and promotes M2-subtype macro-
phages. Activation of M2-subtype macrophages enhances
GBC cell invasion and migration. This may provide a new
strategy for the treatment of gallbladder cancer.

2. Materials and Methods

2.1. Cell Lines. GBC cell line GBC-SD and human monocyte
cell line THP-1 were purchased from Cell Bank of the China
Science Academy (Shanghai, China). GBC-SD cell was cul-
tured in DMEM, and THP-1 cell was maintained in RPMI-
1640 medium. All of the mediums were supplemented with
10% exosome-depleted fetal bovine serum (Gibco, Thermo
Fisher Scientific) and penicillin-streptomycin in a 5% CO2
atmosphere.

2.2. RNA Interference. GBC-SD cell were transfected with
leptin siRNA or scramble control siRNA via Lipofectamine
2000 reagent as suggested by the manufacturer (Invitrogen,
USA) [33].

2.3. Exosome Isolation and Identification. Exosome isolation
kits (Umibio, China) are for exosome isolation. Cells were
cultured in a complementary medium with 10% exosome-
depleted FBS and 1% penicillin–streptomycin. After 3 days
of culture, the cells were collected and transferred to centri-
fuge tube. Cells were spun at 3000 g for 10min. The superna-
tants were collected and treated with exosome concentration
solution for 2 hrs at 2°C. Then, the precipitate was collected
to isolate exosomes by ultracentrifugation at 1000×g for
60min. The exosomes were harvested from resuspended
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Figure 1: GBC-SD cell-derived exosomes promote M2 macrophage polarization and subsequently enhances cell invasion and migration. (a)
Identification of GBC-SD cell derived exosome by electron microscopy. (b) Exosome protein expression was detected by Western blot. (c)
Identification of macrophage by flow cytometry. (d) qRT-PCR to detect the specific markers for M2-subtype macrophages. (e) Western blot
to detect the specific markers for M2-subtype macrophages. (f) Flow cytometry determining the percentage of CD163+CD206+ cells among
total CD68+ cells after induction. (g) qRT-PCR to detect the specific markers for M1-subtype macrophages. (h) qRT-PCR to detect the
specific markers for M1-subtype macrophages. (i) Transwell assay to detect invasion and migration of GBC-SD cell with PBS or GBC-SD
cell derived-exosome treated. Invasion and migration of GBC-SD cell were quantified. Data in (b–i) are representative of three
independent experiments; the P value was determined by Student’s t test.
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Figure 2: Continued.
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precipitate at 12000×g for 2min and purified by exosome
purification filter. Exosomes were identified with transmis-
sion electron microscopy as described previously [34].

2.4. Macrophage Differentiation [35]. Monocytic THP-1 cell
with phorbol 12-myristate 13-acetate (PMA, Sigma Aldrich,
USA) treatment was performed to obtain M0 macrophage.
THP-1 cell was cultured in RPMI-1640 with 10% EV-
depleted FBS and treated with 100 ng/ml PMA for 24h.
The M0 macrophages were determined by flow cytometry.

2.5. Flow Cytometry. Cells (1 × 106 cells) were digested by
trypsin and then washed with PBS twice. Cells were then
stained with antibodies against CD11b for 30min at 4°C in
the dark, then washed twice, and resuspended in 500μl of
phosphate-buffered saline (PBS).

2.6. Cell Treatment. For macrophage treatment, the 100μg/
ml GBC-SD cell-derived exosomes were cocultured with
M0 for 24h macrophages. And the same volume of PBS
was added as a control. For GBC-SD cell treatment, the
GBC-SD cells were administrated with conditioned-
medium of macrophage cocultured for 24h with exosomes
or PBS.

2.7. Invasion and Migration Assay. The invasion and migra-
tion abilities of GBC-SD cells were assessed by 24-well cell
culture chamber precoated with or without Matrigel base-
ment membrane gel. GBC-SD cells (2 × 104 in each well)
were plated into the upper chambers. And each lower cham-
ber contained exosome-treated macrophages, PBS-treated
macrophages, si-control-transfected macrophage, or si-

leptin-transfected macrophage. For migration assays, GBC-
SD cells incubated at 37°C for 8 h. For invasion assays, the
incubation time was 24 h. After incubation, the membranes
stained with crystal violet for 15min at room temperature.
The quantification of invasion and migratory cells were real-
ized by Image Pro Plus.

