
Research Article
Comprehensive Analysis of METTLs (METTL1/13/18/21A/23/
25/2A/2B/5/6/9) and Associated mRNA Risk Signature in
Hepatocellular Carcinoma

Haoyu Wang ,1 Shangshang Hu ,2 Junjie Nie ,3 Xiaodan Qin ,3 Xu Zhang ,1

Qian Wang ,1 and John Zhong Li 1

1The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology,
The Key Laboratory of Human Functional Genomics of Jiangsu Province,
Key Laboratory of Targeted Intervention of Cardiovascular Disease,
Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University,
Nanjing 211166, China
2Department of Clinical Laboratory Diagnostics, School of Medicine, Southeast University, Nanjing 210009, China
3Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

Correspondence should be addressed to John Zhong Li; lizhong@njmu.edu.cn

Received 24 February 2023; Revised 4 September 2023; Accepted 15 September 2023; Published 12 October 2023

Academic Editor: Yun Ping Lim

Copyright © 2023 Haoyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Currently, 80%–90% of liver cancers are hepatocellular carcinomas (HCC). HCC patients develop insidiously and have an inferior
prognosis. The methyltransferase-like (METTL) family principal members are strongly associated with epigenetic and tumor progres-
sion. The present study mainly analyzed the value of METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) and associated mRNA risk
signature for HCC. METTLs expression is upregulated in HCC and is a poor prognostic factor in HCC. METTLs were upregulated in
patients older than 60 and associated with grade. Except for METTL25, the remaining 10 genes were associated with the HCC stage,
invasion depth (T). In addition,METTLs showed an overall alteration rate of 50%. Except forMETTL13/2A/25/9, the expression of the
other seven genes was significantly associated with overall survival, disease-specific survival, and progression-free survival.Multivariate
studies have shown that METTL21A/6 can be an independent prognostic marker in HCC. A total of 664 mRNAs were selected based
on Pearson correlation coefficient (R> 0.5), unsupervised consensus clustering, weighted coexpression network analysis, and univari-
ate Cox analysis. These mRNAs were significantly associated with METTLs and were poor prognostic factors in HCC patients. The
least absolute shrinkage and selection operator (lasso) was used to construct the best METTLs associated with mRNA risk signature.
The mRNA risk signature was significantly associated with age, stage, and t grade. The mRNA high-risk group had higher TP53 and
RB1 mutations. This study constructed a nomogram with the mRNA risk profile and clinicopathological features, which could better
predict the OS of individuals with HCC. We also analyzed associations between METTLs and mRNA risk signatures in epithelial-
mesenchymal transition, immune checkpoints, immune cell infiltration, tumor mutational burden, microsatellite instability, cancer
stem cells, tumor pathways, and drug sensitivity. In addition, this study constructed a protein interaction network network including
METTLs and mRNA risk signature genes related to tumor microenvironment remodeling based on single-cell sequencing. In
conclusion, this study provides a theoretical basis for the mechanism, biomarker screening, and treatment of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the digestive tract
tumors and an aggressive type of tumor [1]. Although HCC
incidence ranks sixth worldwide, HCC mortality ranks third
worldwide [2]. Currently, the diagnosis of HCC is limited,

resulting in the fact that most patients with HCC are
advanced stage when diagnosed [3]. In addition, HCC treat-
ment approaches are also limited, and patients with advanced
HCC who are treated also develop tumor cell metastasis, ulti-
mately leading to patient death [4]. Therefore, finding effec-
tive biomarkers and therapeutic targets for HCC is crucial.
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Aberrant expression of a gene may promote or suppress
HCC progression depending on whether this gene is an onco-
gene or a tumor suppressor [5]. Humanmethyltransferase-like
(METTL) proteins are a superfamily of S-adenosylmethionine
—dependent enzymes. METTL’s primary function is to trans-
fer methyl groups onto various molecules, including lipids,
proteins, and nucleic acids [6]. Studies have shown that multi-
ple members of METTL are strongly associated with tumor
progression [7]. METTL1 is one of the significant regulators of
N7-methylguanosine (m7G), which can form a complex with
wdr4 to mediate m7G tRNA modification and, in turn, pro-
mote the progression of multiple tumors, including lung can-
cer [8], bladder cancer [9], and liver cancer [10].METTL3/4/5/
13/14/16 are N6-methyladenosine (m6A) regulators, and they
promote tumor progression through m6A methylation modi-
fication [11]. Moreover, METTL6/7b/9/11A/21B/18 [12–17]
was able to act as an oncogene to promote tumor progres-
sion. However, METTLs have yet to be systematically stud-
ied in HCC.

