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Hepatocellular carcinoma (HCC) is a malignant type of liver cancer that poses severe threat to human health worldwide. Aerobic
glycolysis is a hallmark of HCC and facilitates its progression. Solute carrier family 10 member 1 (SLC10A1) and long intergenic
non-protein coding RNA 659 (LINC00659) were detected to be downregulated in HCC cells, yet their potential functions
underlying HCC progression remained unidentified. In the current work, colony formation and transwell assays were used to
detect HCC cells (HepG2 and HuH-7) proliferation and migration in vitro study. The quantitative real-time polymerase chain
reaction (qRT-PCR) and western blot assays were used for gene/protein expression determination. Seahorse assay was
performed for aerobic glycolysis assessment. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted for
detection of the molecular interaction between LINC00659 and SLC10A1. The results showed that overexpressed SLC10A1
significantly suppressed the proliferation, migration, and aerobic glycolysis in HCC cells. Mechanical experiments further
demonstrated that LINC00659 positively regulated SLC10A1 expression in HCC cells by recruiting fused protein in sarcoma
(FUS). Our work elucidated that LINC00659 inhibited HCC progression and aerobic glycolysis via the FUS/SLC10A1 axis,
revealing a novel lncRNA–RNA-binding protein–mRNA network in HCC, which might provide potential therapeutic targets
for HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon and malignant type of liver cancer, with its death rate
ranking the fourth in cancer-related death records world-
wide [1]. It has been found that environmental changes,
along with epigenetic alterations, may result in HCC
progression [2]. The clinical behavior of HCC can grow
gradually from asymptomatic to life-threatening, including
acute complications. Many HCC patients, especially diag-
nosed at an early stage, have no obvious clinical symptoms
related to tumor [3]. Moreover, HCC has been found to cause
cirrhosis, which is probably induced by reduced growth
capacity of hepatocytes [4]. The diagnosis of HCC requires
more than one imaging modality and biomarkers, much
delaying the detection and worsening the prognosis for
terminal-staged tumors [5]. Although surgical removal is the

best prognostic treatment for tumor, the diagnosis at an early
stage is of great importance [6], to improve the prognosis and
the survival significantly.

Aerobic glycolysis was first found in HCC and acts as a
marker of liver cancer. It participates in immune evasion,
proliferation, metastasis, angiogenesis, invasion, and drug
resistance in HCC [7]. Glucose transporter protein type 1
(GLUT1) and the three rate-limiting enzymes in the glyco-
lytic process, including hexokinase 2 (HK2), lactate dehydro-
genase (LDHA), and phosphoglycerate kinase 1 (PGK1),
play important roles in aerobic glycolysis of HCC and can
be regulated by many mechanisms, such as the signaling
pathways and long non-coding RNAs (lncRNAs) [8–14].
Therefore, it is necessary to explore the regulators of aerobic
glycolysis in HCC.

As important regulatory genes [15], lncRNAs have been
found to exert crucial effects on regulating a variety of
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physiological activities of cancers, especially in HCC [16].
For example, upregulation of SNHG15 associates closely
with HCC development [17]. GABPB1-AS1 is involved in
controlling oxidative stress during erastin-induced ferropto-
sis in HCC cells [18]. Additionally, Yang et al. have stated
that SNHG1 and SNHG3 promote the proliferative, migra-
tory, and invasive abilities of HCC cells [19]. However, there
are few studies analyzing the functions of long intergenic
non-protein coding RNA 659 (LINC00659) in malignant
diseases [20, 21], HCC included.

Solute carrier family 10 member 1 (SLC10A1), highly
expressed in the liver, encodes the Na+-taurocholate co-
transporting polypeptide [22–24] and has been proven to
inhibit HCC cell glycolysis by glucose utilization, lactate pro-
duction, and extracellular acidification ratio [25]. Studies
have revealed that the expression levels of SLC10A1 in
tumors are consistently lower than that in normal tissue.
Downregulation of SLC10A1 is correlated with poor survival
outcome and recurrence-free survival in patients with HCC
[26], but whether SLC10A1 has interaction with other regu-
latory factors in HCC remains unknown. Additionally, fused
protein in sarcoma (FUS), a famous RNA-binding protein
(RBP), has been found to be significantly downregulated in
HCC tissues and decreases cell viability, migration, and
invasion with its overexpression [27]. Of note, a previous
report has indicated that lncRNA LINC01419 interacts with
FUS to stabilize specific mRNA, therefore facilitating HCC
growth [28].

