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Hepatocellular carcinoma (HCC), which has become one of the most significant malignancies causing cancer-related mortality,
presents genetic and phenotypic heterogeneity that makes predicting prognosis challenging. Aging-related genes have been
increasingly reported as significant risk factors for many kinds of malignancies, including HCC. In this study, we
comprehensively dissected the features of transcriptional aging-relevant genes in HCC from multiple perspectives. We applied
public databases and self-consistent clustering analysis to classify patients into C1, C2, and C3 clusters. The C1 cluster had the
shortest overall survival time and advanced pathological features. Least absolute shrinkage and selection operator (LASSO)
regression analysis was adopted to build the prognostic prediction model based on six aging-related genes (HMMR, S100A9,
SPP1, CYP2C9, CFHR3, and RAMP3). These genes were differently expressed in HepG2 cell lines compared with LO2 cell lines
measured by the mRNA expression level. The high-risk score group had significantly more immune checkpoint genes, higher
tumor immune dysfunction and exclusion score, and stronger chemotherapy response. The results indicated that the age-
related genes have a close correlation with HCC prognosis and immune characteristics. Overall, the model based on six aging-
associated genes demonstrated great prognostic prediction ability.

1. Introduction

Hepatocellular carcinoma (HCC) has become one of the
most common fatal malignancies in the world, accounting
for nearly 90% of primary liver cancer cases [1]. Due to
the lack of early clinical manifestations and complicated
pathogenesis in HCC, it is usually diagnosed at an advanced
stage with high metastatic rate [2]. Therefore, elucidating the
molecular mechanism of HCC initiation and progression
increases the potential to make a difference in improving
the prognosis for HCC patients.

Aging is the principal factor for most chronic diseases,
such as cancer, metabolic-associated diseases, or neurodegen-
erative diseases [3]. Therefore, targeting aging-associated sig-
naling pathways can also provide clues to ameliorate aging-
associated pathologies [4]. The existing studies have also
demonstrated that cell senescence is associated with hyper-

proliferative conditions, including cancers, organ hypertro-
phy, fibrosis, and others [5]. The senescence-associated
secretory phenotype involves multiple cell types and different
hyperfunctions [5]. Cellular senescence, which is character-
ized by aging-related tissue dysfunction and multiple other
conditions, represents a novel antitumor therapeutic approach.
Previous studies identified that aging-related genes act as dom-
inating risk factors in human cancers, associated with the initi-
ation and progression of cancer patients [3]. Cellular
senescence is a crucial regulatory mechanism, i.e., a double-
edged sword involved in organismal aging and protecting
against cancer at the same time [6].

Studies have reported that cellular senescence in the liver
might enhance the clearance of hepatic stellate cells via
innate and adaptive immunity activation [7]. To this end,
aging-related genes and associated phenotypes have not
been thoroughly explored; however, this is urgent for HCC
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patients to achieve individualized evaluation and provide
effective treatment options.

2. Methods

2.1. Data Collection and Process. The HCC RNA-seq data
were downloaded from the public database The Cancer
Genome Atlas (TCGA) (https://www.cancer.gov/) with ref-
erence to Liver hepatocellular carcinoma (LIHC) via the
TCGA GGJoy Dex Analysizer Application Programming
Interface. In total, 365 samples from TCGA-LIHC were
selected for our analysis, which was defined as the training
set. GSE14520 and GSE76427 datasets were obtained from
the Gene Expression Omnibus (GEO; https://www.ncbi
.nlm.nih.gov/geo/info/datasets.html) and identified as vali-
dation datasets, with the independent selection of 221 and
115 patients, respectively. In addition, we adopted Interna-
tional Cancer Genome Consortium (ICGC)-LIRI-JP from
the HCCDB database as the validation dataset.

2.2. Exploration of Aging-Related Genes. For this analysis, we
downloaded the aging-associated genes from the CellAge
(https://genomics.senescence.info/cells/) database, which
included 279 human genes driving cellular senescence [8].
The CellAge is a database of genes associated with cell
senescence.

