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Background. Ovarian cancer (OC) is the leading cause of gynecological cancer death and the fifth most common cause of cancer-
related death in women in America. Programmed cell death played a vital role in tumor progression and immunotherapy response
in cancer. Methods. The prognostic cell death signature (CDS) was constructed with an integrative machine learning procedure,
including 10 methods, using TCGA, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082 datasets. Several methods and
single-cell analysis were used to explore the correlation between CDS and the ecosystem and therapy response of OC patients.
Results. The prognostic CDS constructed by the combination of StepCox (n= both)+Enet (alpha= 0.2) acted as an independent
risk factor for the overall survival (OS) of OC patients and showed stable and powerful performance in predicting the OS rate of OC
patients. Compared with tumor grade, clinical stage, and many developed signatures, the CDS had a higher C-index. OC patients
with low CDS score had a higher level of CD8+ cytotoxic T, B cell, and M1-like macrophage, representing a related immunoacti-
vated ecosystem. A low CDS score indicated a higher PD1 and CTLA4 immunophenoscore, higher tumor mutation burden score,
lower tumor immune dysfunction and exclusion score, and lower tumor escape score in OC, demonstrating a better immunotherapy
response. OC patients with high CDS score had a higher gene set score of cancer-related hallmarks, including angiogenesis,
epithelial–mesenchymal transition, hypoxia, glycolysis, and notch signaling. Conclusion. The current study constructed a novel
CDS for OC, which could serve as an indicator for predicting the prognosis, ecosystem, and immunotherapy benefits of OC patients.

1. Introduction

Ovarian cancer (OC) is the leading cause of gynecological
cancer death and the fifth most common cause of cancer-
related death in women in America [1]. A total of 19,880
cases are estimated to be initially diagnosed with OC, and
12,810 patients die from this malignancy in America in 2022
[2]. Despite many management approaches that have been
used for the therapy of OC patients, including surgery, che-
motherapy, and endocrine therapy, the clinical outcomes of
OC patients are still poor, with the 5-year survival rate for
OC patients less than 50% [1]. In addition to the tumor-
node-metastasis staging system, there are few clinical markers
used to predict the prognosis of OC patients. High recurrence

and drug resistance remained the main reasons leading to
the poor clinical outcomes for OC patients [3]. Drug resis-
tance and tumor relapse are the main reasons for the treat-
ment failure [4]. Due to the lack of typical clinical symptoms
in the early stage, many OC patients have advanced disease or
distant metastases by the time OC is initially diagnosed. A
recent study showed that immunotherapy could be a prom-
ising modality for many malignancies, especially for the
advanced malignancies [5]. However, the evidences about
OC response to immunotherapy and the biomarkers for
predicting the immunotherapy response are limited.

According to the triggering mechanism, cell death could
be divided into accident cell death and programmed cell
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death (PCD) [6]. As far as we know, PCD could be divided
into 15 subtype patterns, including pyroptosis, ferroptosis,
necroptosis, autophagy, immunologic cell death, entotic cell
death genes, cuproptosis, parthanatos, lysosome-dependent
cell death, intrinsic apoptosis, extrinsic apoptosis, necrosis,
anoikis, apoptosis-like morphology and necrosis-like mor-
phology [6–8]. Pyroptosis could regulate tumor cell prolifer-
ation, metastasis, and affect immune response [9]. Previous
study showed that cuproptosis could regulate the microenvi-
ronment and affect prognosis in several types of cancer [10].
Increasing evidences highlight the vital role of ferroptosis in
reversing drug resistance [11]. As a key player in cellular and
body metabolism, autophagy is associated with the progres-
sion and prognosis of cancer [12]. As an emerging hallmark
in health and diseases, anoikis plays a vital role in tumor
progression and drug resistance [13]. Due to the vital role
of these PCD in cancer, a comprehensive understanding of
the prevalence of PCD-related genes in OC and their corre-
lation to patient’s prognosis, ecosystem, and therapeutic
response may yield many interesting findings.

In our study, we developed a 21 gene-based cell death signa-
ture (CDS) for predicting the prognosis of OC patients in the
TCGA cohort. The CDS was verified using five testing cohorts,
including GSE14764, GSE26193, GSE26712, GSE63885, and
GSE140082 cohort. We then explored the correlation between
CDS and the prognosis, immune infiltration, ecosystem, and
signaling pathway in OC, offering insights into prognosis pre-
diction and immune landscape in OC.