According to the mentioned above, we proposed the
hypothesis that LINC00659 might stabilize SLC10A1 mRNA
to affect HCC progression and aerobic glycolysis through
FUS recruitment. Our results elucidated an original
lncRNA–RBP–mRNA regulatory network, which offered
the potential therapeutic targets for HCC.

2. Materials and Methods

2.1. Clinical Samples. The tumor and adjacent noncancerous
specimens were surgically dissected from 46 patients with
HCC at the Affiliated Hospital of Hangzhou Normal Univer-
sity. No chemotherapy or radiotherapy had been performed
on these patients before surgery. Cancer and noncancerous
regions were checked by two pathologists who were not
directly involved in this study. All enrolled patients were
informed of the aim of this study. The experimental proce-
dures were authorized by the Affiliated Hospital of Hang-
zhou Normal University Institutional Ethics Committee.
The experiments were performed following the Declaration
of Helsinki.

2.2. Cell Culture. Human normal hepatocytes (THLE-2)
were purchased from ATCC (CRL-2706, Manassas, VA,
USA), and human HCC cell lines (HepG2, HuH-7, and Li-
7) were acquired from Procell (CL-0103; CL-0120; CL-
0139, Wuhan, Hubei, China). DMEM (CM-0120, Procell,
Wuhan, Hubei, China) containing 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin was used for HepG2,
HuH-7, and Li-7 cells. BEGM (CC3170, Lonza/Clonetics Cor-
poration, Walkersville, MD) containing 5ng/mL epidermal

growth factor (EGF), 70ng/mL phosphoethanolamine, and
10% FBS was used for THLE-2 cells. All cells were cultured
in 5% CO2 at 37

°C.

2.3. Cell Transfection.Transfection vectors, pcDNAs (pcDNA-3.1/
pcDNA-3.1-SLC10A1 and pcDNA-3.1/pcDNA-3.1-LINC00659)
and shRNAs (sh-NC/sh-FUS-1/2 and sh-NC/sh-SLC10A1-1/2),
were designed and synthesized fromGenechem (Shanghai, China).
Vectors were transfected into HepG2 andHuH-7 cells using Lipo-
fectamine 2000 (Invitrogen, Grand Island, NY) for 24 hours
according to manufacturer’s instructions.

2.4. Colony Formation Assay. HepG2 and HuH-7 cells were
seeded into 6-well plates (1 × 103 cells/well) and routinely
cultured for 14 days [29]. Colonies were fixed with 4% para-
formaldehyde for 30 minutes, stained with 1% crystal violet
for 20 minutes (500μL/well, Beyotime, Shanghai, China),
washed several times, dried, and photographed (Nikon
ECLIPSE Ti, Japan). The colonies larger than 50 cells were
counted.

2.5. Cell Counting Kit-8 (CCK-8) Assay. HepG2 and HuH-7
cells were seeded into 6-well plates (1 × 103 cells/well), and
incubated overnight, and 10μL CCK-8 solution (CK04-11,
Dojindo, Kumamoto, Japan) was added. After 2 hours of
incubation, absorbance at 450nm was measured using a
microplate reader (spectramax plus384, Molecular Devices,
USA).

2.6. Transwell Assay. An 8μm-pore polycarbonate membrane
Boyden chamber was used to detect cell migration (Corning,
USA). The upper chamber was coated with 2 × 105 HepG2
or HuH-7 cells in serum-free medium, while the bottom
chamber was filled with 0.5mL of complete medium with
10% FBS. Then the chamber was incubated in 5% CO2 for 1
day at 37°C. Subsequently, the cells on the upper chamber
were removed, while those invading onto the lower chamber
were fixed with methanol. Crystal violet (2%) was used for
staining for 10 minutes. For each membrane, at least five ran-
dom visual fields were selected to count the invaded cells
under a microscope (BHNK-PH001, Nikon Corporation;
magnification, ×100).

