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Background. Mutations in SLC25A32 in humans cause late-onset exercise intolerance, which is associated with various neurologi-
cal and metabolic diseases. However, its specific mechanism of action in tumour development is poorly understood owing to the
lack of multiomics integrated analysis of SLC25A32 in pan-cancer. Methods. We used various analytical tools to comprehensively
investigate the transcription, protein level, and promoter methylation of SLC25A32. Furthermore, the GSCA and cBioPortal
databases were used to evaluate the inheritance impact and epigenetic alterations of SLC25A32 in pan-cancer. SLC25A32 expres-
sion and the prognostic significance of copy number alterations in multiple cancers were compared using the UCSCXenaShiny and
GEPIA2.0 platforms, and its specific function in breast cancer was experimentally verified. Results. SLC25A32 is abnormally
expressed at the transcriptional and protein levels in most cancer types, with aberrant DNA promoter methylation and significant
gene amplification in most tumours. SLC25A32 is significantly associated with the survival prognosis of some cancers, immune
infiltrating cells, tumour stemness, and immune-related markers. SLC25A32 knockdown decreased breast tumour cell prolifera-
tion, invasion, and metastasis. Conclusions. This study aimed to reveal SLC25A32 as a novel prognostic biomarker for pan-cancer
prediction and immunotherapy efficacy and specifically describes its underlying mechanism of action in breast cancer. SLC25A32
is widely differentially expressed in pan-cancer with prognostic significance and is correlated with immune infiltration. Addition-
ally, it can affect breast cancer occurrence and development.

1. Introduction

Cancer prevalence and death are steadily rising, which is
detrimental to societal advancement and human health [1].
Breast cancer is the most commonly diagnosed cancer. There-
fore, improving timely diagnosis and comprehensive treatment
should be prioritised [2]. Targeted therapy and immunotherapy
have also gained popularity in tumour treatment recently. How-
ever, more appropriate prognostic biomarkers and therapeutic
targets are needed to support their combination therapy [3].

The solute carrier transporter (SLC) family comprises over
300 membrane-bound proteins essential in regulating substrate
transport exchange, drug absorption, and efflux [4]. SLC25A32
is located on chromosome 8q22.3 and contains seven exons [5].
It encodes the mitochondrial flavin adenine dinucleotide (FAD)
transporter, an inner membrane carrier that imports FAD from
the cytoplasm into the mitochondria. SLC25A32 dysfunction
leads to mitochondrial FAD deficiency and impaired mitochon-
drial acyl-CoA dehydrogenase and electron transfer chain,
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further disrupting muscle and brain functions [6]. Studies on
SLC25A32 have focused on neurological andmetabolic diseases,
where its mutations in humans lead to riboflavin-responsive
motor intolerance [7]. However, earlier studies have suggested
that SLC25A32 is a mitochondrial folate transporter protein [8].
SLC25A32 dysfunction disrupts folate-mediated one-carbon
metabolism. Allelic alterations in SLC25A32 may lead to neural
tube defects (NTD) in human fetuses, and SLC25A32 knockout
mice may also develop neurological diseases in the embryonic
period [9]. In addition, metabolic analysis suggests that dis-
rupted SLC25A32 dysfunction is associated with multiple
biochemical processes of ATP generation, including fatty
acid β oxidation, catabolism of essential amino acids (leucine,
isoleucine, valine, tryptophan, and lysine), and choline degra-
dation [10]. SLC25A32 inhibition leads to respiratory chain
dysfunction of FAD-dependent complex II enzymes, reactive
oxygen species (ROS) induction, and reduced glutathione
(GSH) depletion, which impairs cancer cell proliferation.
Beyond the controversial substrate specificity of SLC25A32,
its role in tumour progression is rarely discussed. Addition-
ally, the pan-cancer systematic analysis and specific mecha-
nism of action in the immune microenvironment need
further characterisation and exploration.