2. Materials and Methods

2.1. Datasets Sources. Figure 1 shows the workflow of our
study. Related genes of these 15 PCD patterns mentioned
above were collated from MSigDB (http://software.broa
dinstitute.org/gsea/msigdb/index.jsp), Kyoto Encyclopedia
of Genes and Genomes, review articles, and manual collection
of gene sets from Gene cards website (https://www.genecards.
org/) [14, 15] (Supplementary 1). Bulk RNA-seq data of OC
cases (n= 374) and normal ovarian cases (n= 64) were
obtained from the TCGA database (https://portal.gdc.cancer.
gov/repository) and GTEx database (https://xenabrowser.net/
datapages/), respectively. We also used five GEO datasets to
verify the prognostic signature, including GSE14764 (n= 80),
GSE26193 (n= 107), GSE26712 (n= 185), GSE63885 (n= 75),
and GSE140082 (n= 380). Selection criteria of OC cases
included the following: (1) histologically diagnosed with ovar-
ian serous cystadenocarcinoma; (2) complete and valid infor-
mation about age, tumor grade, stage, and overall survival (OS).
Exclusion criteria of cases included the following: (1)metastatic
OC, (2) accompanied by other malignancies; and (3) no adju-
vant therapy before operation. From the GSE184880 dataset,
we obtained single-cell expression data of seven OC tissues.
IMvigor210 dataset (n= 298) and GSE91061 dataset (n= 98),
containing clinical information about the patients treated with
anti-PD-L1 and anti-CTLA4 agents, were used to evaluate the
performance of CDS in predicting immunotherapy benefits.
Responders were defined as those patients with partial response
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FIGURE 1: Workflow of our study.
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(PR) and complete response (CR). Nonresponders were
defined as patients with progressive disease (PD) and stable
disease (SD).

2.2. Machine-Learning Algorithms Developed a Prognostic
CDS. To obtain the differentially expressed genes (DEGs)
in OC among PCD-related genes, we used the “limma” pack-
age using |LogFC|≥ 1 as the cutoff. After obtaining potential
prognostic biomarkers with univariate Cox analysis, we then
summited these prognostic biomarkers to integrative analysis
procedure with 10 machine-learning algorithms, including
random survival forest, elastic network (Enet), Lasso, Ridge,
stepwise Cox, CoxBoost, partial least squares regression for
Cox (plsRcox), supervised principal components (SuperPC),
generalized boosted regression modeling, and survival support
vector machine, with which we could develop an accurate and
stable prognostic CDS. The signature generation procedure
was as follows: (1) Prognostic biomarkers were generated using
univariate Cox regression in the TCGA dataset; (2) then, 101
algorithm combinations were performed on the prognostic
signature to fit prediction models based on the leave-one-out
cross-validation framework in the TCGAdataset; (3) allmodels
were detected in five GEO cohorts (GSE14764, GSE26193,
GSE26712, GSE63885, and GSE140082); (4) for each model,
the Harrell’s concordance index (C-index) was calculated
across all TCGA and GEO datasets, and the model with the
highest average C-index was considered optimal. Similar
machine learning algorithms could be seen in previous studies
[16–18]. The parameter tuning details about the R scripts in
our study are available on the GitHub website (https://github.
com/Zaoqu-Liu/IRLS).

2.3. Evaluation of the Performance of CDS. Based on the
expression of genes in CDS and their corresponding coeffi-
cients, we then calculated the CDS score of each OC case. To
separate OC cases into low and high CDS score groups, we
applied the “surv_cutpoint” function of the R package “surv-
miner” to determine the cutoff. Using the “pROC” package,
we then generated time C-index curves. C-index curves were
used to compare the performance of CDS in predicting the
clinical outcome with 54 prognostic signatures (mRNA and
lncRNA-related signatures, Supplementary 2) that have been
developed for OC. By searching “prognostic model AND
ovarian cancer” or “prognostic signature AND ovarian can-
cer” in Pubmed (https://pubmed.ncbi.nlm.nih.gov/) on Feb-
ruary 1, 2023, we obtained a total of 540 signatures that have
developed for OC. We used Excel to generate 54 random
numbers from 1 to 540, and these 54 random numbers cor-
responding to the items were selected for further comparison
with our prognostic signature. To identify the risk factor for
the prognosis of OC, we then conducted univariate and mul-
tivariate Cox analysis. Using “nomogramEx” R package, we
then developed a predicted nomogram considering CDS,
tumor grade, and tumor stage. When the calibration curve
is considered a perfectly calibrated model, the predicted value
will fall on the diagonal 45° in the figure.