2.3. Data Cleaning Process. All samples downloaded from
public databases underwent a cleaning process by deleting
incomplete clinical follow-up information, overall survival
samples, and status samples. Data from the GEO database
were matched with annotation information.

2.4. Classification of Aging-Associated Genes. The expression
level of all aging-related genes was determined in LIHC sam-
ples. ConsensusClusterPlus was applied to divide these sam-
ples into different clusters based on the expression level of
aging-associated genes [9]. In total, 500 bootstraps were con-
ducted, and we set the number of clusters as 2–10.

2.5. Construction of Canadian Syncope Risk Score System. In
order to construct the Canadian Syncope Risk (CSR) score
system, we evaluated the Canadian Syncope Risk Score
(CSRS) of each sample based on the formula CSRS =∑βi
× Expi, where i represents gene expression level, and β rep-
resents the Cox index. We classified our patients into high
risk and low risk score subgroups [10].

2.6. Construction of Model for Aging-Associated Genes. In
order to establish the risk score model based on aging-
associated genes, we first recognized the differently
expressed genes between different clusters. Second, the
prognosis-related differently expressed genes were selected.
The Least absolute shrinkage and selection operator
(LASSO) Cox regression analysis was applied to identify
the hub genes [11], and further dimension reduction analy-
sis was performed to select the appropriate hub genes.

2.7. Immune Infiltration Evaluation. In order to estimate the
immune cell infiltration level, we adopted tumor immune

dysfunction and exclusion (TIDE) algorithms and evaluated
the potential therapy response to immune checkpoint inhib-
itor therapy [12].

2.8. Gene Set Enrichment Analysis. Gene Set Enrichment
Analysis (GSEA) analysis was utilized to explore the signifi-
cantly different biological pathways between subtypes [13],
and we adopted the candidate genes from the “Hallmark”
database for further GSEA analysis.

2.9. Tumor Microenvironment Evaluation. Tumor microen-
vironment (TME) plays a vital role in the pathogenesis of
various cancers, including HCC. In this study, we adopted
the Cell-type Identification by Estimating Relative Subsets
Of RNA Transcripts (CIBERSORT) algorithm (https://
cibersort.stanford.edu/) to analyze the difference in immune
infiltration and the immune microenvironment between the
clusters [14]. This algorithm calculated the relative abun-
dance of 22 immune cell types in each LIHC sample. ESTI-
MATE is a tool for predicting stromal score [15, 16], which
refers to the presence of stroma in tumor tissue, with the
immune score suggesting the infiltration of immune cells
in tumor tissue and the estimated score indicating tumor
purity. The CIBERSORT algorithms and ESTIMATE algo-
rithm were adopted to clarify the cell composition of 22
immune cell types from HCC tissues based on genomic
profiles.

2.10. Polymerase Chain Reaction Analysis. We collected the
RNA of HepG2 and LO2 cell lines by RNeasy FFPE kit
(QIAGEN, Hilden, Germany). The determination of nucleic
acid concentration was carried out by NanoDrop 2000
(Thermo Fisher Scientific, Waltham, MA, USA). The RNA
reverse transcription into complementary DNA (cDNA)
was performed by HiScript III 1st Strand cDNA Synthesis
Kit (+gDNA wiper; Vazyme, Nanjing, China). ChamQ Uni-
versal SYBR qPCR Master Mix (Vazyme) was employed for
the quantitative real-time polymerase chain reaction (qRT-
PCR) process. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was treated as normal control sequence. The fluo-
rescence quantitative PCR analysis was conducted by the
Applied Biosystems RUO module (Applied Biosystems,
San Francisco, CA, USA). The final data were analyzed with
fold change=2−△△CT. The seven sequences were listed in
Supplementary Table S1.