2.7. Wound-Healing Assay. The cells were scratched with a
sterile pipette tip when cultured to 100% confluent mono-
layer. Plates were rinsed with PBS twice to remove detached
cells, replaced with fresh serum-free medium, and placed in
an incubator with 5% CO2 at 37

°C. Cells were removed at 0
and 24 hours, with images photographed under an inverted
microscope (Olympus, Japan). Wound closure = (initial
width−width at 24 hours)/initial width× 100%.

2.8. Seahorse Assay. Seahorse Bioscience Extracellular Flux
Analyzer (XFe24; Seahorse Bioscience) was utilized to survey
the extracellular acidification rate (ECAR) and oxygen con-
sumption rate (OCR) of HepG2 or HuH-7 cells. Briefly,
transfected HCC cells (1 × 104) were seeded into the 24-
well cell culture plate (Seahorse Bioscience). The hydrated
XF24 sensor cartridge was loaded with oligomycin (1μM
final concentration) and protonophore trifluoromethoxy
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carbonyl cyanide phenylhydrazone (FCCP, 1μM final con-
centration). The oxygen consumption rate and extracellular
acidification rate were measured in accordance with the
manufacturer’s instructions and expressed in mpH/min
and pmoles/min, respectively.

2.9. RIP. Magna RNA immunoprecipitation (RIP) RBP
Immunoprecipitation Kit (17-700, Sigma-Aldrich, USA)
was used for RIP assay following manufacturer’s protocol.
Antibodies against FUS (ab23439, 1/1000, Abcam, Cam-
bridge, UK) and IgG (ab182931, 1000, Abcam, Cambridge,
UK) were used for positive and negative controls. The quan-
titative real-time polymerase chain reaction (qRT-PCR) was
used for detecting the enrichment of LINC00659 or
SLC10A1 3′UTR, respectively. Then, the binding complex
was collected for agarose gel electrophoresis, and the exis-
tence of LINC00659 and SLC10A1 was directly observed.

2.10. RNA Pull-Down Assay. LINC00659 or SLC10A1 was
transcribed using T7 RNA polymerase, purified using
RNeasy Plus Mini Kit, and labeled with Biotin RNA Labeling
Mix. Biotinylated LINC00659 sense or LINC00659 anti-
sense, which were all synthesized by GeneChem, were added
to proteins extracted from cells and co-incubated with strep-
tavidin agarose beads. Gel electrophoresis was used to sepa-
rate FUS. Mass spectrometry was performed to analyze
eluted lncRNA-binding proteins. PEAKS Studio 8.5 was
used for protein identification and quantification. At last,
western blotting was used to analyze the eluted proteins.

2.11. RNA Stability Assay. After transfection, HepG2 or
HuH-7 cells were treated with 5mg/mL actinomycin D
(D23070, Acmec, Shanghai) for 0, 6, 12, 18, and 24 hours
at 37°C. Total RNA was isolated using an RNeasy Kit
(74104, Qiagen) under conditions recommended by the
manufacturer. The mRNA levels of SLC10A1 following
actinomycin treatment were subsequently measured using
RT-qPCR.

2.12. Quantitative Real-Time Polymerase Chain Reaction.
Total RNA was isolated from HepG2 or HuH-7 cells using
the Trizol reagent (Invitrogen, USA) strictly following the
manufacturer’s protocol. The RNA was reverse-transcribed
into cDNA using a reverse transcription reagent kit
(RP1105, Solarbio, Beijing, China). The PCR was performed
using SYBR® Green Master Mix (Takara, Japan) and Light
Cycler 480 II System (Roche, China). The reaction condi-
tions were as follows: initial denaturation at 95°C for 10
minutes, followed by 40 cycles of 95°C for 10 seconds,
60°C for 34 seconds. The relative expression was calculated
using 2−ΔΔCt method. Primer sequences were as follows:
LINC00659: F: 5′-ATGCTTAACAGGAGGCTCC-3′, R: 5′-
ATCCTTTCAGGAGGGAGGT-3′; SLC10A1: F: 5′-AACC
TCAGCATTGTGATGAC-3′, R: 5′-CCTGGAGTAGATGT
ACAGGA-3′; FUS: F: 5′-GAGGATTTCCCAGTGGAGG-3′,
R: 5′-TCTCACAGGTGGGATTAGGA-3′; β-actin: F: 5′-
ACTCTTCCAGCCTTCCTTCC-3′, R: 5′-CGTCATACTCC
TGCTTGCTG-3′.