2.4. Immune Infiltration Analysis. The correlation between
CDS score and immune cells was analyzed with immunedeconv,

an R package integrating seven state-of-the-art algorithms,
including CIBERSORT, MCPcounter, QUANTISEQ, XCELL,
CIBERSORT-ABS, TIMER, and EPIC [19]. By using “estimate”
R package [20], we then calculated the immune and ESTIMATE
score of each OC case. Single sample gene set enrichment
analyses were used to explore the score of immune cells and
related functions of each OC case. The normalized enrichment
score (|NES|> 1), nominal p-value< 0.05 (NOM p-value), and
false discovery rate-adjusted q-value< 0.25 were considered as
significant pathway enrichment.

2.5. scRNA-Seq Analysis. scRNA-seq data were processed
with the Seurat R package (version 4.0) [21]. Those genes
detected in more than three cells, cells with more than 200
detected genes, or cells with a mitochondrial proportion of
less than 20% would be selected for further analysis. The top
2,000 highly variable genes of each sample were normalized
using the ScaleData function based on variance stabilization
transformation. The dimensionality of the principal compo-
nent analysis was reduced using the RunPCA function. We
chose dim= 30 and clustered the cells into different cell groups
using “FindNeighbors” and “FindClusters” functions. The reso-
lution was 0.5. T-SNE (t-distributed stochastic neighbor embed-
ding), a nonlinear dimension reduction method in Seurat, was
applied to map high dimensional cellular data into a 2D space,
grouping cells with similar expression patterns and separating
those with different expression patterns. The CDS score of each
cell was calculated using the AddModuleScore function. Based
on the ligand-receptor information, we used the single-cell gene
expression matrix to unravel the communication between dif-
ferent cell subtypes, which was contained in CellChat software
with default parameters, modeling the communication proba-
bility and identifying significant communications.

2.6. Drug Sensitivity and Gene Set Enrichment Analyses. To
evaluate the role of CDS in predicting the immunotherapy
benefits, we then applied the tumor immune dysfunction and
exclusion (TIDE) score, immunophenoscore (IPS), tumor
mutation burden (TMB) score, and tumor escape score.
IPS of OC cases were obtained from the Cancer Immunome
Atlas (TCIA, https://tcia.at/home). And the TIDE score and
T-cell exclusion scores of OC cases were downloaded from
TIDE (http://tide.dfci.harvard.edu). By using the oncoPre-
dict R package, we then calculated The IC50 of drugs in
each OC case based on the data of Genomics of Drug Sensi-
tivity in Cancer (https://www.cancerrxgene.org/). The sensi-
tivities of these drugs were reflected by comparing the IC50

values in patients with high- and low-CDS scores. A higher
IC50 value indicated lower sensitivity. The Hallmark gene set
was downloaded from the Molecular Signatures Database
(MSigDB). The gene sets “h.all.v7.4.symbols.gmt” were cho-
sen as the reference gene set. Using the R packages cluster-
sProfiler, enrichplot, and ggplot2, we performed ssGSEA to
improve our understanding of CDS-related functions and
pathways.

2.7. Statistical Analysis. Statistical analyses were performed
with R software (version 4.2.1). DEGs in OC were extracted
by the limma package. The χ2 test was applied to compare
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categorical variables, and the differences between continuous
variables were evaluated with the Wilcoxon rank-sum test or
Student’s t-test. The optimal cutoff value was determined by
the survminer package. Pearson’s or Spearman’s rank corre-
lation analysis was conducted to analyze the correlations
between two continuous variables. The survival package
was applied to conduct Cox regression and Kaplan–Meier
analyses. The CompareC package was used to calculate the
C-indices of different variables. The predictive value of
binary categorical variables was determined by the receiver
operating characteristic (ROC) curve with the pROC pack-
age. The time-dependent area under the ROC curve (AUC)
was calculated by the time ROC package. The proportional
hazards assumption for the prediction models was verified
using Schoenfeld residuals with the null hypothesis of a slope
of zero when scaled Schoenfeld residuals were regressed over
time. Failure to reject this hypothesis was considered a veri-
fication of the proportional hazard assumption. The fit was
assessed using Cox-Snell residuals plotted against the
Nelson–Aalen cumulative hazard estimate.

3. Results

3.1. The Relationship of PCD-Related Genes with the Prognosis
of OC. Among 2,158 PCD-related genes, we obtained 1,275
DEGs in OC with |LogFC|≥ 1 and p-value> 0.05 as the cut-
off (Supplementary 3). Among these genes, a total of 38 genes
were significantly associated with the prognosis of OC (Sup-
plementary 3). SIRT5, SEC22B, CASP2, IER3IP1, SSBP1,
SYNCRIP, TPM3, GBP1, CALM1, STAT1, DNAJA1, and
MIF were independent predictors of a favorable OS in OC.
High expression of RPL23A, FN1, SERPINE1, FLOT2,
MMP14, COL5A1, TGM2, PLEKHF1, COL5A2, BRD4,
HSPG2, CDKN1B, CXCL12, LRP1, ITGA5, PDK4, PPP1R13L,
TIMP3, RB1, FBN1, FPR1, PDGFRA, BRPF1, AGFG1, LIG3,
and HIC1 indicated a poor clinical outcome in OC.