3. Results

3.1. Classification of LIHC Cohort Based on Aging-Associated
Genes. In order to explore the prognostic role of aging-
associated genes in the LIHC cohort, we adopted gene
expression profile spacing and Cox proportional hazard
regression analysis and identified 80 HCC prognostic
related genes in the TCGA database. In addition, we iden-
tified 47 prognostic related genes from the ICGC dataset.
After comparison, there were 32 aging-associated genes in
both datasets (Figure 1(a)). We further applied Consensu-
sClusterPlus analysis for 365 LIHC samples. The cumula-
tive distribution function (CDF) delta area demonstrated
that when “k = 3,” it reflected a more stable cluster model.
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Figure 1: Continued.
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We identified three clusters as cluster 1 (C1), cluster 2 (C2),
and cluster 3 (C3; Figures 1(b), 1(c), and 1(d)). Further-
more, we investigated the prognosis between three clusters
in TCGA-LIHC cohort and figured out that C1 cluster had
shortest overall survival time compared with C2 and C3
(Figure 1(e)). The alive status percent in C1 was signifi-
cantly decreased compared with C2 and C3 (Figure 1(f)).
These results were also observed in ICGC cohort
(Figures 1(g) and 1(h)).

3.2. Clinicopathological Features of the Three Clusters. In
order to comprehensively distinguish the clinicopathological
differences between the three clusters, we figured out that in
the TCGA database, C1 compared with C3 had a higher per-
centage of advanced stages, and a lower proportion of early
stages. Meanwhile, C1 had a higher advanced N stages pro-
portion compared with early N stage, and a higher percent-
age of advanced M stages patients compared with C3.
Tumor grades in C1 were notably different compared with
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Figure 1: Self-consistent clustering analysis of aging-associated genes. (a) Overlap of differently expressed genes between the TCGA-LIHC
and ICGC datasets. (b) CDF curve of the TCGA-LIHC samples, the CDF curve indicates the level of consensus and the stability of clustering.
(c) CDF delta area curve of the TCGA-LIHC cohort. (d) Sample heatmap of self-consistent clustering analysis when k = 3. (e) Prognostic
curve of three clusters. (f) Alive and dead information of three clusters. (g) Prognosis between three clusters in ICGC-LIHC. (h) Alive
and dead status of three clusters in the ICGC LIHC cohort. *P < 0.05.

4 Analytical Cellular Pathology



⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎

0

10

20

30

40

C1 C2 C3

A
ne

up
lo

id
y 

Sc
or

e

Kruskal−Wallis test p = 1.5e−07 Kruskal−Wallis test p = 5.5e−24

Kruskal−Wallis test p = 9.1e−11 Kruskal−Wallis test p = 0.16

Kruskal−Wallis test p = 3.4e−11

0

20

40

60

80

C1 C2 C3
H

om
ol

og
ou

s R
ec

om
bi

na
tio

n 
D

ef
ec

ts

0.0

0.4

0.8

1.2

C1 C2 C3

Fr
ac

tio
n 

A
lte

re
d

ns

0

500

1000

1500

2000

2500

C1 C2 C3

ns

ns
ns

0

10

20

30

40

C1

Tu
m

or
 m

ut
at

io
n 

bu
rd

en

N
um

be
r o

f S
eg

m
en

ts

C2 C3

(a)

−log10 (anova p value)

0 Na 16.72 (⁎)
Na 0 2.33 (⁎)

16.72 (⁎) 2.33 (⁎) 0

C1
C2
C3

0.00

0.25

0.50

0.75

1.00

C1 C2 C3

Ci1

Ci2

Ci3

Ci4

(b)

Figure 2: Continued.
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C3. We also analyzed the viral etiology, and the results
showed that C1 contained a higher percentage of Viral hep-
atitis type B (HBV) and Viral hepatitis type C (HCV)
infected patients compared with C3. The proportion of
patients younger than 60 years was significantly higher in
C1 compared with C3 (Figure S1(a)). In the ICGC
database, C1 contained more advanced stages compared
with C2 and C3 (Figure S1(b)). These results demonstrated
that the clinical signatures in C1 patients was significantly
different compared with C3.