2.13. Western Blot. The protein extraction protocol from
cancer cells was previously reported [30]. Briefly, cells were
collected and lysed using Radio Immunoprecipitation Assay
(RIPA) protein extraction reagent (Beyotime) with a prote-
ase inhibitor cocktail (Roche, IN, USA). Equal amounts of
protein lysate were quantified using BCA kit (Thermo
Fisher, USA), separated by 10% sodium dodecyl sulfate–
polyacrylamide gel (SDS–PAGE) electrophoresis, and trans-
ferred onto a polyvinylidene fluoride (PVDF) membrane
(Millipore, Billerica, MA, USA). The membrane was then
sealed with 5% non-fat milk for 1 hour, and incubated with pri-
mary antibodies (Abcam, Cambridge, UK) against: FUS
(ab84078, 1/1000), SLC10A1 (ab131084, 1/1000), β-actin
(ab8227, 1/1000), GLUT1 (ab14683, 1/2500), HK2 (ab227198,
1/5000), LDHA (ab47010, 1/1000), PGK1 (ab154613, 1/1000)
overnight at 4°C, with GAPDH (ab9485, 1/2500) as control.
After washing, the membrane was incubated with goat anti-
rabbit secondary antibody (ab96899, 1/1000, Abcam, Cam-
bridge, UK) at 37°C for 1 hour. The protein bands were
finally detected using enhanced chemiluminescence
reagents (Bio-Rad, Hercules, CA, USA) according to man-
ufacturer’s instructions.

2.14. Immunohistochemistry. Sample blocks were first sec-
tioned at 4μm thickness, deparaffinized in xylene, and rehy-
drated in ethanol and deionized water. After heat-mediated
antigen retrieval, slides were stained with anti-FUS antibody
and anti-SLC10A1 overnight at 4°C. The next day, the slides
were washed with 1×TBS-T and stained with Horseradish
Peroxidase (HRP)-conjugated goat antirabbit IgG secondary
antibody for 1 hour. After counterstaining using hematoxylin
for 30 seconds, the slides were washed and stained with 3,3′-
diaminobenzidine. The results were examined and photo-
graphed under a light microscope (Leica Microsystems, USA).

3. Results

3.1. SLC10A1 Expressed Lowly in HCC Cells and Suppressed
Cell Proliferation and Migration. Statistics from Gene
Expression Profiling Interactive Analysis (GEPIA) (http://
gepia.cancer-pku.cn/) showed that the SLC10A1 expression
level is decreased in HCC tissues and is associated with poor
patient prognosis (Figures S1(a) and S1(b)). In clinical samples,
protein expression of SLC10A1 through immunohistochemistry
differed between HCC tissues and normal tissues, and the
expression level of SLC10A1 was higher in normal tissues than
in HCC tissue (Figure S1(c)). Simultaneously, SLC10A1 was
lowly expressed in human hepatocyte carcinoma cells (HepG2,
HuH-7, and Li-7), with the lowest in HepG2 and HuH-7
cells, as detected by qRT-PCR (Figure 1(a)). Thus both
HepG2 and HuH-7 cells were chosen for the follow-up
experiments. To identify the role of SLC10A1 in HCC,
both selected cells were transfected with pcDNA-3.1-
SLC10A1, and transfection efficiency was verified by qRT-
PCR (Figure S1(d)). As evidenced in colony formation
assay and CCK-8 staining, increased SLC10A1 expression
suppressed cell proliferation (Figures 1(b) and 1(c)).
Similarly, transwell and wound-healing assays also
uncovered that SLC10A1 overexpression hindered cell
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Figure 1: Continued.

4 Analytical Cellular Pathology



migration (Figures 1(d) and 1(e)). These results suggested
that SLC10A1 had significantly low expression in HCC
cells and suppressed cell proliferation and migration.