2. Materials and Methods

2.1. Data Collection, Mining, and Processing. We obtained
the mRNA expression profile of SLC25A32 and data related
to prognosis, stage, DNA promoter methylation, copy num-
ber fragments, and clinical features of 33 cancers from The
Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/) database [11]. Ethics committee or institutional review
board approval was not required because this was a bioin-
formatics study. In addition, special sources of data were
annotated.

2.2. Transcriptional and Protein-Level Differential Expression
Analysis of SLC25A32 in Pan-Carcinoma. First, at the tran-
scriptional level, SLC25A32 expression in healthy and corre-
sponding tumour tissues was collected using Tumour Immune
Estimation Resource 2.0 (TIMER2.0) (http://timer.cistrome.org)
[12], GEPIA2.0 (http://gepia2.cancer-pku.cn/#index) and
UALCAN databases (http://ualcan.path.uab.edu/analysis-prot.
html). Specific bioinformatics steps and processes can be
referred to this article [13]. The GEPIA2.0 database
simultaneously revealed the association between SLC25A32
and the pathological stages of different cancers [14].
Furthermore, the UALCAN database compared DNA
promoter methylation levels of SLC25A32 in various cancer
types [15], and RNA-seq data from TCGA were associated
with methylation levels in UCSCXenaShiny (https://xena.ucsc.
edu/) [16]. In addition, the difference in SLC25A32 protein
expression levels was compared between the healthy and
corresponding tumour tissues using the Clinical Proteomics
Cancer Analysis Consortium (CPTAC) data in the UALCAN
database, and the post-translational modification of SLC25A32
was studied using the PhosphoSitePlus database (https://www.
phosphosite.org/) [17]. More detailed data analysis procedures
for oncogene proteomics can be found in this article, including

protein quantification and expression, as well as protein action
pathway research methods [13].

2.3. Genetic and Mutational Situation Analysis of SLC25A32
in Pan-Carcinoma. Gene set cancer analysis (GSCA) (http://
bioinfo.life.hust.edu.cn/GSCA/#/) is a database that aggregates
information on tumour genomic gene sets [18]. We initially
studied the copy number variation (CNV) of SLC25A32 in dif-
ferent cancers, cross-verified the correlation between SLC25A32
DNAmethylation and transcriptional expression levels in differ-
ent cancers via the GSCA database, and summarised gene
expression and drug sensitivity using the Genomics of Drug
Sensitivity in Cancer (GDSC) database (https://www.cance
rrxgene.org/).

The correlation between SLC25A32 mutations, the site,
copy number alteration (CNA), and the mRNA levels in
SLC25A32 and CNV were analysed using the cBioPortal plat-
form (https://www.cbioportal.org/) [19]. The detailed opera-
tion steps can be referred to this article [20]. We further
analysed the relationship between SLC25A32, different CNA
type groups, and pan-cancer tumour prognosis using the
UCSCXenaShiny.

2.4. SLC25A32 Prognostic Analysis of Patients in Pan-Cancer.
In computing the survival heat map for overall and disease-free
survival (OS and DFS, respectively) in pan-cancer using the
GEPIA2.0 database, P <0:05 was considered significant, and
approaching red indicates the highly expressed SLC25A32 group
in the corresponding cancer type with a worse prognosis, reveal-
ing multiple specific tumours. Furthermore, SLC25A32 OS,
progression-free survival (PFS), and disease-specific survival
(DSS) data in pan-cancer were visualised via a forest map using
the UCSCXenaShiny platform.

2.5. Therapeutic Analysis of SLC25A32 Immune Infiltration
in Pan-Carcinoma. Using the TIMER 2.0 database, multiple
algorithms analysed the effect of SLC25A32 on the immune cell
infiltration in 33 cancers [21]. Furthermore, we summarised
the correlation between SLC25A32 expression, methylation,
CNA conditions, and immunotherapy-related markers using
the TISIDB database (http://cis.hku.hk/TISIDB/index.php)
[22]. Specific correlation tests in different immune cells can
be referred to this article, which includes detailed methods
and instructions [13].