3.3. Mutation Signatures in the Three Clusters. First, we
determined the molecular characteristics of TCGA-LIHC
from pan-cancer analysis [17]. The analysis of mutation sig-
natures demonstrated that C1 showed higher aneuploidy
score (p = 1:5 × 10−7) homologous recombination defects
(p = 5:5 × 10−24), altered fraction (p = 3:4 × 10−11), and
number of segments (p = 9:1 × 10−11) compared with C3
(Figure 2(a)). We also compared the four clusters with
immune signature-based four clusters, Ci1–Ci4 with the
aging-related gene-based three clusters C1–C3, and the
results showed that the aging-associated gene-based C3
obtained high frequency in the immune signature-based
C3 cluster. The immune signature gene-based C3 cluster
had better prognosis, whereas C4 and C6 had worse prog-
nosis (Figure 2(b)). We also detected that genomic muta-
tion and clusters had remarkably close correlations. The
percent ranking of genes showing extensive mutations in
HCC, from high to low, was TP53, ALB, AXIN, and
DNAH3 (Figure 2(c)).

3.4. Immune Infiltration Features in the Three Clusters. In
order to extensively describe the immune microenvironment
differences in the three clusters, our analysis implicated that
the relative abundance of 22 immune cells were remarkably
different. Those of naïve B cells, memory B cells, CD4+
memory T resting and activated cells, T follicular helper, T
regulatory, Natural killer (NK) cells-resting, monocytes,
M0 macrophages, M2 macrophages, dendritic cells resting,
mast cells, and eosinophils were considerably different
(Figure 3(a)). We adopted ESTIMATE software to analyze
the immune infiltrations in the three clusters and found that
the stromal score was notably different between them
(Figure 3(b)). Without exception, similar results were
observed in the ICGC-LIHC cohorts. Naïve CD4+ T cells,
memory-active CD4+ T cells, T cells regulatory-Treg, M0
macrophages, and resting dendritic cells showed significant
differences between the three clusters. No significant differ-
ence was observed in stromal score, immune score, and
ESTIMATE score (Figures 3(c) and 3(d)).

3.5. Enriched Signaling Pathways in the Three Clusters. In
order to further investigate the signaling pathway differences
between the clusters, we adopted the Hallmark database
including recognized signaling pathways [18]. The GSEA
analysis indicated that C1 versus C3 was significantly
enriched in 12 signaling pathways, such as MYC-TARGETS
V1, MITOTIC SPINDLE, E2F TARGETS, G2M CHECK-
POINT, UNFOLDED PROTEIN RESPONSE, DNA REPAIR,
MYC TARGETS V2, PROTEIN SECRETION, PI3K AKT
MTOR SIGNALING, ALLOGRATE REJECTION, MTORC
SIGNALING, and SPERMATOGENESIS in the TCGA
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Figure 2: Genomic mutation profiles of three clusters. (a) Comparisons of the homologous recombination defects, aneuploidy score, altered
fraction, number of segments, and tumor mutation burden in three clusters from TCGA. (b) Determination of immune molecular
differences in three clusters. (c) Determination of cellular mutation differences in three clusters. *P < 0.05; **P < 0.01; ***P < 0.001
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database (Figure S2(a)). In ICGC-LIHC, there were 19
signaling pathways that were significantly enriched between
C1 and C3 (Figure S2(b)). We also compared C1 versus C2
and C2 versus C3 in the TCGA-LIHC cohort (Figures S2(c)
and S2(d)). The result suggested that C1 was enriched in
cell cycle-associated pathways, and that cell aging-associated
genes might play important roles in the cell cycle, which
might also strongly influence the TME.