3.2. Integrative Machine-Learning Algorithms Developed a
Prognostic CDS. To develop an accurate and stable prognostic
CDS, we then submitted these 38 potential prognostic biomar-
kers to an integrative machine-learning procedure, including 10
methods mentioned above. Finally, we obtained a total of 101
kinds of prognostic models and their C-index of training and
testing cohort (Figure 2(a)). The model constructed by StepCox
(n=both)+Enet (alpha= 0.2) method was considered the opti-
mal prognosticmodel as they had the highest average C-index of
0.59 (Figure 2(a)). The prognostic CDS was developed by 21
PCD-related genes, and the CDS score of each OC patient
was calculated with the formula: risk score= (−0.26736253)×
TPM3exp+ (−0.15457689)× SYNCRIPexp+ (−0.16276132)×
CALM1exp+ (−0.26067208)×CASP2exp+ (−0.16311552)×
IER3IPexp+0.36828974×AGFG1exp+0.16153824×SSBP1exp+
0.28240862×CDKN1Bexp+0.14662309×BRPF1exp+0.09591937
×RB1exp+0.13519410×BRD4exp+ (−0.14028303)×GBP1exp+
(0.12816123) × FLOT2exp+ 0.2057739 × PPP1R13Lexp+
0.14418808×FPR1exp+0.16267570×TGM2exp+0.13704459×
LIG3exp+0.30781520×COL5A2exp+ (−0.28017179)×LRP1exp+
(−0.30781684)×SEC22Bexp+0.21714510×PDK4exp. Using the
best cutoff value, we then divided into OC cases into high and

low CDS (risk) score groups. High-risk scores indicated a poor
OS rate in OC in the TCGA cohort (p<0:001, Figure 2(b)),
GSE14764 cohort (p¼ 0:014, Figure 2(c)), GSE26193 cohort
(p¼ 0:0017, Figure 2(d)), GSE26712 cohort (p¼ 0:0017,
Figure 2(e)), GSE63885 cohort (p¼ 0:0103, Figure 2(f)) and
GSE140082 (p¼ 0:0018, Figure 2(g)) cohort, with 2-, 3-, and
4-year AUCs of 0.739, 0.726, and 0.710 in TCGA cohort; 0.636,
0.730, and 0.934 in GSE14764 cohort; 0.708, 0.678, and
0.615 in GSE26193 cohort; 0.542, 0.547, and 0.593 in
GSE26712 cohort, 0.820, 0.628, and 0.669 in GSE63885
cohort, 0.603, 0.636, and NA in GSE140082 cohort, respec-
tively. Compared with tumor grade and clinical stage, the
C-index of CDS was higher (Figure 2(h)–2(l)) in the train-
ing and testing cohort, demonstrating the predictive value
of CDS in predicting the OS rate of OC patients was higher
than tumor grade and clinical stage. However, we could not
evaluate the predictive value of CDS in predicting the OS
rate of OC patients in the GSE26712 cohort due to the
missing data about tumor grade and clinical stage.

3.3. Evaluation of the Performance of CDS. As shown in
Figures 3(a) and 3(b), univariate and multivariate Cox
regression analysis suggested that CDS-based risk score acted
as an independent risk factor for the OS rate of OC in TCGA,
GSE14764, GSE26193, GSE63885, and GSE140082 cohort
(all p<0:05). Actually, many prognostic signatures have
been developed for OC. To compare the predictive value of
CDS with other prognostic signatures, we randomly col-
lected 54 prognostic signatures (Supplementary 2) and calcu-
lated their C-index. Interestingly, the C-index of our CDS
was higher than most of these prognostic signatures in the
TCGA cohort (Figure 3(c)). Similar results were obtained in
the GSE26193 and GSE140082 datasets. In the GSE29193
cohort, the C-index of our CDS was higher than 50 of these
prognostic signatures (Supplementary 4). And the C-index of
our CDS was higher than 48 of these prognostic signatures
(Supplementary 4). To predict the 1-, 3-, and 5-year OS rate of
OC, we then constructed a nomogram considering CDS-based
risk score, clinical stage, and tumor grade (Figure 3(d)). Com-
pared with the idea curve, nomogram-based calibration curves
had a relative well predictively value in the 1-, 3-, and 5-year
OS rate inOC (Figure 3(e)), with the AUC of 0.710 (Figure 3(f)).
Moreover, the decision curve analysis (DCA) also suggested that
the predictive benefit of nomogram was higher than risk score,
tumor grade, and clinical stage (Figure 3(g)).