3.2. SLC10A1 Suppressed Aerobic Glycolysis in HCC Cells. It
is well-known that aerobic glycolysis plays an essential
part for HCC cell proliferation and migration [31]. There-
fore, we hypothesized whether SLC10A1 had potential in
modulating the processing of aerobic glycolysis. Seahorse
assay showed that in HepG2 and HuH-7 cells, overex-
pressed SLC10A1 suppressed ECAR, indicating decreased
glycolysis flux and glycolytic capacity (Figure 2(a)). On
the contrary, enhanced SLC10A1 expression promoted
OCR, indicating increased basal respiration and adeno-
sine triphosphate (ATP) production (Figure 2(b)). More-
over, the impacts of SLC10A1 overexpression on the
mRNA and protein levels of glucose metabolism-related
genes (GLUT1, HK2, LDHA, and PGK1) were assessed.
The outcome displayed that SLC10A1 overexpression
reduced the mRNA and protein levels of these genes,
which were detected by qRT-PCR and western blot analy-
ses (Figures 2(c) and 2(d)). These results suggested that
SLC10A1 suppressed the aerobic glycolysis in HCC cells.

3.3. LINC00659 Positively Regulated SLC10A1 Expression in
HCC Cells. We further explored the upstream molecular
mechanism of SLC10A1 in HCC. We screened lncRNA with sig-
nificantly low expression in HCC tissues and then analyzed using
GSE101728 database with the filter criteria of P value <0.5 and

logFC<−3. LINC00659 was found to be obviously downregulated
in HCC tissues and had not been specifically reported in HCC.
More importantly, GEPIA database also presented the low expres-
sion of LINC00659 in HCC tissues (Figure S2(a)), and its
expression was positively correlated with SLC10A1 expression in
HCC (Figure S2(b)). To validate the downregulation of
LINC00659 in HCC, we determined the LINC00659 levels in 46
clinical samples with HCC and paired adjacent noncancerous
specimens using qRT-PCR analyses. LINC00659 expression
levels were lower in HCC tissues than in the adjacent
noncancerous specimens (Figure 3(a)). Therefore, LINC00659
was selected as the study subject. LINC00659 had significantly
low expression in HepG2 and HuH-7 cells, as detected by qRT-
PCR (Figure 3(b)). Besides, we increased LINC00659 expression
in HepG2 and HuH-7 cells (Figure S2(c)) and found that the
expression of SLC10A1 at mRNA and protein levels was
remarkably promoted in HepG2 and HuH-7 cells transfected
with pcDNA3.1-LINC00659 (Figures 3(c) and 3(d)). These
results suggested that LINC00659 had low expression and
positively regulated SLC10A1 expression in HCC cells.

3.4. LINC00659 Stabilized SLC10A1 mRNA by Recruiting
FUS. The potential mechanism of LINC00659 regulating
SLC10A1 expression continued to probe. Through starBase
(https://starbase.sysu.edu.cn/) website, we predicted respec-
tive RBPs of LINC00659 and SLC10A1 (Figure S3(a)) and
discovered that only FUS could bind to both LINC00659
and SLC10A1, as shown in Venn diagram (Figure 4(a)).
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RIP experiments also suggested that both LINC00659 and
SLC10A1 were preferentially enriched in FUS precipitates,
confirming the above prediction (Figures 4(b) and 4(c)).
Meanwhile, RNA pull-down results further proved that
LINC00659 and SLC10A1 could combine with FUS,
respectively (Figures 4(d) and 4(e)). In clinical samples,
protein expression of FUS through immunohistochemistry
differed between HCC tissues and normal tissues, and the
expression level of FUS was higher in normal tissues than in
HCC tissue (Figure S3(b)). We next knocked down FUS
expression in HepG2 and HuH-7 cells (Figure S3(c)) and
observed that the mRNA and protein levels of SLC10A1
were markedly declined upon FUS silence (Figures 4(f) and
4(g)). For all we know, FUS acts as a member of RBPs,
which can be involved in the modulation of mRNA stability
[32]. Herein, we treated HepG2 and HuH-7 cells with
actinomycin D. Notably, qRT-PCR analysis indicated that
the half-life of SLC10A1 mRNA was distinctly lessened
upon FUS deficiency (Figure 4(h)). In addition, it was
shown that compared to the pcDNA-3.1 group, the affinity
of SLC10A1 3′UTR and FUS in the pcDNA-3.1-LINC00659
group was higher (Figure 4(i)), suggesting that LINC00659
stabilized SLC10A1 mRNA via recruiting FUS. These results
demonstrated that LINC00659 stabilized SLC10A1 mRNA
and promoted its expression by recruiting FUS.