3.6. Identification of Aging-Associated Hub Genes. Next, we
applied the “limma” R package to calculate the differently
expressed genes, with FDR <0.05 and log2FC >1, to finally
select 611 genes. Using univariate regression analysis, we
found 137 prognosis-related genes (p < 0:001) including
125 risk genes and 14 protective genes (Figure 4(a)). Further-
more, we adopted LASSO regression analysis to select the
best fitting hub genes. The trajectories of independent vari-
ables were shown in Figure 4(b). With the increase of
lambda, the independent coefficient also gradually rises.
Ten-fold cross validation was applied to construct the gene
model, and the confidence interval under each lambda was
calculated (Figure 4(c)). The figure illustrates that when
lambda=0.0332, the model reaches the optimal value. A total
of 17 genes with lambda=0.0332 were selected as the target
genes for the next step. Multivariate analysis was performed
by stepwise logistic regression analysis. Finally, we identified
six genes, including HMMR, S100A9, SPP1, CYP2C9,
CFHR3, and RAMP3 as prognosis associated genes based
on aging signature-associated classifications (Figure 4(d)).
Furthermore, we validated the expression of these genes by
qPCR analysis, and the results indicated that S100A9,
CFHR3, and CYP2C9 were significantly highly expressed in
HepG2 cell lines compared with LO2 cell lines (Figure 4(e)).

3.7. Construction and Validation of Risk Score Prognosis
Model Based on Cellular Senescence-Related Signatures. We
calculated the CSRS of each sample and normalized these

values, and the high-risk score patients obtained higher mor-
tality status (Figure 5(a)). We applied Receiver operating
characteristic curve (ROC) analysis on the CSRS -based clas-
sification, and the prognostic prediction classification effi-
ciencies for 1, 3, and 5 years, respectively, were illustrated
in Figure 5(b). This CSRS-based classification had a high
Area under ROC curve (AUC) line area, indicating that this
model had good prediction efficacy.

We further analyzed the overall survival time between
high CSRS group and low CSRS group. The survival curve
suggested that the high CSRS group had shorter overall sur-
vival time compared with the low CSRS group (Figure 5(c)).
To test the stability of this CSRS-based prognostic model, we
applied the same method on the ICGC-LIHC cohort. The
high CSRS group had poor prognosis (Figures 5(d), 5(e),
and 5(f)).

3.8. Clinicopathological Features between the High and Low
CSRS Groups. We calculated the CSRS of each sample and
classified them by T stage, N stage, M stage, clinical stage,
grade, viral etiology, fibrosis age, gender, status, and primary
clusters. The results demonstrated that advanced T stages,
higher grades, and clinical stages had higher CSRSs. In addi-
tion, patients with virus infection had higher CSRS. The C1
cluster had significantly higher CSRSs compared with C2
and C3 (Figure S3(a)). We also compared the prognosis
difference between the various clinicopathological features
as defined by CSRS. The results suggested that the CSRS-
based classification had good stability and efficiency
(Figure S3(b)).

3.9. Immune Infiltration and Enriched Signal Pathways. In
order to clarify the differences in the immune microenvi-
ronment within the CSRS-based classification, we com-
pared the relative abundance of 22 immune cell types
(Figure 6(a)). The results indicated that the infiltration
level of immune cells was significantly different between
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score difference between three clusters in the ICGC-LIHC cohort. (d) ESTIMATE immune infiltration difference between three clusters in
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high and low CSRS subgroups except for CD4+ T cells, T
gamma-delta cells, resting NK cells, M2 macrophages,
resting dendritic cells, activated dendritic cells, and acti-

vated mast cells (Figure 6(a)). The ESTIMATE analysis
revealed that the high CSRS group had significant lower
estimated proportions in stromal score (Figure 6(b)).
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The CSRS and immune cells had significantly close rela-
tionship (Figure 6(c)). The GSEA analysis supported the
notion that, in the classification based on high and low
CSRS, significantly differently expressed genes were pro-
foundly enriched in the P53 signal pathway, cell cycle,
mismatch repair, homologous recombination, and DNA
replication (Figure 6(d)).