2.8. Western Blot Analysis. Cells and exosomes were lysed
with RIPA buffer. Protein samples were separated by 8–
15% SDS-PAGE and transferred to PVDF membrane. The
blots were probed with antibodies: anti-leptin (1 : 1000;
ab3583; Abcam), anti-STAT3 (1 : 1000; 12640; Cell Signaling
Technology), anti-p-STAT3 (1 : 1000; 9134; Cell Signaling
Technology), anti-GAPDH (1 : 5000; 10494-1-AP;
Proteintech).

2.9. Quantitative Real-Time PCR (qRT-PCR). Following
macrophage treatments with exosomes, cell culture media
was removed, and cells were washed in PBS. Total RNA was
isolated using Trizol reagent (TaKaRa, Japan) according to
manufacturer’s protocol. RNA was reversely transcribed to
cDNA using reverse transcription kit (T TaKaRa, Japan).
Real-time- (RT-) PCR was implemented using iTaq Universal
SYBR Green One-step kit (BioRad). The relative mRNA levels
were determined by the ΔΔCt quantification method. Results
were normalized to the endogenous β-actin mRNA. The fol-
lowing primers were used: GAPDH sense 5′–CTGGGCTAC
ACTGAGCACC-3′, GAPDH antisense 5′-AAGTGGTCG
TTGAGGGCAATG-3, TGF-β sense 5′-GGTACCTGAAC
CCGTGTTGCT-3′, TGF-β antisense 5′-TGTTGCTGTAT
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Figure 2: GBC-SD cell-derived exosome-mediated transfer of leptin promotes M2 macrophage polarization. (a) Leptin protein expression
in GBC-SD cell derived-exosome was determined by Western blot. (b) The leptin mRNA expression in GBC-SD cell derived-exosome was
measured by qRT-PCR. (c) Leptin protein expression in macrophage with PBS or GBC-SD cell-derived exosome-treated was detected by
Western blot. The leptin protein expression in macrophage with PBS or GBC-SD cell-derived exosome-treated was quantified. (d)
Western blot assay showed leptin protein expression in macrophage treated with exosomes form si-control or si-leptin-transfected GBC-
SD cell. The leptin expression in macrophage treated with exosomes form si-control or si-leptin-transfected GBC-SD cell was quantified.
(e) qRT-PCR to detect the specific markers for M2-subtype macrophages in macrophage treated with exosomes form si-control or si-
leptin-transfected GBC-SD cell. (f) Western blot to detect the specific markers for M2-subtype macrophages in macrophage treated with
exosomes form si-control or si-leptin-transfected GBC-SD cell. Data in (a–f) are representative of three independent experiments; the P
value was determined by Student’s t test.
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TTCTGGTAACAGCTC-3′, IL10 sense 5′-GACTTTAAGGG
TTACCTGGGTTG-3′, IL10 antisense 5′-TCACATGCGCC
TTGATGTCTG-3′, CD163 sense 5′-TTTGTCAACTTGAG
TCCCTTCAC-3′, CD163 antisense 5′-TCCCGCTACAC
TTGTTTTCAC-3, IL-1β sense 5′-ATGATGGCTTATTACA
GTGGCAA-3′, IL-1β antisense 5′-GTCGGAGATTCGTA
GCTGGA-3′, iNOS sense 5′–AGGGACAAGCCTACCC
CTC-3′, iNOS antisense 5′–CTCATCTCCCGTCAGTTGG
T-3′, leptin sense 5′–-GGCGTTAAAGCTCTCGTGG-3′, lep-
tin antisense 5′–GGACGAATAAGGGCCAGTAAAC-3′.

2.10. Flow Cytometry Analysis of Macrophage Markers. After
treating the macrophages with exosomes, the cells were har-
vested and blocked with 3% BSA in PBS for 30 minutes and
then incubated with CD68 and CD163/CD206 (BD Biosci-
ences; San Jose, USA). The cells were then analyzed by flow
cytometry.

2.11. Statistical Analysis. All of the data were presented as
the mean ± SD as indicated of at least three independent
experiments by Student’s t test or one-way ANOVA for
between group differences. P < 0:05 was considered statisti-
cally significant.

3. Results

3.1. GBC-SD Cell-Derived Exosomes Promote M2
Macrophage Polarization and Subsequently Enhance Cell
Invasion and Migration. To determine the role of GBC-SD
cell-derived exosomes in M2 macrophage polarization, the
exosomes were isolated as described previously. Exosomes
derived from GBC-SD cell were identified by electron
microscopy (Figure 1(a)). The exosome markers CD9,
CD63, and TSG101 were increased in GBC-SD cell-derived
exosomes compared with GBC-SD cell (Figure 1(b)).