3.5. LINC00659 Suppressed HCC Progression and Aerobic
Glycolysis by Regulating SLC10A1. We further implemented
rescue assays to investigate whether LINC00659 represses
HCC cell proliferation and migration by regulating
SLC10A1. Before this, we silenced SLC10A1 expression in
HepG2 and HuH-7 cells (Figure S3(d)). Colony formation
assay results demonstrated that LINC00659 overexpression
inhibited the proliferation of HepG2 and HuH-7 cells,
while knockdown of SLC10A1 partially reversed this effect
(Figure 5(a)). Meanwhile, transwell assay showed that the

suppressed cell migration caused by enforced expression of
LINC00659 was partly offset after SLC10A1 (Figure 5(b)).
Similarly, seahorse assay showed that the decreased ECAR
and increased OCR in HepG2 and HuH-7 cells triggered
by overexpressed LINC00659 could be partially restored by
co-transfection of sh-SLC10A1-1 (Figures 5(c) and
5(d)). These results suggested LINC00659 suppressed
cell proliferation, migration, and aerobic glycolysis in
HCC and by regulating SLC10A1.

4. Discussion

HCC is the leading cause of cancer-related death and known as
the major form of liver cancer worldwide. Therefore, the inves-
tigations into pathobiology of HCC are urgently needed to help
patients’ survival. Studies have shown that HCC causes recon-
structions of glucose metabolism, from respiration to aerobic
glycolysis, known as the phenomenon called “Warburg Effect”,
supporting rapid cancer cell growth, survival, and invasion
[33]. Recent reports have focused much on the effect of
lncRNAs on Warburg Effect. Sun et al. have elucidated that
downregulating lncRNA CASC7 inhibits tumor proliferation
by reducing glycolysis through miR-143-3p/HK2 axis [34].
There is also report stating that lncRNA NEAT1 depletion
inhibits aerobic glycolysis of prostate cancer cells accompanied
by the reduction of lactate levels in the medium [35]. Li et al.
have proved that lncRNA CYB561-5 promotes aerobic glycol-
ysis and tumorigenesis by interacting with basigin in non-
small cell lung cancer [36]. Our findings were consistent with
the previous work, elucidating the role of LINC00659 in the
aerobic glycolysis of HCC. We discovered that LINC00659
was lowly expressed in HCC tissues and cells. Overexpression
of LINC00659 inhibited HCC cell proliferation, migration,
and aerobic glycolysis. For all we know, LINC00659 has been
reported to function as oncogenes in a variety of cancers, such
as gastric cancer and colorectal cancer [37, 38]. However, our
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study for the first time demonstrated the tumor-suppressor
potential of LINC00659 in HCC.

It has been proved that SLC10A1 inhibits HCC cell glycol-
ysis by glucose utilization, lactate production, and extracellular
acidification ratio [25]. Nguyen et al. found that SLC10A1
expression is an independent predictor of survival outcome
and recurrence-free survival, implying that SLC10A1 is a
potential biomarker for early diagnosis and prognosis of
HCC in the era of personalized medicine [26]. Thus we raised
the presumption that the inner mechanism of LINC00659 in
HCC progression and aerobic glycolysis via regulation of
SLC10A1. In our work, the expression of SLC10A1 was
promoted in HCC cells transfected with pcDNA3.1-
LINC00659, detected by qRT-PCR and WB, suggesting
that LINC00659 positively regulated SLC10A1 expression
in HCC cells. We also confirmed the phenomenon that
SLC10A1 had low expression in HCC cells, which was con-
sistent with previous work [39, 40].

To further explore the interaction between LINC00659
and SLC10A1, we applied starBase website to predict FUS
could bind both to LINC00659 and SLC10A1, which was
further confirmed by RIP and RNA pull-down results.

