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Objective. This study aimed to analyze the cuproptosis-related long non-coding RNA (lncRNA) in patients with bladder urothelial
carcinoma (BLCA), construct a prognostic model, and screen its potential drugs. Methods. The transcriptome expression and
clinical and mutation burden data related to BLCA were downloaded from The Cancer Genome Atlas database. The
prognostic lncRNAs were screened using univariate Cox and Lasso regression analyses, and then included in the multifactor
risk ratio model. The risk score of each sample was calculated based on the prognostic model formula, and the patients were
divided into high- and low-risk groups for survival difference analysis. Clinically relevant receiver operating characteristic
(ROC) curve, C-index principal component analysis, and clinical data statistics were used to evaluate the predictive power of
the model. The risk-differential lncRNAs were functionally enriched. We calculated the tumor mutation burden of risk
lncRNAs, and survival and the Tumor Immune Dysfunction and Exclusion analyses for high- and low-risk groups. Finally,
immunocorrelation analysis and potential drug screening were performed. Results. Eleven lncRNAs with independent
prognostic significance were screened out to construct the prognostic model. Survival analysis showed a significant difference
in survival between the high- and low-risk groups. The areas under the ROC curve at 1, 3, and 5 years were 0.711, 0.679, and
0.713, respectively. The discrimination between the lncRNA high- and low-risk groups in the constructed model was the most
obvious. The risk-differential lncRNAs were closely related to immunity. The treatment drugs with high sensitivity were
screened based on the IC50 value. Conclusion. The 11 cuproptosis-related lncRNAs may serve as molecular biomarkers and
therapeutic targets for BLCA.

1. Introduction

Bladder cancer (BC) is a malignant tumor occurring on the
bladder mucosa, among which transitional cell carcinoma
is the most common one and is called bladder urothelial car-
cinoma (BLCA). BC is the most common malignant tumor
of the urinary system in China and ranks 10th in the inci-
dence of all types of cancer in the world [1, 2]. Despite med-
ical developments, improved diagnostics, and increased
health awareness in recent years, the incidence has not been
stable throughout the world over time, nor will it be in the

near future. Countermeasures should be taken to deal with
the adverse effects of aging [3].

The main treatments of BC at present include surgery,
radiotherapy, chemotherapy, immune support, and so on.
Invasive BC accounts for about 70% of all BCs, and the mus-
cle layer is generally involved in the resection of transure-
thral bladder tumor, but the possibility of recurrence and
progression is higher. Muscularis invasive BC accounts for
about 30% of all BCs, and radical resection and bladder pel-
vic lymph node cleaning treatment are the gold standard.
However, still, a high recurrence rate or the possibility of
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progression exists [4, 5]. Currently, authoritative guidelines
recommend immune checkpoint inhibitors as the second-
line treatment in patients with BC who have developed
metastases and lost the chance of surgical resection, and as
the first-line treatment in patients with programmed
death-ligand 1 (PD-L1) who are ineligible for platinum-
based chemotherapy [6].

A variety of prespecified and precisely controlled pro-
grammed cell death occur, such as apoptosis, necroptosis,
pyroptosis, and ferroptosis, during the development of
multicellular organisms. The mechanism of copper toxic-
ity has been demonstrated to be different from all other
known mechanisms regulating cell death, and this previ-
ously uncharacterized cell death mechanism is termed
cuproptosis [7].

Therefore, this study used The Cancer Genome Atlas
(TCGA) database to predict the long non-coding RNA
(lncRNA) associated with copper mortality in BC, so as to
construct the prognostic model of related lncRNA and
screen potential drugs in patients with BLCA.

2. Materials and Methods

2.1. Data Downloading and Sample Sorting. The BLCA-
related transcriptome expression data, clinical data, and the
mutation load were downloaded from the National Cancer
Institute GDC Data Portal website (https://portal.gdc
.cancer.gov), which included the control and the patient’s
clinical data, such as age, sex, survival time and survival
state, tumor classification, T stage, N stage, and M install-
ment. The Perl software was used to collate the tran-
scriptome data and transformation ID, and separate
lncRNA and microRNA.