Using pan-cancer samples, stemness scores, tumour muta-
tion burden (TMB), and microsatellite instability (MSI) scores
from the TCGA database, the immunedeconv software package
(version 2.0.3) revealed the relationship between tumour-
infiltrating immune cells (TIC) and immunotherapy-related
indicators and SLC25A32 gene expression data in pan-cancer
[23].

2.6. SLC25A32 Function and Analysis of Biological Tumour
Function at the Pan-Cancer Single-Cell Level. The CancerSEA
platform (http://biocc.hrbmu.edu.cn/CancerSEA/), including
various cancer single-cell sequencing data, can more accu-
rately reveal the various biological cancer functions [24].
We analysed the relationship between SLC25A32 expression
and various cancers’ biological tumour behaviours through a
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t-SNE diagram that displays the SLC25A32 expression profile
in several TCGA cancer single cells.

2.7. SLC25A32 Functional Enrichment Analysis and Co-
Expressed Genes. The molecules that interact with SLC25A32
in pan-cancer were selected using BioGRID (https://thebiogrid.
org/) [25]. In addition, the LinkedOmics database (http://www.
linkedomics.orglogin.php) was also used to analyse the heatmap
of positive and negative gene co-expression with SLC25A32 in
RNA-seq data of patients with breast cancer in TCGA [26].
Furthermore, Pearson’s correlation coefficient was used to plot
the volcano plot of co-expressed genes. Using the Metascape
database (http://metascape.org/gp/index.html#/main/step1) for
functional enrichment analysis of co-expressed genes in breast
cancer [27], including gene ontology (GO) and the Kyoto Ency-
clopaedia of Genes and Genomes (KEGG) pathway.

The gene set enrichment analysis (GSEA) was performed
using the clusterProfiler package for R (version 3.14.3) [28].
Enriched pathways were classified based on normalised
enrichment scores and corrected P-values. The clusterProfiler
package was similarly used for GO/KEGG analysis of the
DEGs between breast cancer and healthy tissue samples
[29, 30]. The results revealed that these genes exhibit multiple
biological processes, including signalling pathways, molecular
functions, and cellular components, which the ggplot2 pack-
age for R (version 3.3.3) annotated and visualised [31].

2.8. Protein–protein Interaction Network Analysis. Protein
interaction network analysis was simultaneously performed using
Metascape Online [27]. The results revealed a protein–protein
interaction network comprising genes co-expressed with
SLC25A32 in breast cancer, with different colour blocks demon-
strating possible mechanisms of action affecting the tumour.

2.9. Cell Culture. Healthy mammary epithelial cell lines were
cultured in an MCF-10A-specialised medium. Breast cancer
cell lines, including MCF-7, MDA-MB-231, BT-549, and
HCC1937, were obtained from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China) and the Cancer
Institute of Southern Medical University (Guangzhou,
China) and grown in DMEM supplemented with 10% fetal
bovine serum (Gibco, USA). All cells were grown at a con-
stant temperature of 37°C in a 5% CO2 culture in the
incubator.

2.10. Quantitative Real-Time Polymerase Chain Reaction
(PCR). The premix was tested on a CFX-96 real-time PCR
instrument (Bio-Rad, USA). GAPDH was used as a
normalisation control. The primers used are as follows:
GAPDH-F: GGAGCGAGATCCCTCCAAAAT, GAPDH-R:
GGCTGTTGTCATACTTCTCATGG, SLC25A32-F: TACGG
GGACTTTATCAAGGAGT, and SLC25A32-R: AAGGCGA
GTTTTTGTTACCCATA. We used the 2−ΔΔCt method to
quantitatively compare the cyclic threshold (Ct) value results.