3.10. Differences in Immune Therapy and Chemical Therapy
between the High and Low CSRS Subgroups. The expression
of immune checkpoint genes was significantly different
between the two subgroups (Figure S4(a)). Overall, most of
the immune checkpoint genes were highly expressed in the
high CSRS group. We calculated the immune therapy
responses between the high and low CSRS groups, and the
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Figure 5: CSRS estimation, validation, and prognostic prediction analysis. (a) CSRS, overall survival time, alive status, and senescence-
associated genes. (b) CSRS-based ROC curve and AUC curve comparisons in the TCGA-LIHC cohort. (c) CSRS-based ROC curve and
AUC curve comparisons in the TCGA-LIHC cohort. (d) Overall survival time of high and low risk score groups in the ICGC-LIHC
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results revealed that the high CSRS subgroup had higher
TIDE score, suggesting that this score group had higher
probability of immune escape and lower possibility of
immunotherapy benefits (Figure S4(b)). In addition, we
observed that the high CSRS cohort was more sensitive to
docetaxel, cisplatin, cytarabine, and bortezomib chemical
therapies (Figure S4(c)).

3.11. Adjustment of the CSRS-Based Prognostic Model. We
constructed a decision tree based on age, sex, stage, T stage,
grade, and CSRS in the TCGA-LIHC cohort. This analysis
demonstrated that only the CSRS and T stage were left in
the decision tree, which classified samples into four risk
score subgroups (Figure 7(a)). There were significant differ-
ences in overall survival between these risk subgroups
(Figure 7(b)). We also discovered significant differences in
our novel subtypes. The highest subgroup contained a
higher percentage of C1 subtypes (Figures 7(c) and 7(d)).
The univariate and multivariate Cox regression analyses of
CSRS and clinicopathological features showed that CSRS
was the most significant prognostic factor (Figures 7(e)
and 7(f)). To quantify the risk assessment and survival prob-
ability of HCC patients, we adopted the CSRS with other
clinicopathological features to establish a nomogram
(Figure 7(g)). This result suggested that the CSRS had the
greatest impact on survival prediction. Furthermore, we
adopted the calibration curve to evaluate the accuracy of this

model (Figure 7(h)). The 1-, 3-, and 5-year results implied
that this nomogram had good efficiency in prognostic per-
formance. The decision curve uncovered that both the CSRS
and the nomogram showed the strongest survival prediction
ability (Figures 7(i) and 7(j)).

4. Discussion

Aging has been widely recognized as a significant risk factor
for cancers. Cellular senescence plays an important role in
the aging process and in cancer initiation and progression.
However, the correlations between cancer and the aging
microenvironment have not been fully explored. Here, we
described the expression profiles of aging-associated genes
in HCC. Based on these genes, we applied self-consistent
clustering analysis and identified three clusters and their
corresponding prognostic features, pathological features,
and immune signatures. In addition, we performed LASSO
analysis and recognized six aging-associated hub genes,
namely HMMR, S100A9, SPP1, CYP2C9, CFHR3, and
RAMP3, which contributed to building an effective prognos-
tic model.