Moreover, we proved that after FUS silence, the mRNA
and protein levels of SLC10A1 were correspondingly
reduced. Emerging evidence have unveiled that FUS regu-
lates mRNA expression via interacting with mRNA 3′
untranslated regions (UTRs) to stabilize mRNA [41]. Con-
sistently, our research further found that FUS stabilized
SLC10A1 expression. In addition, our study demonstrated
that LINC00659 stabilized SLC10A1 mRNA and promoted
its expression by recruiting FUS, which was similar with a
variety of previous works. For example, lncRNA DUXAP8
is found to facilitate multiple malignant phenotypes and
resistance to PARP inhibitor in HCC via binding with
FUS [42]. Also, LINC01419 facilitates HCC growth and
metastasis through targeting enhancer of zeste homolog 2
(EZH2)-regulated reversion-inducing-cysteine-rich protein
with kazal motifs (RECK) through interacting with FUS
[28]. However, in the future, there are still some long-
term improvements to be taken in our study, for example,
it is shown that SLC10A1 interacts with other proteins, such
as NR1H4, ABCB11, and CYP7A, but we have not validated
these candidates to rule out whether these proteins are
involved in SLC10A1 modulation by LINC00659. Exploring

Norm
al (

46
)

Tumor (4
6)

0

1

Re
lat

iv
e L

IN
C0

06
59

 ex
pr

es
sio

n
⁎⁎

2

3

(a)

THLE-2

HepG2

HuH-7

Re
lat

iv
e e

xp
re

ss
io

n 
of

 L
IN

C0
06

59

0

2

4

6

⁎⁎
⁎⁎

(b)

0

2

4

6

8

10

pcDNA3.1
pcDNA3.1-LINC00659

⁎⁎

⁎⁎

HuH-7HepG2

Re
lat

iv
e e

xp
re

ss
io

n 
of

 S
LC

10
A

1

(c)

pcD
NA-3.

1

pcD
NA-3.

1-

LIN
C00

65
9

pcD
NA-3.

1

pcD
NA-3.

1-

LIN
C00

65
9

HuH-7

SLC10A1

GAPDH

SLC10A1

GAPDH

HepG2

(d)

Figure 3: LINC00659 positively regulated SLC10A1 expression in HCC cells. (a) The expression level of LINC00659 in 46 pairs of HCC
tissues and adjacent noncancerous specimens was calculated using qRT-PCR. (b) The expression of LINC00659 in human normal liver
cell lines (THLE-2) and human hepatocyte carcinoma cell lines (HepG2 and HuH-7) was determined by qRT-PCR. (c) The expression
of SLC10A1 in HepG2 and HuH-7 cells transfected with pcDNA3.1-LINC00659 was measured by qRT-PCR. (d) The expression of
SLC10A1 in HepG2 and HuH-7 cells transfected with pcDNA3.1-LINC00659 was measured by western blot. **P < 0:01.

8 Analytical Cellular Pathology



FUS

LINC00659–RBP

2 1 1

SLC10A1–RBP

(a)

Anti-I
gG

Anti-F
US

Anti-I
gG

Anti-F
US

0

5

10

15

20

0

5

10

15

20

HepG2

Re
la

tiv
e e

nr
ic

hm
en

t o
f

LI
N

C0
06

59

Re
la

tiv
e e

nr
ic

hm
en

t o
f

LI
N

C0
06

59

⁎⁎ ⁎⁎

HuH-7

(b)

HuH-7

0

10

20

30

0

10

20

30

HepG2

Re
la

tiv
e e

nr
ic

hm
en

t o
f

SL
C1

0A
1 

3'U
TR

Re
la

tiv
e e

nr
ic

hm
en

t o
f

SL
C1

0A
1 

3'U
TR

Anti-I
gG

Anti-F
US

Anti-I
gG

Anti-F
US

⁎⁎ ⁎⁎

(c)

Input LINC00659
Anti-sense

LINC00659
Sense

FUS

HepG2

Input LINC00659
Anti-sense

LINC00659
Sense

FUS

HuH-7

(d)

Input SLC10A1 3’UTR
Anti-sense

SLC10A1 3’UTR
Anti-sense

SLC10A1 3’UTR
Sense

SLC10A1 3’UTR
Sense

FUS

HepG2

Input

FUS

HuH-7

(e)

HepG2 HuH-7
0.0

0.5

1.0

1.5

Re
la

tiv
e e

xp
re

ss
io

n 
of

 S
LC

10
A

1

sh-NC
sh-FUS-1
sh-FUS-2

⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎

(f)

Figure 4: Continued.