2.2. Expression of Cuproptosis-Related lncRNA and Co-
Expression Analysis. The limma package of the R-Studio
software was used to collate transcriptome data and perform
cuproptosis-related gene (NFE2L2, NLRP3, ATP7B, ATP7A,
SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT, PDHA1,
PDHB, MTF1, NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1,
FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB,
MTF1, GLS, CDKN2A, DBT, and GCSH DLST) analysis.
The extraction of the lncRNA expression quantity associated with
cuproptosis via the limma package quantity of cuproptosis-related
gene expression was analyzed via lncRNA isolation (set condi-
tions: corFilter=0.4 and P < 0:001).

2.3. Construction of the Prognostic Model. The limma pack-
age of the R-Studio software was used to merge
cuproptosis-related lncRNA expression data with the clinical
data (survival time and survival state) via the survival pack,
the caret bag, glmnet package, survminer merged data and
time receiver operating characteristic (ROC) package, and
univariate Cox regression analysis (filter criteria: P < 0:05)
to screen the lncRNA related to the prognosis in patients with
BLCA. Further screening analysis was performed by Lasso
regression to reduce overfitting of the data and to screen
the key cuproptosis-related lncRNAs. Cross-validation
was used in Lasso regression to select parameters, and
the Lasso regression coefficient spectrum was drawn.
Finally, multivariate Cox regression analysis was per-
formed to establish a valuable lncRNA model for the

Table 1: Co-expression of cuproptosis-related genes and lncRNA of BLCA (partial examples).

Cuproptosis-related genes lncRNAs cor P -value Regulation

CDKN2A CDKN2A-DT 0.80438382 9:43 × 10−95 Positive

NLRP3 AC090559.1 0.68679608 8:91 × 10−59 Positive

DBT AC108052.1 0.67085575 3:42 × 10−55 Positive

DBT LIMD1-AS1 0.65036636 6:69 × 10−51 Positive

DBT LINC02109 0.62524963 4:50 × 10−46 Positive

DBT AC006017.1 0.61358812 5:60 × 10−44 Positive

DBT AC018616.1 0.61068595 1:80 × 10−43 Positive

DBT C21orf62-AS1 0.61056131 1:90 × 10−43 Positive

DBT AC022150.4 0.60747919 6:48 × 10−43 Positive

DBT AC099482.1 0.60103282 8:10 × 10−42 Positive

Cuproptosis

Cuproptosis

IncRNA

LIAS

PDHA1

GCSH

NLRP3

ATP7A
ATP7B

DBT
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Figure 1: The correlation between cuproptosis-related genes and
lncRNA.
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Figure 2: Continued.
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prognosis of BLCA and presented in the form of a nomo-
gram. The lncRNA model was constructed based on the mul-
tivariate Cox regression analysis, and the risk score equation
was: Risk score =∑n

i=1coefficientðiÞ × EXPðlncRNAÞi. The
data were randomly divided into two groups: Train group
and Test group.

2.4. Evaluation and Clinical Value Analysis of the Prognostic
Model. The R-Studio software was used to perform clinical
statistical analysis between the Train and Test groups.
Limma, reshape2, tidyverse, and ggplot2 packages were used
for correlation analysis of cuproptosis-related gene expres-
sion data, cuproptosis-related lncRNA expression data, and
risk gene data. The survival, survMiner, and timeROC pack-
ages were used to analyze the OS and progression-free sur-
vival (PFS) of risk gene data. Independent prognostic and

ROC analyses were performed on risk gene and clinical data.
The C-index analysis was performed using dplyr, survival,
rms, and pec packages. Risk genetic data and clinical data
were analyzed by using regplot, survival and rms packages,
and then histogram was drawn to predict the survival of
BLCA patients by nomogram. Survival was analyzed using
the R-Studio software package and survminer package data
for risk genes associated with clinical data, and the validation
model built was applicable to patients with different clinical
groups. The principal component analysis (PCA) was per-
formed using the limma and Scatterplot3d packages to verify
whether the lncRNA involved in the model could distinguish
the patients in the high- and low-risk groups.

2.5. Screening of Risk Genes with Significant Differences and
Enrichment and Immune-Related Functional Analyses. The
R-Studio software was used to conduct risk difference anal-
ysis on risk gene data and gene expression data, and to
screen the differential risk genes with significant differences.
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were per-
formed. Then, risk gene data and gene expression data were
analyzed for immune-related functions, and statistically sig-
nificant differences in immune-related functions were
observed between the high- and low-risk groups.