2.11. Cell Transfection. Transfection was performed using the
siRNA kit designed and synthesised by Guangzhou Ruibo
Bio (Guangzhou, China). With transfection in six-well plates
(NEST Biotechnology, China), cells in the exponential
growth phase rose to 50%–60% using lipo3000 (Invitrogen

Biotechnology, Shanghai, China). Cells were harvested for
RNA extraction 24–48 hr post-transfection or functional
experiments and at 72 hr for western blot analysis of
extracted proteins.

2.12. Protein-Based Western Blot Analysis. The cell lysate was
prepared using a 100 : 1 : 1 ratio of phosphatase inhibitor,
protease inhibitor, and total protein extraction. The lysate
was subjected to electrophoresis with 10% SDS-PAGE gel
under pressure about 150V, then transferred to PVDF at
350mA, and blocked with 5% skimmed milk. The primary
antibodies included: SLC25A32, E-ca, N-ca, vimentin, MMP
9, β -catenin, β -tubulin, and GAPDH.

2.13. Cell Proliferation Assay. Cells were harvested at 24–48
hr post-transfection, and digested cells were seeded into 96-
well plates at a density of 2,000 cells per well. After 6 hr of
apposition, 10 μL of CCK-8 reagent was added per well, and
absorbance was measured at 450 nm, with measuring time
points at 0, 1, 24, 48, 72, and 96 hr. Three duplicate wells
were set for each group. The experiments were repeated
more than thrice.

2.14. Migration and Invasion Assays. Cells in six-well plates
attained 100% confluence at 48 hr post-transfection. They
were scratched using the pipette gun head, placed in PBS,
and photographed at 0, 24, and 48 hr. The wound healing
area was then determined. All assays were performed in
triplicates, and representative images were selected.

Transwell (BD Biosciences, NJ, USA) assays were used to
detect cell invasion abilities.

2.15. Statistical Analyses. Some statistical analyses and visuali-
sation were performed using R (version 4.2.1), and public data-
bases were analysed by default. Student’s t-test was used to
analyze the differences in gene expression, methylation level,
and protein level in cancer. One-way ANOVA was used to
analyze the pathological stage. Kaplan–Meier analysis and
Log-rank test were used for survival analysis. Regarding
breast cancer, the Wilcoxon rank sum and signed rank tests
were used to detect the significance of SLC25A32 expression in
unpaired and paired tissues, respectively. mRNA and protein
levels, cell proliferation assays, and migration and invasion
assays were analysed using Student’s t-test. All tests in this
study were two sided, and a P-value of <0.05 was considered
significant. Due to the large number of databases and different
statistical analysis methods involved in this paper, it should be
alert that the false positive rate may increase, and more
biological experimental validation is needed to confirm
the results. The results of the statistical analysis have some
limitations due to the differences between the number of
samples and databases, and more samples are needed in the
future to further supplement our conclusions.

3. Results

3.1. The Transcriptome Expression Level of SLC25A32 Varied
in Most Cancers Compared with Healthy Samples. The dif-
ferential expression of SLC25A32 in multiple tumours and
corresponding healthy tissues at transcript levels was
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investigated using the TIMER2.0, GEPIA, and UALCAN
databases. The GEPIA2.0 database presents the differential
expression of SLC25A32 in paired tumours and healthy tissues,
validating the evidence that SLC25A32 was significantly
upregulated in most tumours, including lymphoid neoplasm
diffuse large B-cell lymphoma (DLBC), oesophageal carcinoma
(ESCA), pancreatic adenocarcinoma (PAAD), stomach
adenocarcinoma (STAD), and thymoma (THTM) (Figure 1(a)).
The unpaired expression analysis provided by TIMER2.0 revealed
that SLC25A32 was significantly upregulated in 10 cancer types:
breast invasive carcinoma (BRCA), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), ESCA, head andneck squamous
cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC),
lung squamous cell carcinoma (LUSC), pheochromocytoma and
paraganglioma (PCPG), rectum adenocarcinoma (READ), and
STAD; downregulated in the five cancer types: glioblastoma
multiforme (GEM), kidney chromophobe (KICH), kidney renal
papillary cell carcinoma (KIRP), thyroid carcinoma (THCA), and
uterine corpus endometrial carcinoma (UCEC) (Figure 1(b)).
SLC25A32 expression analysis in the TCGA database revealed
similar differential results (Figure 1(c)).