3.4. The Distinct Ecosystem in OC Patients with Different
CDS Scores. A significant correlation was obtained between
CDS-based risk score and the abundance of immune cells
(Figure 4(a)). Interestingly, the CDS-based risk score showed
a negative correlation with the abundance of immunoacti-
vated cells, such as CD8+ T cells, B cells, and macrophage M1
(Figure 4(b)–4(d), all p<0:05). As shown in Figure 4(e),
ssGSEA analysis revealed that OC patients with low-risk
scores had a higher abundance of immunoactivated cells,
including B cells, CD8+ T cells, neutrophils, NK cells, and
TIL (all p<0:05). Further analysis revealed that OC patients
with low-risk scores had a lower stromal score, higher
immune score, and higher ESTIMAE score (Figure 4(f), all
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FIGURE 2: A prognostic CDS developed bymachine learning analysis. (a) The C-index of 101 kinds of prognostic models constructed by 10machine-
learning algorithms in training and testing cohort. ((b)–(g)) The survival curve of ovarian cancer patients with different CDS score and their
corresponding ROC curves in TCGA, GSE14764, GSE26193, GSE26172, GSE63885, and GSE140082 cohort. ((h)–(l)) The C-index of CDS, tumor
grade, and clinical stage in predicting the overall survival rate of OC patients in TCGA, GSE14764, GSE26193, GSE63885, and GSE140082 cohort.
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p<0:05). A higher gene set score correlated with CC
chemokine receptor, cytolytic, parainflammation, and T-
cell costimulation was obtained in OC patients with higher
CDS scores (Figure 4(g)). Moreover, the level of most of the
human leukocyte antigens-related genes was higher in OC
patients with low-risk group (Figure 4(h), p<0:05). Based
on these findings, we may suggest that the immune
environment in OC patients with low and high CDS scores
is significantly distinct. As cells exert their functions by
interacting with other cells, we then explore the interesting
ecosystem between OC patients with different CDS scores.
As shown in Figure 5(a), we identified 23 clusters of 7 OC
single-cell samples and 6 main types of cells, T/NK cells,
myeloid cells, epithelial cells, fibroblasts, B cells, and
endothelial cells (Figure 5(a)). And the expression of cell
markers is shown in Figure 5(b). Based on the expression
pattern of cell markers, T/NK cells could be reclustered into
CD8+ cytotoxic T, CD8+ exhausted T, NK, CD4+ exhausted
T, and CD4+ naïve T (Figures 5(c) and 5(d)). And myeloid
cells could be clustered into M1-like macrophages, M2-like
macrophages, monocyte (mono), plasmacytoid DCs (pDCs),
and conventional dendritic cells (cDCs) (Figures 5(e) and 5(f)).
By using the AddModuleScore function, we then obtained the
CDS score of each OC sample and divided them into high and
low CDS score groups (Figure 5(g)). To cover the interacting
ecosystem of the cells of the high CDS score microenvironment
and low CDS score microenvironment, we then used CellChat
to construct a cell–cell communication network via known
ligand-receptor pairs within these cells in OC samples.
Figure 5(h) shows the cell interactions in high and low CDS
score environments. Notably, the low CDS-derived B cells,
CD8+ cytotoxic T, and M1-like macrophage possessed a
higher number of ligand-receptor pairs, whereas the CD4+

exhauster T and CD8+ exhauster T possessed fewer ligand-
receptor pairs (Figure 5(h)).