2.6. Comparison between High and Low Risk of BC Risk Gene
Mutation Frequency and Mutation Load Survival Analysis.
The downloaded mutation burden data were processed
using the Perl software, and the mutation burden of BLCA
was calculated. The Perl software was used to process the
tumor mutation data and risk gene data to obtain the muta-
tion gene data of high- and low-risk groups. The MafTools
package of the R-Studio software was used to analyze the
mutation frequency of risk genes between high- and low-

Table 2: Multivariate Cox analysis of lncRNA associated with
cuproptosis.

ID Coefficient

CASC20 0.686828262

‘SCAMP1-AS1’ −0.910543962
AC108066.2 −1.920725726
AC110611.1 −2.506788801
‘NR2F2-AS1’ 3.872755402

AC022165.1 −1.145970684
MIR181A2HG −0.342648292
AC010132.4 −1.908268477
AC124283.3 1.504962992

AP000593.3 0.340927746

AC078778.1 1.373238179
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Figure 2: Screening for cuproptosis-related lncRNA of greater prognostic value in patients with BLCA. (a) Univariate Cox analysis of
lncRNA associated with cuproptosis. (b) and (c) Lasso regression analysis of lncRNA associated with cuproptosis.
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Table 3: Clinical statistical analysis of groups.

Covariates Type Total Test Train P-value

Age (years)
≤65 159 (39.36%) 75 (37.13%) 84 (41.58%)

0.4152>65 245 (60.64%) 127 (62.87%) 118 (58.42%)

Gender
Female 106 (26.24%) 49 (24.26%) 57 (28.22%)

0.4286
Male 298 (73.76%) 153 (75.74%) 145 (71.78%)

Grades

High grade 381 (94.31%) 193 (95.54%) 188 (93.07%)

0.4841Low grade 20 (4.95%) 8 (3.96%) 12 (5.94%)

Unknown 3 (0.74%) 1 (0.5%) 2 (0.99%)

Stages

Stage I 2 (0.5%) 2 (0.99%) 0 (0%)

0.4932

Stage II 128 (31.68%) 61 (30.2%) 67 (33.17%)

Stage III 140 (34.65%) 70 (34.65%) 70 (34.65%)

Stage IV 132 (32.67%) 68 (33.66%) 64 (31.68%)

Unknown 2 (0.5%) 1 (0.5%) 1 (0.5%)

T

T0 1 (0.25%) 1 (0.5%) 0 (0%)

0.8389

T1 3 (0.74%) 2 (0.99%) 1 (0.5%)

T2 117 (28.96%) 57 (28.22%) 60 (29.7%)

T3 193 (47.77%) 97 (48.02%) 96 (47.52%)

T4 57 (14.11%) 29 (14.36%) 28 (13.86%)

Unknown 33 (8.17%) 16 (7.92%) 17 (8.42%)

M

M0 194 (48.02%) 98 (48.51%) 96 (47.52%)

1M1 11 (2.72%) 6 (2.97%) 5 (2.48%)

Unknown 199 (49.26%) 98 (48.51%) 101 (50%)

N

N0 235 (58.17%) 115 (56.93%) 120 (59.41%)

0.926

N1 46 (11.39%) 25 (12.38%) 21 (10.4%)

N2 75 (18.56%) 38 (18.81%) 37 (18.32%)

N3 6 (1.49%) 3 (1.49%) 3 (1.49%)

Unknown 42 (10.4%) 21 (10.4%) 21 (10.4%)

SLC31A1

⁎⁎⁎
P < 0.001

⁎⁎
P < 0.01

⁎
P < 0.05
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Figure 3: Correlation between lncRNA involved in model construction and cuproptosis-related genes.
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risk groups. Reuse the survival of cancer mutations and the
survminer package load data and risk genes in the tumor
mutation load of survival analysis.

2.7. Analysis of Immune Evasion and Immunotherapy in
BLCA. The transcriptome data were uploaded to the Tumor
Immune Dysfunction and Exclusion (TIDE) database
(http://tide.dfci.harvard.edu/) to obtain the TIDE rating of
the transcriptome data. The R-Studio software limma pack-
age and ggpubr package were used to analyze risk genes data.
The high- and low-TIDE scores were analyzed to find the
difference between the risk groups.

2.8. BC Screening of Potential Drugs. Gene expression data
and risk genes were analyzed using the limma, ggpubr,
pRRophetic bags, and ggplot2 packages, and screening indi-
cated a significant difference between high- and low-risk
groups of drugs (filter condition: P < 0:001).