The aging process is associated with low-grade inflamma-
tion [19]. From the cellular perspective, senescence is closely
linked to inflammation, and the immune and cancer microen-
vironment [20]. Adaptive immune cells such as monocytes,
neutrophils, macrophages, and NK cells exhibit significant
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Figure 6: Immune and signaling pathways featured in high and low CSCR score subgroups. (a) Immune cells components and their
proportion between high and low subgroups in the TCGA LIHC cohort. (b) Correlation analysis of proportion and CSCR score of 22
immune cells. (c) The CSRS and immune cells had significantly close relationship. (d) The low CSRS subgroup was profoundly enriched
in the P53 signal pathway, cell cycle, mismatch repair, homologous recombination, and DNA replication. *P < 0.05; **P < 0.01; ***P < 0.001.
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phenotypic modulation and relative frequency during the aging
process. Recent studies have demonstrated that aging might
affect immune cells’ mitochondrial activities, inducing inflam-
mation, and impairing their intracellular bacteria-killing capa-
bility [21]. In the present analysis, we identified three aging-
associated clusters, and the aging gene-based C1 cluster exhib-
ited the shortest overall survival time, highest immune score,
and maximum immune infiltration compared with other sub-
types. Li and co-workers figured out that an aging-related
model had a good risk prediction efficiency in rectal cancer
prognosis [22]. However, the links between aging-associated
changes and cancer initiation and progression have not been
fully explored [23]. Some ageing processes might accelerate
cancer initiation and development processes, whereas others
might inhibit tumor progression [23]. Studies have demon-
strated that tumor formation might combine with tumor for-
mation through DNA damage response [24–26], telomeres,
replicative senescence and tissue homeostasis, endocrine
changes, immune system aging, vascular ageing, and angiogen-
esis [23]. In our study, the prognostic model based on aging-
associated genes suggested that the high CSRS group had poor
prognosis. This score group also presented higher TIDE score,
which indicated the high probability of escape and low benefit
from immunotherapies for this group. Similarly, in a triple-
negative breast cancer analysis, a risk model of a high-risk score
group based on 10 aging-related genes presented poor progno-
sis compared with a low risk score group [27]. In contrast to
our results, Zhai et al. figured out that, in lung squamous carci-
noma, the high-risk group based on aging-related genes benefit
from immunotherapy compared with the low risk score group
[28]. Chen et al. also analyzed the aging-related genes in HCC.
They selected seven aging-related genes POLA1, CDK1,
SOCS2, HDAC1, MAPT, RAE1, and EEF1E1 by LASSO anal-
ysis. They also build a risk score model, which had good effi-
ciency in prognosis prediction. In our model we also adopted
aging-associated genes, we first classified HCC patients into

three clusters based on aging-associated gene transcription.
Furthermore, we also adopted the LASSO regression analysis
and selected six aging-related genes (HMMR, S100A9, SPP1,
CYP2C9, CFHR3, and RAMP3). These aging-related gene asso-
ciated risk score model had good efficiency in prognosis predic-
tion and immune characteristics [29].

Certain limitations of this analysis remain to be
addressed. We built this aging-associated gene-based prog-
nostic model using public databases and bioinformatics
analysis. Thus, the results still need further validation and
intensive exploration. In addition, the relationship between
aging signatures and immune infiltration, immune response,
and pathological features also require stronger clinical data
support. Finally, the mechanism between aging, immune
microenvironment, and cancer still need further exploration
and validation.

5. Conclusion

Collectively, aging signatures play important roles in HCC
progression and prognosis. The prognostic model based on
HMMR, S100A9, SPP1, CYP2C9, CFHR3, and RAMP3
had efficient prediction ability, which might provide individ-
ual therapeutic recommendations for HCC.
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Figure S1 Evaluation of clinical pathology features in three
clusters. (a) Comparison of clinical pathology features
between three clusters in the TCGA-LIHC cohort. (b) Com-
parison of clinical pathology features between three clusters
in the ICGC-LIHC cohort. Figure S2 GSEA analysis in three
clusters. (a) GSEA analysis results for C1 versus C3 in the
TCGA-LIHC cohort. (b) Bar plot of GSEA analysis for C1
versus C3 in the TCGA-LIHC cohort. (c) Plot illustrating
the GSEA analysis of enriched signal pathways in the three
clusters. (d) GSEA analysis of C1 versus C2 and C2 versus
C3; the enriched signal pathways were illustrated in this plot
in the TCGA cohort. (e) GSEA analysis of C1 versus C2 and
C2 versus C3; the enriched signal pathways were illustrated
in this plot in the ICGC cohort. Figure S3 CSCR score eval-
uation based on different clinical features. (a) The high and
low CSCR score subgroups had significant different clinical
pathologies. (b) Overall survival time between high and
low risk score subgroups based on different clinical patho-
logical classification. Figure S4 Difference in immunothera-
pies and chemical therapies between the high and low risk
score subgroups. (a) Immune check point genes’ expression
profiles of high and low risk score subgroups in the TCGA-
LIHC cohort. (b) TIDE estimation between the high and low
risk score groups. (c) Estimated IC50 of pocetaxel, paclitaxel,
cisplatin, cytarabine, bortezomib, and gefitinib between the
high and low CSCR score groups in the TCGA-LIHC cohort.
Table S1. The information of primers sequences for qRT-
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