3.5. CDS Could Predict the Therapy Response in OC. As the
ecosystem in OC patients with different risk scores is signifi-
cantly distinct, the immunotherapy response of OC patients
with different risk scores may be different. To verify this, we
then applied several approaches to evaluate the predictive
value of CDS score in immunotherapy response. Immune
checkpoints played a vital role in immune escape from can-
cer. The data showed that the expression of most of the
immune checkpoints was higher in OC patients with high-
risk scores (Figure 6(a), all p<0:05). TMB was suggested as a
predictive biomarker for predicting the responses to immu-
notherapy, and a high TMB score indicated a better response
to immunotherapy [22]. IPS was a superior predictor of
response to anti-CTLA-4 and anti-PD-1 antibodies, and
high IPS indicated a better response to immunotherapy
[23]. We found that OC patients with low-risk scores had
a higher TMB score, higher PD1 immunophenoscore,
CTLA4 immunophenoscore, and PD1 and CTLA4 immuno-
phenoscore (Figures 6(b) and 6(c), all p<0:05). A high TIDE
score indicates a greater likelihood of immune escape and
less effectiveness of ICI treatment [24]. The data showed that
OC patients with high-risk scores had a higher immune
escape score, TIDE score, T-cell exclusion score, and T-cell
dysfunction score (Figures 6(d) and 6(e), all p<0:05). We
also used two immunotherapy cohorts to verify our results.
In the GSE91061 cohort, patients with high-risk scores had a
poor OS rate, and the response rate was significantly higher
in patients with low-risk scores (Figure 6(f), p<0:05). More-
over, the response rate in low-risk score group was signifi-
cantly increased compared with the high-risk score group
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FIGURE 3: Evaluation of the performance of CDS in predicting the clinical outcome of OC patients. ((a) and (b)) Univariate and multivariate
Cox regression analysis considering grade, stage, and CDS in training and testing cohort. (c) C-index of CDS and other 54 established
signatures in evaluating the prognosis of OC patients. (d) Predictive nomogram constructed using CDS, grade, and stage. ((e) and (f ))
Calibration and ROC curve evaluating the predictive value of nomogram in the overall survival rate of OC patients. (g) DCA demonstrating
the good potential of the nomogram for clinical application.

10 Analytical Cellular Pathology



Myeloid dendritic cell activated_XCELL
B cell_XCELL

T cell CD4+ memory_XCELL
T cell CD4+ central memory_XCELL

T cell CD8+ central memory_XCELL

T cell CD4+ effector memory_XCELL

T cell CD8+ effector memory_XCELL
Class-switched memory B cell_XCELL

 Myeloid dendritic cell_XCELL
Cancer associated fibroblast_XCELL

Hematopoietic stem cell_XCELL
Macrophage_XCELL

Macrophage M1_XCELL

B cell memory_XCELL
Monocyte_XCELL

Plasmacytoid dendritic cell_XCELL
B cell plasma_XCELL

T cell gamma delta_XCELL
T cell CD4+ Th1_XCELL
T cell CD4+ Th2_XCELL

Immune score_XCELL
Stroma score_XCELL

Microenvironment score_XCELL
B cell_TIMER

T cell CD4+_TIMER
Neutrophil_TIMER

Myeloid dendritic cell_TIMER
Macrophage M2_QUANTISEQ

T  Cell CD4+ (nonregulatory)_QUANTISEQ
T  Cell CD8+_QUANTISEQ

T  Cell regulatory (Tregs)_QUANTISEQ
Uncharacterized cell_QUANTISEQ

T cell CD8+_MCPCOUNTER
Cytotoxicity score_MCPCOUNTER

NK cell_MCPCOUNTER
B cell_MCPCOUNTER

Monocyte_MCPCOUNTER
Macrophage/Monocyte_MCPCOUNTER

Cancer associated fibroblast_MCPCOUNTER

Cancer associated fibroblast_EPIC
Macrophage_EPIC

Uncharacterized cell_EPIC
B cell plasma_CIBERSORT–ABS
T cell CD8+ _CIBERSORT–ABS

 T cell CD4+ memory resting_CIBERSORT–ABS
 T cell follicular helper_CIBERSORT–ABS

 T cell regulatory (Tregs)_CIBERSORT–ABS
 T cell gamma delta_CIBERSORT–ABS

 NK cell activated_CIBERSORT–ABS
 Monocyte_CIBERSORT–ABS

Macrophage M1_CIBERSORT–ABS
Macrophage M2_CIBERSORT–ABS

T cell CD8+_CIBERSORT
T cell CD4+ memory resting_CIBERSORT

T cell follicular helper_CIBERSORT
T cell gamma delta_CIBERSORT

Macrophage M1_CIBERSORT
Mast cell resting_CIBERSORT

Correlation coefficient
–0.4 –0.2 0.0 0.2

B cell_EPIC 

Macrophage M2_XCELL

T cell CD8+_XCELL

ðaÞ
0.20

0.15

0.10

0.05

0.00

0 105
Risk score

15

T 
ce

ll 
CD

8+
_C

IB
ER

SO
RT

–A
BS 150

100

50

0

0 105
Risk score

15

T 
ce

ll 
CD

8+
_M

CP
CO

U
N

TE
R

0.15

0.10

0.05

0.00

0 105
Risk score

15

T 
ce

ll 
CD

8+
_Q

UA
N

TI
SE

Q 0.15

0.10

0.05

0.00

0 105
Risk score

15

T 
ce

ll 
CD

8+
_X

CE
LL

R = –0.31, p = 2.9e–07 R = –0.32, p = 1.1e–07 R = –0.32, p = 1.7e–07 R = –0.23, p = 0.00014