The GEPIA2.0 database revealed the differential expres-
sion of SLC25A32 in different pathological stages of various
cancer types. SLC25A32 was significantly associated with the
pathological stage of adrenocortical carcinoma (ACC),
KICH, KIRP, lung adenocarcinoma (LUAD), and uterine
carcinosarcoma (USC) (Figure 1(d)). In ACC and KICH,
higher SLC25A32 transcript level expression predicted worse
tumour stage and clinical manifestations. The cancer types
without a significant effect of SLC25A32 expression on the
disease pathology stage are presented in Figure S1.

3.2. SLC25A32 Promoter Methylation Differed across
Multiple Cancer Types. DNAmethylation may lead to changes
in the structure of chromosomes, which is closely related to the
occurrence, development, and canceration of tumours. DNA
methylation level and changes in specific gene methylation can
be used as indicators for tumour diagnosis. Aberrant expression
of oncogenes is usually correlated with DNA methylation levels
[32]. Therefore, we investigated the promoter methylation level
of SLC25A32 in pan-cancer. In BRCA, bladder urothelial Carci-
noma (BLCA), HNSC, LUAD, Sarcoma (SARC), THCA, and
UCEC SLC25A32 promoter methylation differed between nor-
mal tissues (Figure 2(a)). However, according to the TCGA
database, a correlation exists between promoter methylation
and transcriptome levels of SLC25A32 in UCS, SKCM, CESC,
LIHC, and BLCA (Figure 2(b)). Thus, DNA promoter methyla-
tionmight be a reason for the aberrant transcriptome expression
of SLC25A32. The cancer types with no significant differences in
SLC25A32 promoter methylation are presented in Figure S2,
indicating that other factors cause transcriptomic level differ-
ences besides DNA promoter methylation abnormalities. We
then analysed the genetic and epigenetic mutations of
SLC25A32 in pan-cancer.

3.3. Genetic Alterations of SLC25A32 Affected Their
Expression at the Transcriptomic Level and Correlated with
Tumour Prognosis. Notably, we summarised the association
between SLC25A32 expression and related drug sensitivity in

various cancer types based on the anti-cancer drug suscepti-
bility database Genomics of Drug Sensitivity in Cancer
(GDSC). Cetuximab and Afatinib treatment sensitivity was
positively correlated with SLC25A32 mRNA expression. In
contrast, the treatment sensitivity of Dabrafenib and I-BET-
762 demonstrated a negative correlation (Figure S2). The
above results may suggest that clinicians could guide clinical
medication according to the different SLC25A32 levels in
different patients, and judge the sensitivity and tolerance of
different patients to drugs. In addition, according to the
correlation between treatment sensitivity and SLC25A32, it
may develop new ideas for future targeted therapy.

Using UCSCXenaShiny, we further explored the prognos-
tic relationship of several CNA species in SLC25A32 and
different cancer types, and in the total pan-cancer data, OS
and PFS were lower in groups with deleted and duplicated
SLC25A32 than in the normal group, and most significantly
different tumour types. In conclusion, the above results can be
initially reflected at the clinical level, in some cancer types,
patients with SLC25A32 CNA pattern alterations had worse
prognosis than those with normal SLC25A32. It is further
suggested that CNA pattern of SLC25A32 may be used as
an index to judge the malignant degree of tumour in clinical
diagnosis and treatment. The level of CNA is associated with
cancer mortality and recurrence, but the relationship between
clinical outcome and the overall level of CNA contained in the
tumour has not been fully studied, so we should be cautious in
judging our conclusions. Moreover, the SLC25A32 duplicated
group had more adverse OS and PFS prognosis data. In addi-
tion, the KIRC OS and KIRP PFS in the SLC25A32 normal
group were between the SLC25A32 deletion and duplication
groups (Figures 3(a) and 3(b)). TCGA pan-cancer data from
the cBioPortal platform was used to study the genetic altera-
tions of SLC25A32, and the gene copy number of SLC25A32
was analysed in pan-cancer. Data types on the cBioportal
platform are stored at the gene level, analysed in conjunction
with available deidentified clinical data, and then organised as
a function of patients and genes. The main abstract concept is
based on altered genes [19]. SLC25A32 was significantly
amplified in most cancer types (Figure S3). Additionally, its
gene amplification was significantly associated with the upre-
gulation of mRNA expression (Figure S3). In addition to
altered DNA promoter methylation in pan-cancer, genetic
and epigenetic alterations are also involved in the upstream
mechanism.