3. Results

3.1. Extraction of Cuproptosis-Related lncRNA Expression
and Co-Expression Analysis. Using the Perl transcriptome
data processing software, we obtained 16,876 lncRNAs
from the data set of RNA-seq of 412 samples of BLCA
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Figure 4: OS and PFS analyses between high- and low- risk groups in Train group and Test group. (a) OS analysis of all risk lncRNAs with
high and low risk. (b) OS analysis of train group with high and low risk. (c) OS analysis of test group with high and low risk. (d) PFS analysis
of all risk lncRNAs with high and low risk.
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and 19 corresponding tissue adjacent to carcinoma sam-
ples after isolating lncRNA expression data. The R-
Studio software was used to analyze the transcriptome
data of cuproptosis-related genes (NFE2L2, NLRP3,
ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2,
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A,
NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS,
LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,
CDKN2A, DBT, and GCSH DLST). The expression levels
of cuproptosis-related genes in each sample were obtained

through analysis, and then combined with the obtained
16,876 lncrnas for co-expression analysis, a total of 762
copper-death co-expression lncrnas were screened (corFil-
ter = 0.4, P < 0:001; Table 1). The R-Studio software was
used to draw the mulberry map of the co-expression data,
and the correlation between cuproptosis-related genes and
lncRNA could be intuitively observed (Figure 1).

3.2. Construction of Prognostic Model. The R-Studio software
was used to merge the lncRNA expression files related to
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Figure 5: Patient risk score in relation to risk and survival and the expression analysis of 11 screened lncRNA in the high and low risk of
Train group and Test group. (a) Patient risk score was associated with risk in the Train group. (b) Patient risk score was associated with risk
in the Test group. (c) Patient risk score was associated with survival in the Train group. (d) Patient risk score was associated with survival in
the Test group. (e) Expression of 11 lncRNA screened in Train group in high- and low-risk groups. (f) Expression of 11 lncRNA screened in
Test group in high- and low-risk groups.
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cuproptosis with clinical data (survival time and survival sta-
tus). Furthermore, 67 lncRNAs related to the prognosis of
patients with BLCA were initially screened using univariate
Cox regression analysis (P < 0:05; Figure 2(a)), and then,
Lasso regression analysis was used to reduce the overfitting
of data. Seventeen cuproptosis-related lncRNAs that were
more valuable for the prognosis of patients with BLCA were
screened (Figures 2(b) and 2(c)). Finally, 11 lncRNAs with
prognostic values for copper mortality were screened out
via multivariate Cox regression analysis (Table 2), and the
prognostic model was constructed based on the risk scores
of the screened-out 11 lncRNAs. The samples were ran-
domly divided into two groups (Train and Test groups).
The samples in the Train and Test groups were divided into
high- and low-risk groups. The risk score was obtained using
the following formula:

0:686828262125213 × CASC20ð Þ
+ –0:910543962195588 × ‘SCAMP1 −AS1’ð Þ
+ −1:92072572614444 × AC108066:2ð Þ
+ –2:5067888012423 × AC110611:1ð Þ
+ 3:87275540196912 × ′NR2F2 −AS1’
� �

+ −1:14597068371537 × AC022165:1ð Þ
+ −0:342648292263448 ×MIR181A2HGð Þ
+ −1:90826847655345 × AC010132:4ð Þ
+ 1:50496299163889 × AC124283:3ð Þ
+ 0:340927745829933 × AP000593:3ð Þ
+ 1:37323817887309 × AC078778:1ð Þ: ð1Þ

3.3. Evaluation and Clinical Value Analyses of the Prognostic
Model. Combined with the clinical data of patients with
ccRCC, R-Studio software was used to conduct clinical sta-
tistical analysis of the training group and the Test group.
No significant difference was observed in each clinical trait
between the Train and Test groups, indicating no deviation
in clinical traits between the random grouping of the sam-