ðbÞ

0.04

0.03

0.02

0.01

0.00

0 105
Risk score

R = –0.29 , p = 2.1e–06 R = –0.16, p = 0.011 R = –0.27, p = 1e–05 R = –0.35, p = 4.7e–09

15

B 
ce

ll_
EP

IC
 20

10

0

0 105
Risk score

15

B 
ce

ll_
M

CP
CO

U
N

TE
R

0.4

0.2

0.0

0 105
Risk score

15

B 
ce

ll_
TI

M
ER

0.15

0.10

0.05

0.00

0 105
Risk score

15

B 
ce

ll_
XC

EL
L

0.20

ðcÞ
FIGURE 4: Continued.

Analytical Cellular Pathology 11



0.20

0.15

0.10

0.05

0.00

0 105

Risk score

15

M
ac

ro
ph

ag
e M

1_
CI

BE
RS

O
RT 0.100

0.075

0.050

0.025

0.000

0 105

Risk score

15

M
ac

ro
ph

ag
e M

1_
CI

BE
RS

O
RT

–A
BS

0.10

0.05

0.00

0 105

Risk score

15

M
ac

ro
ph

ag
e M

1_
XC

EL
LR = –0.36, p = 2.9e–09 R = –0.4, p = 2.5e–11 R = –0.3, p = 4.8e–07

ðdÞ

1.00

0.75

0.50

Sc
or

e

0.25

0.00

aD
Cs

B-
ce

lls

CD
8+

_T
_c

el
ls

D
Cs

iD
Cs

M
ac

ro
ph

ag
es

M
as

t_
ce

lls

N
eu

tro
ph

ils

N
K_

ce
lls

pD
Cs

T_
he

lp
er

_c
el

ls

Tfh

Th
1_

ce
lls TI
L

Tr
eg

Th
2_

ce
lls

∗∗ ∗ ∗ ∗ ∗∗∗∗∗ ∗∗∗ ∗∗

High risk

Low risk

ðeÞ

1,000

p < 0.001 p < 0.001 p = 0.024

0

–1,000

St
ro

m
al

 sc
or

e

–2,000

High risk High riskLow risk Low risk

–1,000 –2,000

0

2,000

ES
TI

M
AT

E 
sc

or
e1,000

Im
m

un
e 

 sc
or

e

2,000

0

High risk Low risk

ðfÞ
FIGURE 4: Continued.

12 Analytical Cellular Pathology



(Figure 6(f), p<0:05). The risk score in PD/SD patients was
significantly higher than that in PR/CR patients (Figure 6(f),
p<0:05). Moreover, high-risk scores indicated a poor OS rate
in the IMigor210 cohort (Figure 6(g), p<0:05). Compared with
patients with high-risk scores, patients with low-risk scores had a
higher response rate (Figure 6(g), p<0:05). The risk score in
PD/SD patients was significantly higher than that in PR/CR
patients in the IMigor210 cohort (Figure 6(g), p<0:01). As

the vital role of chemotherapy, targeted therapy, and endocri-
notherapy for the treatment of OC. We then explored the IC50

value of common drugs in OC patients. As shown in Figure 7
(a)–7(h), OC patients with high-risk scores had a lower IC50

value of tamoxifen, cyclophosphamide, epirubicin, paclitaxel,
dasatinib, foretinib, osimertinib, and ibrutinib, suggesting that
OC with high-risk scores may have a better sensitivity to che-
motherapy and targeted therapy (all p<0:05).
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3.6. The Distinct Difference in Cancer-Related Hallmarks in
OC Patients with Different CDS Scores. We finally performed
gene set enrichment analysis (GSEA) to explore the potential
mechanism mediating the difference of OC patients in clinical
outcome, ecosystem, and therapy response. As shown in Figure 8
(a)–8(l), OC patients with high-risk score had a lower gene set
sore correlated with apoptosis, higher gene set sore correlated
with angiogenesis, epithelial–mesenchymal transition (EMT),
glycolysis, hypoxia, IL2-STAT5 signaling, IL6-JAK-STAT3 sig-
naling, mitotic spindle, NOTCH signaling, P53 pathway, TGF-
Beta signaling, and P13K-AKT-mTOR signaling (all p<0:05).