Among the 33 METTL family members, 11 METTLs
(METTL1/13/18/21A/23/25/2A/2B/5/6/9) with upregulated
expression in HCC and poor prognosis for HCC patients
were enrolled in this study. In addition, this study employed
multiple algorithms to construct the mRNA risk signature
associated with these 11 genes separately. Ultimately, this
study comprehensively analyzed the correlation between
METTLs and mRNA risk signatures in terms of prognosis,
clinicopathological features, mutations, tumor microenvi-
ronment (TME), epithelial-mesenchymal transition (EMT),
immune cell infiltration, tumor mutational burden (TMB),
microsatellite instability (MSI), cancer stem cells (RNAss),
cancer pathways, and drug sensitivity. In conclusion, this
study provides a theoretical basis for the prognosis, bio-
marker screening, mechanism, and drug screening of HCC.

2. Materials and Methods

2.1. Expression Data and Clinical Data Acquisition. HCC
expression data were obtained fromThe Cancer GenomeAtlas
(TCGA) (tumor: n= 374, normal: n= 50), Genotype-Tissue
Expression (GTEx) (normal: n= 110), and Gene Expression
Omnibus (GEO) databases. The GEO databases included
GSE54236 (tumor: n= 81, normal: n= 80) and GSE64041
(tumor: n= 60, normal: n= 60). This study combined TCGA
and GTEX data into new TCGA_ GTEx datasets (tumor:
n= 374, normal: n= 160). The R software “limma” and
“ggplot2” packages were used for differential analysis and
visualization. Receiver operating characteristic (ROC) curves
were plotted using the R software “pROC” package. Clinical
data of HCC were obtained from the TCGA database and
International Cancer Genome Consortium (ICGC) database,
including survival time (n=370), age (n=376), gender (n=377),
grade (n= 376), tumor stage (n= 354), invasion depth (T)
(n= 374), lymph node metastasis (n) (n= 376), and distant
metastasis (M) (n= 261). The differences between gene expres-
sion or risk scores and clinicopathological characteristics were
analyzed using R software “reshape2” and “ggplot2” packages.

2.2. Mutational Analysis and Prognostic Analysis of METTLs.
METTLs genes were accessed using the Cbioportal site
(http://www.cbioportal.org/) [18]. Prognostic analysis of
METTLs in HCC patients was performed using R software
“survival,” “survminer,” “regplotz,” and “RMS” packages,
including overall survival (OS), disease-specific survival (DSS),
progression-free interval (PFI), and univariate/multivariate
Cox regression analysis. Multivariate Cox regression analysis
parameters included METTLs, age, grade score, T, and stage.

2.3. Acquisition of mRNAs Closely Associated with METTLs.
First, Pearson correlation analysis in the R software “limma”
package was used to screen the related mRNAs of METTLs
in this study (Pearson r> 0.5 and P<0:05). Unsupervised
consensus clustering is an algorithm for k-means machine
learning [19]. The present study subsequently employed
unsupervised consensus clustering to analyze the TCGA
cohort based on the expression of METTLs. The R software
“ConsensusClusterPlus” package was used for the clustering.
And OS curves were used to evaluate the prognosis of different
clusters forHCCpatients. TheR software “limma” and “ggplot2”
packages were adopted to screen the differential mRNAs
between different clusters (|log FC|> 0.585, P<0:05). This
study further used R software “limma” and the “WGCNA”
package to construct a coexpression network of 11 genes in
theMETTL family based onweighted gene coexpression network
analysis (WGCNA) [20]. The present study intersected the
relevant mRNAs of 11 genes in the METTL family, the
upregulated mRNAs in the subcohort, and the coexpressed
mRNAs in the WGCNA. The intersection genes were further
screened in this study by univariate Cox analysis. This study
defines mRNAs with poor prognosis for HCC as genes closely
related toMETTLs. Finally, “clusterProfiler” and “org. HS. Eg.
db” packages were adopted to perform Kyoto Encyclopedia of
Genes and Genomes (KEGG) and GO enrichment analysis of
closely related mRNAs of METTLs.

2.4. Construction of an mRNA Risk Signature. The present
study constructed an associated risk signature based on the
closely related mRNAs of METTLs. This study employed R
software “glmnet” and “survival” packages for lasso regres-
sion and multivariate Cox analysis to construct the most
suitable risk signature. The risk score for patients was calcu-
lated from the normalized expression level of each gene and
the corresponding regression coefficient with the formula:
Risk score=∑coefi ∗ exp. The R software “survival,” “surv-
miner,” and “survminer” packages were used to draw the OS
curves and time-dependent ROC curves for the mRNA risk
signature. The R software “Rtsne” and “ggplot2” packages
were used to draw principal component analysis (PCA)
and t-SNE scatter plots to distinguish risk patients among
the risk features. The data above are from the TCGA cohort
(tumor: n= 370). In addition, the validation set was obtained
from the ICGC database (tumor: n= 240).