ples (P > 0:05; Table 3). Correlation analysis was performed
on the expression data of cuproptosis-related genes,
cuproptosis-related lncRNA expression data, and risk gene
data to know the correlation between lncRNA involved in
the model construction and cuproptosis-related genes
(Figure 3). The OS analysis of the risk gene data indicated
significant differences in the survival rate between the high-
and low-risk groups in the risk gene data, in both the Train
and Test groups, and the survival of patients in the high-
risk group in the risk gene data was shorter in both the
Train and Test groups compared with those in the low-
risk group. The PFS analysis of risk gene data showed a sig-
nificant difference in the progression-free survival between
the high- and low-risk groups, and the high-risk group had
significantly shorter progression-free survival than the low-
risk group (Figure 4). The R-Studio software was used to
Train set and Test set the risk of genetic data is analyzed,
through the risk curve can be intuitive grouping situation
of both high- and low-risk groups (median of risk score),
through the survival state diagram can be found that
patients with increased risk, the cases of death also along
with the increase, and by heat maps can be observed,
CASC20, NR2F2-AS1, AC124283.3, AP000593.3 are high-
risk lncRNA, secretory carrier membrane protein 1
(SCAMP1)-AS1, AC108066.2, AC110611.1, AC022165.1,
MIR181A2HG, AC010132.4, and AC078778.1 were low-
risk lncRNAs (Figure 5). Univariate and multivariate Cox
regression analyses, via independent prognostic analysis
of risk gene data and clinical relevant data (sex, age, grade,
and stage), indicated that the constructed model could be
used as an independent prognostic factor in patients with
BLCA independent of other clinical traits (risk score
P < 0:001; Figure 6). Combining the ROC curve with clin-
ical relevant data revealed that the constructed model pre-
dicted the survival time of patients Area Under Curve
(AUC) = 0.711) better than age, sex, grade, and stage. The
ROC curve showed that the constructed model predicted
the survival time in patients with BLCA with high sensitiv-
ity and accuracy (AUC after 1, 3, and 5 years was 0.711,
0.679, and 0.713, respectively). Furthermore, the C-index

Age <0.001 1.035 (1.019–1.051)

0.916 (0.659–1.275)

2.868 (0.709–11.597)
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<0.001
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Figure 6: Independent prognostic analysis of the constructed model. (a) Univariate Cox analysis. (b) Multivariate Cox analysis.
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curve showed that the model constructed had a high accu-
racy in predicting the survival of patients (Figures 7(a),
7(b), and 7(c)). The survival nomogram of patients with
BLCA was drawn by combining the risk gene data with
clinical relevant data, and the risk of patients could be

scored by the nomogram to predict the survival rate after
1, 3, and 5 years. The calibration chart showed that the pre-
dicted probability was basically consistent with the actual
probability (Figures 7(d) and 7(e)). The analysis of risk
gene data and clinical relevant data (stages) revealed that
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Figure 7: Analysis of the model to predict patient survival. (a) ROC curve of the constructed model. (b) The ROC curve of the constructed
model was analyzed jointly with clinical data. (c) The C-index curve of the constructed model. (d) The survival column chart of patients with
BLCA. (e) The calibration diagram of patients with BLCA.
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the constructed model was suitable for survival prediction
in both Stages I and II and Stages III and IV patients
(P < 0:001; Figure 8). PCA showed that the discrimination
level between the lncRNA high- and low-risk groups in
the constructed model was the most obvious, indicating
that the patients in the high- and low-risk groups could
be distinguished by the lncRNA involved in the model con-
struction (Figure 9).

These results indicated that the prediction model based
on 11 lncRNAs associated with copper mortality was signif-
icantly better than the clinical factors, such as age, sex, grade,
and tumor stage, in predicting the prognosis of patients, and
the risk score was significantly correlated with the progres-
sion of BLCA.

3.4. Screening and Enrichment Analysis of Risk Genes with
Significant Differences. The R-Studio software was used for
the differential analysis of gene expression data and risk
gene data, and a total of 1042 genes with significant differ-
ences between the high- and low-risk groups were obtained
(Table 4). The GO and KEGG enrichment analyses were
further performed on the differential risk genes to analyze
the enrichment pathways of differential risk genes in tumor
tissues. The GO enrichment analysis showed that in the
biological process of GO, differential risk genes were
enriched in humoral immune response, extracellular
matrix organization, extracellular structure organization,
defense response to bacterium, phagocytosis, humoral
immune response mediated by circulating immunoglobu-
lin, complement activation classical pathway, collagen-
containing extracellular matrix, immunoglobulin complex,
circulating immunoglobulin complex, antigen binding, gly-
cosaminoglycan binding, extracellular matrix structural
constituent, immunoglobulin receptor binding, sulfur
compound binding, cytokine receptor binding, cytokine
activity, chemokine activity, and so on. The differential
risk genes were enriched on GO:0003823, GO:0005539,
GO:0005201, GO:0006959, GO:0045229, GO:0030198,