9Analytical Cellular Pathology



SLC10A1

sh-NC
sh-FUS-1

sh-FUS-2

sh-NC
sh-FUS-1

sh-FUS-2

GAPDH

HepG2

SLC10A1

GAPDH

HuH-7

(g)

0 6 12 18 24
0.0

0.5

1.0

1.5

Time (h)

0 6 12 18 24

Time (h)

Re
la

tiv
e e

xp
re

ss
io

n 
of

 S
LC

10
A

1

0.0

0.5

1.0

1.5

Re
la

tiv
e e

xp
re

ss
io

n 
of

 S
LC

10
A

1

sh-NC
sh-FUS-1

HepG2 HuH-7

⁎⁎

⁎⁎

⁎⁎

⁎⁎

(h)

pcD
NA-3.

1

pcD
NA-3.

1-L
IN

C00
65

9

pcD
NA-3.

1

pcD
NA-3.

1-L
IN

C00
65

9

0

10

20

30

40

Re
la

tiv
e e

nr
ic

hm
en

t o
f

SL
C1

0A
1 

3'U
TR

0

10

20

30

40

Re
la

tiv
e e

nr
ic

hm
en

t o
f

SL
C1

0A
1 

3'U
TR

Anti-IgG
Anti-FUS

HepG2 HuH-7

⁎⁎

⁎⁎

⁎⁎

⁎⁎

(i)

Figure 4: LINC00659 stabilized SLC10A1 mRNA by recruiting FUS. (a) The Venn diagram of LINC00659 RBP and SLC10A1 RBP. (b) The
enrichment of LINC00659 in HepG2 and HuH-7 cells was determined by RIP assay. (c) The enrichment of SLC10A1 3′UTR in HepG2 and
HuH-7 cells was determined by RIP assay. (d) The interaction of FUS and LINC00659 in HepG2 and HuH-7 cells was assessed by RNA
pull-down assay. (e) The interaction of FUS and SLC10A1 3′UTR in HepG2 and HuH-7 cells was assessed by RNA pull-down assay. (f)
The expression of SLC10A1 in HepG2 and HuH-7 cells transfected with sh-FUS was examined by qRT-PCR. (g) The protein level of
SLC10A1 in HepG2 and HuH-7 cells transfected with sh-FUS was examined by western blot. (h) The stability of SLC10A1 mRNA was
detected by qRT-PCR in HepG2 and HuH-7 cells transfected with sh-FUS after actinomycin D treatment. (i) Relative enrichment of
SLC10A1 3′UTR in HepG2 and HuH-7 cells transfected with pcDNA3.1-LINC00659/pcDNA3.1 was assessed by RIP assay. **P < 0:01.

10 Analytical Cellular Pathology



HepG2 HuH-7
0

100

200

300

N
um

be
r o

f c
ol

on
ie

s (
1 

× 
10

3 )

##

pcDNA-3.1

pcDNA-3.1

pcDNA-3.1-
LINC00659

pcDNA-3.1-LINC00659

H
ep

G
2

H
uH

-7
pcDNA-3.1-LINC00659

+ sh-SLC10A1-1

pcDNA-3.1-LINC00659
+ sh-SLC10A1-1

⁎⁎
⁎⁎

(a)

0

20

40

60

80
Ce

ll 
nu

m
be

r/
pe

r f
ie

ld

##

H
ep

G
2

H
uH

-7

pcDNA-3.1 pcDNA-3.1-LINC00659 pcDNA-3.1-LINC00659
+ sh-SLC10A1-1

pcDNA-3.1
pcDNA-3.1-LINC00659
pcDNA-3.1-LINC00659 +
sh-SLC10A1-1

HepG2 HuH-7

⁎⁎
⁎⁎

(b)

Figure 5: Continued.

11Analytical Cellular Pathology



more RNA-binding proteins (RBPs) involved in SLC10A1
modulation by LINC00659 is the direction of our next
phase of work. In conclusion, our findings demonstrated
that LINC00659 positively regulated SLC10A1 expression
in HCC cells. Further, we found that LINC00659 stabilized
SLC10A1 mRNA and promoted its expression by recruiting
FUS. These findings elucidated that LINC00659 affected the
aerobic glycolysis of HCC cells through FUS/SLC10A1 axis.
Our results delineate the clinical significance of LINC00659

in HCC and the regulatory mechanisms involved in HCC
progression, providing a novel prognostic indicator and
promising therapeutic target.

Data Availability

The datasets used and/or analyzed during the current study
available from the corresponding author on reasonable
request.
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