2.5. Mutational Analysis and Construction of a Nomogram
Prediction Model for Risk Signature. The SangerBox 3.0 tool
was used (https://doi.org/10.1002/imt2.36). Mutation differ-
ences in significant HCC genes between high- and low-risk
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FIGURE 1: Continued.
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FIGURE 1: METTLs are upregulated in HCC and contribute to poor prognosis in HCC patients. (a) Univariate Cox analysis, (b) 12mRNAs in TCGA
+GTEX database were differentially expressed (tumor: n=374, normal: n=160), (c) the 12 mRNAs in the GSE54236 dataset were differentially
expressed (tumor: n=81, normal: n=80), (d) pairwise difference analysis of 11mRNAs in TCGAdatabase (tumor: n=50, normal: n=50), (e) based
on pairwise differential analysis of 11mRNAs in the GSE64041 dataset (tumor: n=60, normal: n=60), and (f) ROC ofMETTLs in TCGA database.
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groups were compared, and waterfall plots were plotted to
present the results. The nomogram prediction model was
based on multivariate Cox regression analysis and was used
to predict 1-, 2-, and 3-year OS in patients with HCC. The
calibration curve was used to predict survival in terms of the
OS of HCC patients. Nomogram predictionmodel parameters
includedmRNA risk score, age, grade score, T, and stage. Time
ROC curve and decision curve analysis (DCA) were employed
to evaluate the accuracy of the nomogram prediction model
and other parameters. The R software “timeROC,” “ggdca,”
“survminer,” and “survival” packages were used for analysis
and visualization.

2.6. Integrated Analysis of METTLs and mRNA Risk Signatures.
The R software “pRRophetic” package was used and based on
the drug IC50 values to screen sensitive drugs to METTLs
and mRNA risk profiles [21]. Spearman correlation analysis
of METTLs and mRNA risk signatures with EMT core
genes, immune checkpoints, immune cells, tumor-associated
macrophage (TAM) surface genes, TMB, MSI, RNAss,
and IC50 were assessed using R software “reshape2” and
“RColorBrewer” packages. Gene set variant analysis (GSVA)
was employed to evaluate the biological functions of METTLs/
mRNA risk signatures based on the gene sets of KEGG terms
and hallmark terms.

2.7. Processing and Analysis of Single-Cell Data. The HCC
single-cell dataset of this study (GSE146115, n= 4) was obtained
from the GEO database. R software “Seurat,” “dplyr,” and
“singleR” packages were used for quality control processing
and subpopulation annotation of single-cell sequencing data
in this study [22, 23]. Quality control conditions were set to
retain genes expressed in at least three intracellular compart-
ments, cells expressing at least 200 genes, cells with the num-
ber of detected genes between 200 and 2,500, and cells with
less than 5% expression of mitochondrial genes. Lognorma-
lize was used for normalization in this study. Cell communi-
cation was analyzed using the “sqjin/CellChat” package. Based
on Genemania database construction (http://genemania.org/)
[24] to construct a TME remodeling associated protein inter-
action network (PPI).

2.8. Statistical Analysis. R software 4.0.3 was used to perform
all statistical analyses. Differences between the two groups
were analyzed using theWilcoxon rank sum test or paired t-test.
Differences between METTLs and mRNA risk signatures and
clinicopathological features were analyzed using the Wilcox
test. P<0:05 was considered statistically significant (∗P<0:05,
∗∗P<0:01, ∗∗∗P<0:001, ∗∗∗∗P<0:0001).

3. Results

3.1. METTLs (METTL1/13/18/21A/23/25/2A/2B/5/6/9) are
Upregulated in HCC and Have a Poor Prognosis for HCC
Patients. To investigate the prognosis and expression of
METTL family members in HCC. In this study, 34 METTL
family members were first subjected to univariate Cox analysis,
which revealed that 13 genes were prognostic for HCC patients
(Figure 1(a)). Among them, 12 genes (METTL1/13/18/21A/
23/25/2A/2B/3/5/6/9) showed a poor prognosis for HCC

patients. This study subsequently combined TCGA with
GTEx data to analyze the differential expression of these 12
genes in HCC. The results indicated that the expression of the
remaining 11 genes (METTL1/13/18/21A/23/25/2A/2B/5/6/9),
except METTL3, was significantly upregulated in HCC
(P<0:05) (Figure 1(b)). The same was true for GSE54236
results (Figure 1(c)). The paired analysis results of these 11
genes showed that cancer tissues had significantly higher
expression than adjacent noncancerous tissues (Figures 1
(d) and 1(e)). Moreover, the ROC curve results indicated
that METTLs had significant diagnostic values (AUC> 0.6)
for HCC patients (Figure 1(f)). In summary, METTLs
(METTL1/13/18/21A/23/25/2A/2B/5/6/9) were enrolled as
follow-up subjects in this study.

3.2. Expression Differences and Genetic Alterations of METTLs
in Four Clinicopathological Features. In this study, the expres-
sion of METTLs was differentially correlated with age,
grade, stage, and T. The results showed that METTLs were
significantly upregulated in patients older than 60 years
(P<0:05) (Figure 2(a)). For grade, the expression of METTLs
was significantly different from grade (P<0:05) (Figure 2(b)).
For stage, except for METTL25, the expression of the other
10 genes was significantly different from stage (P<0:05)
(Figure 2(c)). For T, except for METTL13/25/2B/9, the
expression of the remaining seven genes was significantly
different from that of T (P<0:05) (Figure 2(d)). The present
study further evaluated the genetic alterations in METTLs.
The results indicated genetic alterations in both METTLs
(Figure 2(e)). In addition, 50% of the total genetic alterations
were in these 11 genes (Figure 2(f)).