GO:0043062, GO:0042742, GO:0006909, GO:0062023,
and GO:0045229. The enrichment on GO:0019814 and
GO:0009897 was significant (Figure 10(a)). The KEGG
enrichment analysis showed that differential risk genes
were enriched in cytokine–cytokine receptor interaction,
viral protein interaction with cytokine and cytokine recep-
tor, interleukin (IL)-17 signaling pathway, osteoclast differ-
entiation, extracellular matrix–receptor interaction, protein
digestion and absorption, phosphoinositide 3-kinase–Akt
signaling pathway, chemokine signaling pathway, cell
adhesion molecules, necrosis factor–kappa B signaling path-
way, focal adhesion, proteoglycans in cancer, tumor necrosis fac-
tor signaling pathway, AGE–RAGE signaling pathway in
diabetic complications, Janus kinase–signal transducer and acti-
vator of transcription signaling pathway, and transcriptional
misregulation in cancer. The significant enrichment was
observed on HSA05150, HSA04060, HSA04061, HSA05323,
HSA05146, HSA04145, and HSA04640 (Figure 10(b)).

The immune-related function analysis of risk gene data
and tumor gene expression data showed APC_co_inhibi-
tion, T_cell_co-inhibition, checkpoint, T_cell_co-stimula-
tion, cytolytic_activity, inflammation promotion, Human
Leukocyte Antigen (HLA), APC_co_stimulation, Chemo-
kine receptors (CCR), Major Histocompatibility Complex
(MHC)_class_I, and parainflammation. Significant differ-
ences were observed in Type_I_IFN_Reponse between the
high- and low-risk groups (P < 0:001). Meanwhile, the heat
map showed that the aforementioned immune-related func-
tions were more active in the high-risk group (Figure 11).

3.5. Survival Analysis to Compare the Mutation Frequency
and Mutation Burden of Risk Genes between High- and
Low-Risk Groups of BLCA. The downloaded mutation bur-
den data were processed using the Perl software, and the
mutation burden of BLCA was calculated (Table 5). Risk
genes for high- and low-risk groups of data of mutated
genes, using the R-Studio software analysis between high-
and low-risk group risk gene mutation frequency, and draw
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Figure 8: Analysis of risk gene data and clinically relevant data (Stages I and II and stages III and IV).
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a waterfall figure, can be found through the Perl software for
tumor mutation data and data processing. The mutation fre-
quency of risk genes in the high-risk group was mostly
higher than that in the low-risk group (Figure 12(a)). Sur-
vival analysis of tumor mutation load data and risk genes
showed that there was a significant difference in the survival
time of patients with high and low mutation load, and the
survival time of the group with high BLCA mutation load
was longer than that of the group with low mutation load
(P < 0:001; Figure 12(b)), high mutation load groups of
high- and low-risk patients survival time has significant dif-
ferences. The survival time of high-risk patients was shorter
than that of low-risk patients (P < 0:001). A significant dif-
ference was observed in the survival time between high-
and low-risk patients in the low-mutation burden group,

with high-risk patients having a shorter survival time than
low-risk patients (P < 0:001; Figure 12(c)).

3.6. Analysis of Immune Evasion and Immunotherapy in
BLCA. The analysis of immune escape and immunotherapy
of risk gene data indicated significant differences in TIDE
scores between the high- and low-risk groups, and the TIDE
scores in the high-risk group were significantly higher than
that in the low-risk group, indicating that the immune
escape potential in patients with BLCA in the high-risk
group was greater, and hence, the effect of immunotherapy
was worse (P < 0:001; Figure 13).

3.7. Screening of Potential Drugs for BLCA. The gene expres-
sion data and risk data for potential drug screening were
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Figure 9: (a) PCA analysis of risk expression lncRNA. (b) Cuproptosis-related lncRNA. (c) Cuproptosis genes. (d) All genes.
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(a)

(b)

Figure 10: GO and KEGG enrichment analyses of differential risk genes. (a) GO enrichment analysis. (b) KEGG enrichment analysis.

Table 4: Screening of differential risk genes (partial examples).