4. Discussion

In our study, we developed a prognostic CDS by the combi-
nation of StepCox(n= both)+Enet(alpha= 0.2) method in
the TCGA dataset. The CDS acted as an independent risk
factor for the OS rate in OC and showed stable and powerful
performance in predicting patients’ OS rate. These findings
were also verified in GSE14764, GSE26193, GSE26712,
GSE63885, and GSE140082 cohort. Moreover, CDS could
serve as an indicator for predicting the ecosystem and immu-
notherapy benefits of OC patients.

Among these 21 CDS genes (TPM3, SYNCRIP, CALM1,
CASP2, IER3IP1, AGFG1, SSBP1, CDKN1B, BRPF1, RB1,
BRD4, GBP1, FLOT2, PPP1R13L, FPR1, TGM2, LIG3,
COL5A2, LRP1, SEC22B, and PDK4), many have been
reported to play a vital role in the development of OC.
REDD1 could regulate CASP2-dependent cell death of OC
by inhibiting mTOR [25]. BRPF1 played a vital role in the

development and progression in OC [26]. A previous study
suggested RB1 as an immune-related prognostic biomarker
and promising target in OC [27]. BRD4 amplification pro-
moted an oncogenic gene expression program in high-grade
serous OC and conferred the sensitivity to bromodomain
and extra-terminal motif inhibitors [28]. Serum exosomes
LRP1 accelerated the migration of OC patients [29].

Targeting immune checkpoints and activation of antitu-
mor immunity play a vital role in eradicating tumor cells
[30]. Immunotherapy offers hope to OC patients with unre-
sectable cancers [31]. However, the evidences about OC
response to immunotherapy and biomarkers for predicting
the immunotherapy response are limited. A high TIDE score
indicates a greater likelihood of immune escape and less
effectiveness of ICI treatment [24]. IPS is a superior predictor
of response to anti-CTLA-4 and anti-PD-1 antibodies, and
high IPS indicates a better response to immunotherapy [23].
In our study, we also explored the role of CDS in predicting
the immunotherapy benefit of OC patients. The data showed
that OC patients with low CDS scores had a lower immune
escape score, lower TIDE, higher TMB, and higher IPS
scores, suggesting that OC patients with low CDS scores
may benefit more from immunotherapy.

To explore the potential mechanism mediating the dif-
ference of OC patients in clinical outcome, ecosystem, and
therapy response, we then performed the GSEA analysis. The
results showed that OC patients with high-risk scores had a
lower gene set sore correlated with apoptosis and a higher
gene set score correlated with angiogenesis, EMT, glycolysis,
hypoxia, IL2-STAT5 signaling, IL6-JAK-STAT3 signaling,
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mitotic spindle, NOTCH signaling, P53 pathway, TGF-beta
signaling, and P13K-AKT-mTOR signaling. Angiogenesis
was correlated with tumor metastasis and as therapeutic tar-
gets in OC [32]. OC cells produce chemical resistance by
regulating glycolysis, which affects T-cell function [33, 34].
Notch signaling was pivotal for various physiological pro-
cesses in OC, including immune responses and tumor pro-
gression [35]. A previous study showed that hypoxia in the
microenvironment could affect the immunotherapy outcome
of OC [36].

Many signatures have been developed for predicting the
clinical outcome of OC patients. In order to compare the
predictive value of our CDI with other signatures. We

randomly collected 54 prognostic signatures (Supplementary 2)
and calculated their C-index. Interestingly, the C-index of
our CDS was higher than most of these prognostic signa-
tures in the TCGA, GSE76427, and GSE140082 cohorts,
suggesting that the value of our CDI in predicting the clini-
cal outcome of OC patients was better than many prognos-
tic signatures. However, the AUC value of ROC and the C-
index of our CDI was not very high, and some of the genes
may not be detected by each patient. Therefore, the applica-
tion of our CDI in predicting the prognosis of OC still needs
more clinical OC samples to verify. Moreover, whether the
CDI was suitable for other cancers beyond OC need to be
further explored.
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FIGURE 8: Gene set enrichment analysis in OC patients with different CDS scores. OC patients with high-risk scores had a lower gene set sore
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Some limitations and shortcomings remain in our study.
All data were obtained from public databases, and it would
be better to validate this prognostic model using clinical data.
Moreover, it would be better to explore the mechanism of
CDS in the progression of OC. Due to complex models with
high-dimensional data, the prognostic signature may fail to
generalize to new and unseen data.

5. Conclusion

The current study constructed a novel CDS for OC, which
could serve as an indicator for predicting the prognosis, eco-
system, and immunotherapy benefits of OC patients.
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