3.3. Prognostic Value of METTLs in HCC. In this study, the
prognostic value of METTLs in HCC was evaluated by OS,
DSS, progression-free survival (PFS), and univariate/multivariate
Cox analysis. OS results indicated that the high-expression
group of METTLs had a significantly shorter survival time
than the low-expression group (P<0:05) (Figure 3(a)). The
DSS results indicated that except for METTL13/23/2A, the
high-expression group of the remaining eight genes had a
significantly shorter survival time than the low-expression
group (P<0:05) (Figure 3(b)). The PFS results indicated
that except for METTL13/25/9, the high-expression group
of the remaining eight genes had a significantly shorter
survival time than the low-expression group (P<0:05)
(Figure 3(c)). The results of univariate Cox analysis indicated
that METTLs, T grade, grade, and stage were all prognostic
factors for HCC patients (Figure 3(d)). We further included
METTLs, age, T, grade, and stage in the multivariate Cox
analysis. The results indicated that METTL21A/6 were
independent prognosticmarkers forHCCpatients (Figure 3(e)).

3.4. A Total of 664 mRNAs Showed a Strong Positive
Correlation with METTLs. In this study, we screened mRNAs
that were closely and positively correlated with METTLs. In
this study, we first identified 2,712 mRNAs that were signifi-
cantly and positively correlated with METTLs (Pearson
r> 0.5 and P<0:05) (Figure 4(a)). Subsequently. This
study performed unsupervised consensus clustering of
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FIGURE 2: Continued.
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FIGURE 2: Expression differences and genetic alterations of METTLs in four clinicopathological features. (a–d) Differentially expressed
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FIGURE 3: Continued.
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TCGAHCC samples according to the expression of METTLs.
Based on CDF (Figure 4(b)) and delta area (Figure 4(c)), two
clusters (C1 and C2) could be well separated when k= 2
(Figure 4(d)). OS results indicated that C1 had a higher
survival time than C2 (Figure 4(e)). The present study
screened differentially expressed mRNAs based on the two
subpopulations C1 and C2 (|log FC|> 0.585, P<0:05). In
total, 417 downregulated and 3,508 upregulated mRNAs
were screened out (Figure 4(f)). In this study, a coexpression
network of METTLs was further constructed by WGCNA
based on TCGA mRNA expression data. WGCNA soft
threshold of 12 (Figure 4(g)). The present study identified
eight mRNA coexpression modules (Figure 4(h)). We found
that blue, cyan, yellow, purple, and gray modules were
significantly associated with METTLs (Figure 4(i)). A total
of 8,820 mRNAs were involved in these above modules.
Ultimately, the related mRNAs of METTLs, the upregulated

mRNAs in the subpopulation, and the coexpressed mRNAs
in WGCNA were intersected. The intersection RNAs were
subjected to univariate Cox analysis. We obtained a total of
664 mRNAs (Figure 4(j)). These mRNAs showed a close
positive correlation with METTLs. GO and KEGG analyses
were performed on these mRNAs. The biological functions
of these RNAs were shown to be related to DNA replication,
chromosome splicing, RNA transport, and cell cycle (Figures 4(k)
and 4(l)).

3.5. Construction of an mRNA Risk Signature Associated with
METTLs. In this study, based on 664 mRNAs associated with
METTLs, the best mRNA risk signature was constructed by
multivariate Cox regression analysis using lasso (Figures S1(a)
and S1(b)). A total of 11 mRNAs (PPM1G, MEX3A, PHOS-
PHO2, YBX1, UCK2, TAF3, EZH2, PSRC1, TMEM69, CDCA8,
and DYNC1LI1) were identified in this study to construct the
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FIGURE 3: Prognostic value of METTLs in HCC. (a–c) Overall survival (OS), disease-specific survival (DSS), and progression-free survival
(PFS) curves of METTLs; (d– and e) univariate/multivariate Cox analysis.
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FIGURE 4: 664 mRNAs are strongly and positively correlated with METTLs. (a) mRNAs with a significant positive correlation with METTLs,
(b) cumulative distribution map of clustering consistency, (c) clustering Delta area map, (d) clustering results of the expression of METTLs
on TCGAHCC samples, (e) OS curves of C1 and C2, (f ) MRNA for difference between C1 and C2 (|logFC|> 0.585, P<0:05), (g– and h) soft
thresholding and dendrograms, (i) heatmap of correlation between module eigengenes and METTLs, (j) intersection genes and results of
univariate Cox analysis, (k) GO analysis, and (l) KEGG analysis.
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best risk signature. To verify the reliability of these 11 mRNAs,
the Heatmap of coexpression between the construct METTLs
and these 11 mRNAs was performed using Spearman’s
correlation test. As shown in Figure S2(a), METTLs were
significantly and positively correlated with these 11 mRNAs
(r> 0.3, P<0:05). Moreover, these 11 mRNAs were all
upregulated in HCC (Figure S2(b)). Moreover, in the OS
curve, the high expression of these 11 mRNAs showed a
significant decrease in survival (P<0:05) (Figure 5(a)). In
the DSS curves, the survival of the high-expression group of
mRNAs except TMEM69 decreased significantly (P<0:05)
(Figure 5(b)). In the PFI curves, the high expression of
mRNAs except PSRC1 and TMEM69 showed a significant
decrease in survival (P<0:05) (Figure 5(c)). In conclusion,
our resulting 11 mRNAs were reliable. Subsequently, we
constructed mRNA risk signatures. The risk score was
calculated as follows: Risk score (mRNA)= (0005 ∗ PPM1G
exp)+ (0007 ∗ MEX3A exp)+ (0119 ∗ PHOSPHO2 exp)
+ (0001 ∗ YBX1 exp)+ (0036 ∗ UCK2 exp)+ (0068 ∗ TAF3
exp)+ (0002 ∗ EZH2 exp)+ (0031 ∗ PSRC1 exp)+ (0009 ∗