In order to obtain M0 macrophages, THP-1 cell was
treated with phorbol-12-myristate-13-acetate (PMA) for 24
hours as described previously [36]. Based on former
research, CD11b was reported to be common markers for
the differentiation of monocytes into macrophages [36],

and the CD11b level was detected by flow cytometry to con-
firm the M0 macrophages acquirement (Figure 1(c)). We
next examined the effect of GBC-SD cell-derived exosomes
on macrophage polarization. The mRNA and protein
expression of M2 macrophage markers (CD163, CD206,
IL-10, and TGF-beta) increased after the induced macro-
phage treated with exo (Figures 1(d) and 1(e)). Flow cytom-
etry results suggested that macrophages induced with exo
showed significant higher expression of M2 macrophage-
related cell surface marked, namely, CD163 and CD206
(Figure 1(f)). In addition, the mRNA and protein expression
of M1 macrophage markers (iNOS and IL-1β) increased
after the induced macrophage treated with exo
(Figures 1(g) and 1(h)). Thus, our results indicated that
GBC-SD cell-derived exosomes are able to promote M2
polarization.

To determine the role of GBC-SD cell-derived exosome-
induced M2 polarization in GBC-SD cell invasion and
migration, the GBC-SD cells were cocultured with exo-
treated macrophage or PBS-treated macrophage. As shown
in Figure 1(i), GBC-SD cell incubated with exo-treated mac-
rophages displayed elevated invasive ability and migratory
ability compared with GBC-SD cocultured with PBS-
treated macrophages. Our study suggested that GBC-SD
cell-derived exosomes activate M2 macrophage phenotype
and subsequently promote invasion and migration of
GBC-SD cells.

3.2. GBC-SD Cell-Derived Exosome-Mediated Transfer of
Leptin Promotes M2 Macrophage Polarization. Accumulat-
ing evidence showed that leptin is upregulated in GBC cell,
and overexpression of leptin promotes cancer cell prolifera-
tion [32]. To elucidate the leptin expression in GBC-SD cell-
derived exosomes, we detected leptin level by Western blot
and qRT-PCR. The results indicated that the protein and
mRNA expression of leptin was upregulated in GBC-SD
cell-derived exosomes (Figures 2(a) and 2(b)). Moreover,
the expression of leptin was increased in GBC-SD cell-
derived exosome-treated macrophages compared with PBS-
treated macrophages (Figure 2(c)). These results suggested
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Figure 3: M2 macrophage induced by exosomal promotes invasion and migration of GBC-SD cells through leptin transfer. Transwell assay
to detect invasion and migration of GBC-SD cell cocultured with macrophage treated with exosomes form si-control or si-leptin-transfected
GBC-SD cell. Invasion and migration of GBC-SD cell were quantified. Data in (a) is representative of three independent experiments; the P
value was determined by Student’s t test.
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Figure 4: Continued.
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cancer cell-derived exosomes could deliver leptin to
macrophage.

We next clarify the role of GBC-SD cell-derived
exosome-mediated transfer of leptin in polarization of M2
phenotypic polarization. GBC-SD cells were transfected with
si-leptin and si-control. After leptin knockdown in GBC-SD
cells, exosomes from GBC-SD cell could no longer enhance
leptin expression when cocultured with macrophage
(Figure 2(d)). In addition, the mRNA and protein expression
of IL-10, TGF-β, and CD163 also decreased in macrophages
cocultured with exosomes derived from leptin-knockdown
GBC-SD cells (Figures 2(e) and 2(f)). Thus, our results indi-
cated that GBC-SD cell-derived exosome leptin was capable
of inducing M2 macrophage polarization.

3.3. M2 Macrophage Induced by Exosomal Promotes
Invasion and Migration of GBC-SD Cells through Leptin
Transfer. We next examine the effect of leptin expression
in macrophages on GBC-SD cell migration and invasion.
As shown in Figure 3, the invasion and migration of GBC-

SD cell presented significantly reduction in macrophage cul-
tured with exosome derived from leptin deficiency-GBC-SD
cells. Therefore, exosome leptin promoted GBC-SD cell
invasion and migration via M2 macrophage polarization.