Gene Low mean High mean logFC P-value fdr

FER1L4 47.19381988 12.700754 −1.8936837 1:08 × 10−28 5:53 × 10−25

AL390719.2 14.74714035 4.6966788 −1.6507224 1:31 × 10−28 5:53 × 10−25

AL450384.2 3.348402729 0.8479688 −1.9813899 2:13 × 10−28 6:74 × 10−25

RAD51-AS1 3.905567836 1.8979207 −1.0411126 3:79 × 10−28 8:92 × 10−25

ZNF436-AS1 2.065382456 0.8775648 −1.2348314 4:23 × 10−28 8:92 × 10−25

SH3BP5-AS1 1.707411696 0.7326129 −1.2206880 7:79 × 10−28 1:41 × 10−24

LINC02604 5.898293762 2.7048577 −1.1247450 1:88 × 10−27 2:97 × 10−24

AP002026.1 1.794942885 0.5660923 −1.6648288 3:29 × 10−27 4:62 × 10−24

PPFIBP2 14.22930877 5.1865937 −1.4560063 7:40 × 10−27 8:95 × 10−24

LINC00930 3.642230604 0.6977504 −2.3840394 7:79 × 10−27 8:95 × 10−24
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analyzed using the R-Studio software (screening conditions:
P < 0:001). From the IC50 values of drugs in the high-risk
and low-risk groups, it could be found that bryostatin 1,
doxorubicin, epothilone B, cyclopamine, dasatinib, FMK
(Fluoromethyl Ketone), Genentech Cpd 10, obatoclax mesy-
late, paclitaxel, rapamycin, ruxolitinib, parthenolide, pazo-
panib, saracatinib, STF-62247, and other drugs indicated
significant differences between the high- and low-risk
groups, were more sensitive to the high-risk group, and
could be found according to the correlation, IC50 value con-
centration of the drug, and negatively correlated with the

risk score, the higher risk score, IC50 value concentration
decreases (Figure 14).

4. Discussion

BLCA is one of the most common cancers in the urinary sys-
tem. Although the diagnosis and treatment of BLCA have
definite curative effects in the clinic, the disease may recur
even after surgery. Therefore, screening of new BLCA bio-
markers in the high-risk group is urgently needed for early
and individualized treatment of patients with BLCA using
potential drugs to improve the survival rate of patients.
Cuproptosis is copper-dependent programmed cell death.
The progress in human genome sequencing data indicated
that lncRNAs play an indispensable role in the diagnosis,
treatment, and prognosis of tumors [8–10]. Recent studies
have shown that lncRNAs are involved in the occurrence
and development of BLCA [11–13]. BLCA has been found
to be associated with ferroptosis [14]. However, only a few
studies on cuproptosis-related genes have been conducted.
Therefore, it was of significant help to establish a prediction
model of cuproptosis-related lncRNA based on the TCGA
database to predict the prognosis of patients with BLCA
and find new biomarkers for individualized treatment of
high-risk patients.

In this study, 11 lncRNAs with independent prognostic
significance were screened using univariate Cox regression
analysis, Lasso regression analysis, and multivariate Cox
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Figure 11: Immune-related function analysis of risk lncRNA.

Table 5: TMB of BLCA (partial examples).