TMEM69 exp)+ (0003 ∗ CDCA8 exp)+ (004 ∗ DYNC1LI1
exp). For the mRNA training set (TCGA) risk signature, the
high-risk group showed significantly worse OS than the low-
risk group (P<0:05) (Figure 6(a)). The area under the curve
(AUC) at 1, 3, and 5 years in the time-dependent ROC curve
was 0.783, 0.727, and 0.719, respectively (Figure 6(b)). There
were more deaths in the high-risk group (Figure 6(c)). PCA
and t-SNE scatter plot results indicated that HCC patients
at different risks were well able to be separated into two
clusters (Figure 6(d)). The same was true for the mRNA
validation set (ICGC) (Figure 6(e)–6(h)). Moreover, combined
with clinicopathological features, univariate/multivariate Cox
analysis indicated that the mRNA risk signature was an
independent poor prognostic factor for HCC patients
(Figure 6(i)).

3.6. Construction of an mRNA Risk Signature Nomogram
Prediction Model. In this study, a nomogram prediction
model was constructed to evaluate the predictive value of
the mRNA risk signature for the OS of HCC. In this study,
a nomogram was constructed combining clinicopathological
features and mRNA risk features to predict the survival rates
of HCC patients with 1-, 3-, and 5-year OS (Figure 7(a)). The
calibration curves indicated that the nomogram prediction
model was able to predict the 1-, 3-, and 5-year OS of HCC
patients with better accuracy (Figure 7(b)). The time ROC
curves indicated that the 3- and 5-year nomogram prediction
models outperformed the mRNA risk signature (Figure 7(c)).
DCA indicated that the mRNA risk signature was more
accurate (Figure 7(d)).

3.7. Correlation ofmRNARisk Signature with Clinicopathological
Features and Genetic Alterations. This study evaluated the cor-
relation of mRNA risk signature with clinicopathological features
and genetic alterations. The results showed significant differences
between T, grade, and stage with high- and low-risk groups of
mRNAs (Figure 8(a)). In addition, mRNA scores were signifi-
cantly different from age, grade, stage, and t (Figure 8(b)). In this
study, we further compared the mutational differences between

high- and low-risk groups in 20 genes (TP53, CTNNB1, ALB,
AXIN2, KEAP1, BAP1, NFE2L2, LZTR1, RB1, PIK3CA, KRAS,
IL6ST, CDKN2A, ARID2, ARID1A, ACVR2A, NRAS,
HISR1H1C, PTEN, and ERRFI1) that are predominantly
mutated in HCC [25]. The results showed that TP53 and
RB1 mutations were significantly higher in the high-risk
group (P<0:05) (Figure 8(c)).

3.8. Multiangle Analysis of METTLs andmRNA Risk Signatures.
This study further used multiple angles to assess the role of
METTLs and mRNA risk signatures in HCC, including EMT,
immune checkpoints, immune cell infiltration, TAMmarkers,
TMB, MSI, and RNAss. The risk network plots of METTLs
and mRNA risk signature were first constructed in this study
(Figure 9(a)). The EMT results indicated that METTLs and
mRNA risk scores were positively correlated with most of the
EMT core genes, among which they were all significantly
correlated with MMP9 (P<0:05) (Figure 9(b)). The results
of immune checkpoint analysis indicated that METTLs and
mRNA risk score were significantly and positively correlated
with most immune checkpoints (Figure 9(c)). Immune cell
infiltration results indicated that METTLs and mRNA risk
scores were positively correlated with multiple immune cell
infiltration, among which all genes and mRNA risk scores
except METTL25 were significantly correlated with M0
macrophages (P<0:05) (Figure 9(d)). We further analyzed
the correlations between the METTLs and mRNA risk
scores and TAM markers. The results showed that the
METTL9 and mRNA risk scores were significantly (P<0:05)
correlated with all TAMmarkers (Figure 9(e)). In addition, the
METTL1/18/23/2A/2B/5/6/9 and mRNA risk scores were
significantly positively correlated with TMB values (P<0:05)
(Figure 9(f)). There was a significant positive correlation
between METTL23/5 and mRNA risk score and MSI
(P<0:05) (Figure 9(g)). The METTL1/13/18/21A/23/2A/
2B/5/6 and mRNA risk scores showed significant positive
correlations with RNAss (P<0:05) (Figure 9(h)). In conclusion,
METTLs and mRNA risk signature play a crucial role in HCC
and may serve as novel therapeutic targets in tumor therapy.