3.4. Exosome-Enclosed Leptin Promotes Macrophage to M2
Subtype via STAT3. A few studies have reported that STAT3
pathway could be regulated by leptin [37, 38]. Moreover, it
was reported that STAT3 pathway was accounted for macro-
phage polarization [39, 40]. To determine whether STAT3
was responsible for exosomal leptin-induced M2 phenotypic
polarization, Western blot analysis was performed to detect
STAT3 phosphorylation (defined as p-STAT3) level. As
shown in Figure 4(a), the expression of p-STAT3 was
increased in macrophages treated with GBC-SD cell-
derived exosomes. However, when treated macrophages
with exosomes derived from leptin-knockdown GBC-SD
cells, the expression of p-STAT3 was reduced (Figure 4(b)).

In addition, STAT3 inhibitor stattic [41] was used to
treat cells. Western blot and qRT-PCR assay showed that
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Figure 4: Exosome-enclosed leptin promotes macrophage to M2 subtype via STAT3. (a) Western blot assay showed the expression of
STAT3 and p-STAT3 in macrophage with PBS or GBC-SD cell-derived exosomes. The p-STAT3 expression was quantified. (b) Western
blot assay showed the expression of STAT3 and p-STAT3 in macrophage treated with exosomes form si-control or si-leptin-transfected
GBC-SD cell. The p-STAT3 expression was quantified. (c) Western blot assay showed the expression of STAT3 and p-STAT3 in
macrophage treated with exosomes form PBS, Exo or Exo+statti-transfected GBC-SD cell. The p-STAT3 expression was quantified. (d)
qRT-PCR to detect the specific markers for M2-subtype macrophages in macrophage treated with PBS, or exosomes, or STAT3 inhibitor
static. (e) Flow cytometry determining the percentage of CD163+CD206+ cells among total CD68+ cells after induction. (f) Transwell
assay to detect invasion and migration of exosome- or static-treated GBC-SD cell. Invasion and migration of GBC-SD cell were
quantified. Data in (a–f) are representative of three independent experiments; the P value was determined by Student’s t test or one-way
ANOVA.
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GBC-SD cell-derived exosome treatment could no longer
promote M2 macrophage activation when STAT3 signaling
was suppressed by stattic (Figures 4(c) and 4(d)). Flow
cytometry also verified this result (Figure 4(e)). Moreover,
stattic administration reversed the exosomal leptin-
mediated forced invasion and migration abilities of GBC-
SD cells (Figure 4(f)). Collectively, these results suggested
that the STAT3 signaling pathway was accounted for the
activation of GBC-SD cell-derived exosome on M2 macro-
phage polarization.

4. Discussion

Tumor together with surrounding stromal cells and ECM
constitute a tumorous niche referred as the TME, which
plays vital roles in each step of tumorigenesis. Among them,
M2 macrophage could promote cancer cell proliferation,
invasiveness, and stemness [42]. Our data showed that exo-
somes derived from GBC cells promote the polarization of
macrophage to M2-subtype.

Exosomes are a kind of information transmitter that can
mediate a wide range of signal transduction between a vari-
ety of cell types (cancer cells-stromal, cells cancer cells-
cancer cells and stromal cells-stromal cells) to ensure prolif-
eration growth and metastasis of tumorigenesis-related pro-
cesses of tumor cells [43, 44]. Leptin is a key factor in signal
transduction and is involved in tumorigenesis and cancer
metastasis [29, 30]. In addition, studies have shown that lep-
tin is involved in macrophage polarization [31]. Our study
found that leptin is highly expressed in exosomes derived
from GBC cells. GBC cell-derived exosome-mediated leptin
transfer promotes the polarization of M2 macrophages and
enhances GBC cell invasion and migration.

Tumor-derived exosomes induce signal changes in
receiving cells and affect their functions [45]. In order to
explore the changes in specific signaling pathways corre-
sponding to exosomes derived from GBC cells, the signaling
pathways related to the polarization of macrophages were
observed. STAT6 participates in the regulation of various
physiological functions such as cell growth, differentiation,
and apoptosis and is closely related to inflammation, tumors,
and immune responses [46]. The activation of STAT3 is
essential for the polarization of M2 subtype macrophages
[47]. This study found that the STAT3 signaling pathway
is responsible for the activation of GBC-SD cell-derived exo-
somes on M2 macrophage polarization.

Taken together, our study demonstrated that leptin is
upregulated in GBC cell-derived exosomes and can be deliv-
ered to macrophages and promotes M2-subtype macro-
phages. Activation of M2-subtype macrophages enhances
GBC cell invasion and migration.
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