ID TMB

TCGA-DK-A6AW 86.52631579

TCGA-MV-A51V 33.47368421

TCGA-YC-A89H 32.84210526

TCGA-DK-A1AC 30.36842105

TCGA-DK-A3WW 25.55263158

TCGA-SY-A9G5 21.23684211

TCGA-XF-AAMG 20.60526316

TCGA-K4-A54R 19.86842105

TCGA-FD-A6TC 19.78947368

TCGA-E7-A7XN 19.34210526
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Figure 12: (a) Survival analysis of mutation frequency and mutation load of risk lncRNA. (b) Mutation frequency of high-risk lncRNA in
high- and low-risk groups. (c) Survival analysis of TMB. (d) Survival analysis of high and low risk in TMB.
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regression analysis to construct a prognostic model. Previous
studies have shown that CASC20 is involved in the carcino-
genesis of gastric cancer by competitively binding with Mir-
143-5p and regulating the MEMO1 expression, thereby inducing
epithelial–mesenchymal transition [15]. The SCAMP1 is a
protein-coding gene. Among its related pathways is an innate
immune system that plays an important role in the occurrence
and development of ovarian cancer and glioma [16, 17].
SCAMP1-AS1 could inhibit the proliferation and migration of
esophageal cancer TE-13 cells by targeting miR-483-5p, and
SCAMP1-AS1 was downregulated in esophageal cancer cells
[18]. Studies have shown that AC078778.1 is associated with
the occurrence and development of BLCA [19]. NR2F2 antisense
RNA 1 (NR2F2-AS1) expression is associated with renal clear cell
carcinoma, gastric cancer, thyroid cancer, and other diseases. In
thyroid cancer, NR2F2-AS1 promotes the proliferation and
migration of thyroid cancer cells and inhibits cell death by regu-
lating the miRNA-338-3p/CCND1 axis [20–22]. Studies have
shown that downregulation of lncRNA MIR181A2HG
(MIR181A2 host gene) by high glucose impairs vascular endothe-
lial cell proliferation and migration through the dysregulation of
the miRNAs/Akt2 axis [23]. At present, the remaining six
lncRNAs (AC108066.2, AC110611.1, AC022165.1, AC010132.4,
AC124283.3, and AP000593.3) associated with cuproptosis have
not been reported in tumors; hence, further studies are needed
to explore their significance. The BLCA prognostic model con-
structed based on 11 cuproptosis-related lncRNAs showed that
the OS and PFS in the low-risk group were significantly better
than those in the high-risk group in the survival analysis of the
BLCA samples in the TCGA database. The survival status and
risk score diagram revealed that the number of patients who died
and the risk score continuously increased with the increase in the
risk value. The analysis of the ROC curve and calibration chart
indicated that the model had high sensitivity and accuracy in pre-
dicting the prognosis of BLCA, which could provide a potential
direction for clinical research.

Most of the pathways were found to be correlated with
immunity via enrichment analysis and immune-related
function analysis of differentially expressed risk genes,
and significant differences were observed in the immune-
related functions. As parainflammation characterizing
50% of major cancer types has been shown to be corre-
lated with p53 mutations and defective p53 pathways,
parainflammation may serve as a driver of p53 mutagene-
sis and help in cancer prevention when treated with non-
steroidal anti-inflammatory drugs [24, 25]. APC_co_
stimulation, MHC_class_I, APC_co_inhibition, HLA, and
Type_I_IFN_Reponse were significantly different among
the BLCA subtypes. The study of the intratumoral
immune microenvironment may provide a new perspective
for BLCA treatment [26, 27]. Some studies found that T-
cell co-stimulation in combination with targeting Focal
adhesion kinase (FAK) drives enhanced anti-tumor immu-
nity [28]. At present, no conclusive evidence suggests that
cuproptosis is directly correlated with the occurrence of
BLCA. However, this study will help explore the mecha-
nism of cuproptosis-related lncRNAs.

Tumor mutational burden (TMB) was defined as the
total number of detected somatic gene coding errors, base
substitutions, and gene insertions or deletions per megabase
[29]. PD-1 or its ligand (PD-L1) has achieved remarkable
clinical efficacy in treating a variety of tumors. TMB, the
newest marker for evaluating the efficacy of PD-1 antibodies,
has been demonstrated in treating colorectal cancer with a
deficiency in mismatch repair [30, 31]. The TMB level in
tumor tissue can predict the efficacy of targeted therapy in
patients with advanced non-small-cell lung cancer with
driver mutations [32]. This study indicated that TMB could
be considered an independent prognostic factor in BLCA.

Collectively, our results suggest that the proposed model,
particularly the identified lncRNAs, could be promising bio-
markers for estimating the prognosis of BC patients and
could help clinicians to stratify patients into high- and
low-risk groups, which could lead to more personalized
treatment strategies. Furthermore, these lncRNAs could be
investigated as therapeutic targets, as more in-depth under-
standing on their functional roles in BC and their involve-
ment in cuproptosis could lead to the development of
novel therapeutic approaches targeting these molecules or
their downstream effectors. Thus, further research could
explore the relationship between cuproptosis, lncRNAs,
and BC in more detail, including studies on their underlying
molecular mechanisms. Additionally, the proposed prognos-
tic model could be validated using additional independent
datasets, which would strengthen its potential use in clinical
practice.

In conclusion, this study successfully constructed a prog-
nostic model based on 11 promising lncRNAs with indepen-
dent prognostic significance for patients with BC. The model
effectively discriminated between high- and low-risk groups
and demonstrated a strong association with immunity.
Moreover, we identified potential treatment drugs with high
sensitivity based on IC50 values, which provide important
references for the potential development of personalized
treatment strategies for BLCA patients.

Low–risk

Low–risk

High–risk

Risk

⁎⁎⁎

TI
D

E

–0.4

0.0

0.4

High–risk

Figure 13: Analysis of immune evasion and immunotherapy in
BLCA.
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Transcriptome expression data, clinical data, and mutation
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