3.9. Assessment of Potential Pathways for the METTLs and
mRNA Risk Signature. The present study further evaluated
the potential pathways of METTLs and mRNA risk score in
HCC. Based on KEGG terms calculated by GSVA, we found
that METTLs and mRNA risk scores were significantly
associated with multiple tumors- or immune-related pathways
(P<0:05) (Figure 10(a)). As the Wnt pathway was significantly
positively correlated with mttl18/21A/25/2A/2B/6/6 and mRNA
risk score; there were significant positive correlations between
VEGF pathway and METTL21A/25/2B/6/9 and mRNA risk
score; P53 pathway was significantly and positively correlated
with METTL1/13/18/21A/23/25/2A/2B/5/6/9 and mRNA
risk score. In addition, the hallmark terms, METTLs, and
mRNA risk scores calculated based on GSVA were significantly
associated with multiple tumors- or immune-related terms
(P<0:05) (Figure 10(b)). These terms include the terms:
“XENOBIOTIC_METABOLISM,” “WNT_BETA_CATENIN_
SIGNALING,” “UNFOLDED_PROTEIN_RESPONSE,” “TNFA_
SIGNALING_VIA_NFKB,” “TGF_BETA_SIGNALING,”
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FIGURE 5: OS, DSS, and PFI curves of 11 mRNA risk signature genes. (a) OS curves, (b) DSS curves, and (c) PFI curves.
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“SPERMATOGENESIS,” “PROTEIN_SECRETION,” “PI3K_
AKT_MTOR_SIGNALING,” “MYC_TARGETS_V1,” “MYC_
TARGETS_V2,” “K_MTORC1_SIGNALING,” “MITOTIC_
SPINDLE,” and so forth.

3.10. Screening for Sensitive Drugs Shared with METTLs and
mRNA Risk Signatures. This study evaluated the correlation
of METTLs and mRNA risk profiles with drug IC50 and

screened for common-acting sensitive drugs. We selected
drugs with significant associations, including 31 drugs in
common with METTL1/13/18/21A/23, 48 drugs in common
with METTL25/2A/2B/5/6, and 95 drugs in common with
METTL9 and the mRNA risk signature (Figure 11(a)). All
three had 27 drugs in common with significant associations
withMETTLs and mRNA risk scores (Figure 11(b)). Moreover,
the IC50 values of these 27 drugs were all significantly inversely
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FIGURE 6: Analysis of mRNA risk signature. (a) Overall survival difference between high- and low-risk group in the mRNA training set, (b)
time-dependent ROC curve in the mRNA training group, (c) high- and low-risk score median values and survival status distribution in the
mRNA training set, (d) principal component analysis (PCA) and t-SNE scatter plots in the mRNA training set, (e) overall survival difference
between high- and low-risk groups in the mRNA validation set, (f ) time-dependent ROC curve in the mRNA validation set, (g) high- and
low-risk score median values and survival status distribution in the mRNA validation set, (h) principal component analysis and t-SNE scatter
plots in the mRNA validation set, and (i) univariate/multivariate Cox analysis of the training and validation sets.
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FIGURE 7: Construction of the mRNA risk signature nomogram prediction model. (a) Nomogram prediction model, (b) calibration curve, (c)
the time ROC curves for the particular periods show the AUC values for the individual parameters, and (d) decision curve analysis (DCA).
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FIGURE 8: Correlation of mRNA risk signature with clinicopathological features and mutation difference analysis. (a) Differences between
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FIGURE 9: Continued.
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FIGURE 9: Multiangle analysis of METTLs and mRNA risk signature. (a) Risk network plot of therisk signature, (b) correlation of METTLs and
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FIGURE 10: Correlation analysis of METTLs and mRNA risk signature with potential pathways. (a) KEGG terms calculated by GSVA and
(b) GSVA calculated hallmark terms.
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correlated with the METTLs and mRNA risk scores (P<0:05)
(Figure 11(c)). Therefore, these 27 drugs had higher sensitivity
for METTLs and mRNA risk signature.

3.11. Quality Control of Single-Cell Sequencing Data Relates
to Cell Subpopulation and Constructs a PPI Network Related
to tumor Microenvironment Remodeling. The HCC single-
cell sequencing dataset gse146115 (n= 4) was first quality-
controlled and filtered in this study. Gene expression profiles
of 1,263 high-quality cells were obtained for this study (Fig-
ure S3(a)). In addition, we obtained 2,000 variable genes for
cell binning and annotation (Figure S3(b)). Subsequently,
following PCA dimensionality reduction (Figure S3(c)) and
differential analysis in this study, we obtained seven cell
populations (Figure 12(a)). Finally, after “singleR” package
annotation, we derived four cell populations (T cells, NK
cells, monocytes, and liver parenchymal cells) (Figure 12(b)).
METTL1/13/18/21A/23/25/2A/2B/5/6/9 and 11 mRNA risk
signature genes were present to varying degrees in these four
types of cells (Figure 12(c)). Because of the crosstalk connections
among these four cell populations (Figure 13(a)), we predicted
the receptors and ligands between them (Figure 13(b)). Subse-
quently, we established a PPI network including METTL1/13/
18/21A/23/25/2A/2B/5/6/9 (circles), 11 mRNA risk signature
proteins (diamonds), receptors (hexagons), ligands (triangles),
and potential connexins (V-shapes) (Figure 13(c)). This PPI
network is associated with the communication between these
four types of cells (T cells, NK cells, monocytes, and liver paren-
chymal cells). In addition, METTL1/13/18/21A/23/25/2A/
2B/5/6/9 and mRNA risk signature genes showed significant
correlations with receptors and ligands for these four cells
(Figure 13(d)). Therefore, this PPI network is associated
with TME remodeling.

4. Discussion

HCC is a malignant tumor, and the pathogenesis remains
unclear to date [26]. HCC has a high mortality rate, mainly
because most patients are advanced when diagnosed or have
developed local metastases [27]. There are many therapeutic
approaches for HCC, including early diagnosis, surgery,
drugs, immunotherapy, and so forth. However, current treat-
ments do not achieve the desired efficacy for patients with
advanced HCC stages [28]. Therefore, it is crucial to find out
effective biomarkers and therapeutic targets for HCC. In the
present study, METTLs (METTL1/13/18/21A/23/25/2A/2B/
5/6/9), among 33 METTL family members are poor prog-
nostic factors in HCC patients and upregulated in. In addi-
tion, METTLs have a better ability to discriminate between
tumor and nontumor. Therefore, we focused on these 11
genes as research objects and comprehensively analyzed their
values for HCC.

In the present study, OS results indicated that the
METTLs high-expression group had shorter; the DSS results
indicated a shorter survival time in the high-expression
group of the remaining eight genes, except for METTL13/
23/2A; the PFS results indicated a shorter survival time in the
high-expression group of the remaining eight genes except
for METTL13/25/9. Univariate Cox analysis indicated that

both METTLs were poor prognostic factors in HCC. Com-
bined with multiple HCC clinicopathological features, mul-
tivariate Cox analysis indicated that METTL21A/6 was an
independent prognostic marker for HCC. Therefore, overall
METTLs are poor prognostic for HCC. Previous studies have
shown that the probability of having HCC increases progres-
sively with age as well [29]. Changes in the stage or grade of
HCC can also be accompanied by alterations in specific reg-
ulated genes [30]. Invasion depth (T) is also one of the sig-
nificant factors contributing to the poor prognosis of HCC
patients [31]. In the clinical relevance analysis of this study,
METTLs were significantly upregulated in patients older
than 60 years. For the HCC grade, the expression of
METTLs was significantly different from the grade, and the
higher grade increased the expression of METTLs. For stage,
except for METTL25, the expression of the remaining 10
genes increased with stage. For T, except for METTL13/25/
2B/9, the expression of the remaining seven genes was sig-
nificantly different from that of T. Moreover, 50% of the total
genetic alterations in METTLs have been reported. Cur-
rently, METTL21A/23/25/2A/2B/9 are not studied in HCC.
However, in other tumors, METTL2a is a potential N3
methylcytidine (M3C)—the related gene that promotes
breast cancer development [32]. The rise of METTL9 is asso-
ciated with peritoneal metastasis of gastric cancer [33]. In
multiple previous studies, METTL1/13/18/5/6 were able to
promote HCC progression as oncogenes. Chen et al. [10]
showed that the knockdown of METTL1 can reduce m7G
tRNA modification, reducing the translation of mRNA and
thereby inhibiting HCC development. Decreasing METTL1
also reduces HCC recurrence [34]. Li et al. [35] showed that
upregulation of METTL13 could promote HCC growth and
metastasis. Downregulation of METTL18 can inhibit the
proliferation and metastasis of HCC [17]. Peng et al. [36]
showed that METTL5 is associated with 18S rRNA m6A
modification, and downregulating METTL5 can inhibit
HCC progression. Bolatkan et al. [12] showed that down-
regulating METTL6 could reduce metastasis of HCC. Taken
together, METTLs have an essential role in HCC prognosis
and progression.

In this study, 11 mRNA profiles of METTLs-related risk
features were constructed by multiple algorithms. All these
11 mRNAs were closely associated with METTLs. These 11
mRNAs were upregulated in HCC and were poor prognostic
factors for HCC. The mRNA risk signature could well stratify
HCC patients into high- and low-risk groups. In the present
study, we found that the mRNA risk signature was an inde-
pendent poor prognostic factor for HCC patients. In clinical
correlation analysis, the mRNA risk signature was associated
with age, grade, stage, and T in HCC patients. In addition,
the nomogram prediction model we constructed had high
accuracy for OS 1, 3, and 5 years in patients with HCC. This
nomogram prediction model had higher 3- and 5-year accu-
racies than the mRNA risk signature. However, DCA indi-
cated more robust accuracy of mRNA risk signature. In the
mutation analysis, we found that TP53 and RB1 were
mutated with increased frequency in the high-risk group. It
is well known that TP53 and RB1 mutations are one of the
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FIGURE 12: Cell subpopulations for single-cell sequencing data. (a) Seven with differential cell populations, (b) after annotating the four cell
populations (T cells, NK cells, monocytes, and liver parenchymal cells), and (c) expression distribution of METTL1/13/8/21A/23/25/2A/2B/
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most common inheritances inHCC, and themore TP53muta-
tions, the worse the prognosis of HCC patients [37, 38]. There-
fore, the mRNA risk signature we constructed has an essential
effect on the prognosis and development of HCC. Previous
studies have shown that seven mRNAs in the mRNA risk
signature can act as oncogenes to promote HCC progression,
including PPM1G [39], PHOSPHO2 [40], YBX1 [41], PSRC1
[42], UCK2 [43], EZH2 [44], and CDCA8 [45]. However,
MEX3A, TAF3, TMEM69, and DYNC1LI1 have not been
experimentally studied in HCC. However, in other tumors,
they are also able to act as oncogenes to promote tumor
progression [46–49]. These studies further illustrate that the
mRNA risk signature we constructed is an important factor
that promotes HCC occurrence. Further integrative analysis
in this study found that METTLs and mRNA risk signatures
were associated with EMT, multiple immune checkpoints,
multiple immune cell infiltration, TMB, MSI, RNAs, and can-
cer pathways. In terms of drug sensitivity, 27 drugs sensitive
to METTLs and mRNA risk profiles were screened in this
study. In conclusion, this study provides a theoretical basis
for HCC prognosis, progression, and drug screening.

Tumor production causes alterations or accumulation of
surrounding immune or nonimmune cells [50]. These immune
and nonimmune cells, some noncellular components, and the
environment that tumor cells share is called the TME [51]. The

TME has a dual role in that it can both inhibit tumor cell
growth and allow tumor cells to evade surveillance and then
promote tumor cell metastasis [52]. The TME also influences
HCC progression and prognosis [53]. Previous studies have
demonstrated that METTLs can influence the TME and
immune therapy. For example, Liu et al. [54] showed that
METTL1 is a key immune regulator in the TME, and targeting
METTL1 can inhibit MDSC recruitment and enhance anti-
PD-1 efficacy. Xu et al. [55] found that knocking down
METTL5 can downregulate the expression of PD-L1, thereby
inhibiting immune evasion in HCC. Zheng et al. [56] demon-
strated that a model constructed with METTL9 can predict the
immune therapy and prognosis of HCC. However, the impact
of the remaining eight METTLs on the TME and immune
therapy requires further investigation. In the present study,
four cell populations were identified by single-cell data, includ-
ing liver parenchymal cells, monocytes, NK cells, and T cells. In
the present study, based on the communication between these
four types of cells, we predicted the receptors and ligands
between these four types of cells. Previous studies show that
T cells and NK cells show that ligand imbalance leads to
immune escape against tumor cells [57, 58]. Furthermore, tar-
geting monocytes can enhance the therapeutic effect of HCC
[59]. Therefore, a PPI network including METTLs, 11 mRNA
risk signature proteins, four cellular receptors and ligands, and
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FIGURE 13: Construction of a PPI network related to tumor microenvironment (TME) remodeling. (a and b) Crosstalk between T cells, NK
cells, monocytes, and liver parenchymal cells linking and corresponding ligands, (c) PPI network, including 11 METTLs proteins (circles),
11 mRNA risk signature proteins (diamonds), receptors (hexagons), ligands (triangles), and potential connexins (V-shapes), and (d) correla-
tion of ligands to METTL1/13/18/21a/23/25.
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potential connexins was established in this study. This PPI
network was associated with the communication between these
four types of cells. In addition, the METTLs and mRNA risk
signature genes were significantly associated with the receptors
and ligands of these four cells. Therefore, this PPI network is
associated with TME remodeling.

In summary, this study performed a multiangle compre-
hensive analysis of METTLs (METTL1/13/18/21A/23/25/
2A/2B/5/6/9) and their mRNA risk signature, and these
results provide a theoretical basis for HCC prognosis, bio-
marker screening, mechanism, and drug screening.
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