3.4. The Protein Expression Level of SLC25A32 Similarly
Varied in the Pan-Cancer and Normal Samples. Analysing
the SLC25A32 protein expression level data from the CPTAC
database in the UALCAN platform revealed that SLC25A32
protein expression increased over SLC25A32 in OV, UCEC,
lung cancer, HNSC, and liver cancer and decreased over
SLC25A32 in PAAD and glioblastoma (Figures 4(a) and
4(d)). To further analyse the SLC25A32 proteomics data,
we investigated the possible post-translational modification
sites of SLC25A32 and the mutation frequency in various
tumour types using the PhosphpSitePlus database. Post-
translational modifications in tumour cells mediate the
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FIGURE 3: The different SLC25A32 CNA types cause the prognostic level differences of pan-cancer. (a) Correlation of the deleted and
duplicated groups of SLC25A32 and the OS of GBLMGG, KIRC, KIRP, SARC, UCEC, UVM, and PANCAN. (b) Different CNA groups
of SLC25A32 were associated with the PFS of GBLMGG, KIRC, KIRP, LGG, PRAD, SARC, UCEC, and PANCAN.
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activation of proto-oncogenes and the inhibition of tumour
suppressor genes, weaken cell cycle regulation and enhance
proliferation and growth signals, and promote the occurrence
and rapid development of tumours. According to previous data,
SLC25A32mainly has two modification species: phosphorylation
and ubiquitination (Figure 4(b)). Notably, we obtained mutation
frequency data that are almost consistent with the UALCAN
database because both have high SLC25A32 mutation frequency
(Figure 4(c)) in lung adenocarcinoma, endometrial, HNSC,
stomach, breast, colorectal, glioblastoma, and ovarian serous
cystadenocarcinoma (OV). The proteomic data complement the
transcriptome view that SLC25A32 has differential mRNA and
protein expression in pan-cancer and healthy tissues and may be
involved in tumour development. However, the regulation and
specific mechanisms of SLC25A32 in tumour progression require
further investigation.

3.5. SLC25A32 Has a Prognostic Value as a Novel Biomarker
in Pan-Cancer. Using the GEPIA database to investigate the
prognostic significance of SLC25A32 in multiple cancer types,

OS andDFSmap of SLC25A32 revealed that patients with lower
class tumours that highly express SLC25A32 have more adverse
OS, including BLCA, BRCA, HNSC, KICH, KIRP, LAML,
LUAD, MESO, SARC, and UVM (Figure 5(a)). The GEPIA
database is built from HTML5 and JavaScript libraries with a
variety of basic algorithmic principles andmethods for analysing
gene expression. For example, expression-based clustering can
be divided into supervised and unsupervised methods [14]. In
addition, high SLC25A32 expression was associated with poor
DFS data in patients with BLCA, KICH, KIRP, and SARC
(Figure 5(b)). Furthermore, the OS, progressive-free interval
(PFI), and disease-specific survival (DSS) data of SLC25A32 in
different cancer types were analysed using the UCSCXenaShiny
database (Figure S4). Both results indicate that SLC25A32 is
significantly associated with prognosis in most cancer types
and is a risk factor for cancer prognosis.

3.6. SLC25A32 Expression Is Closely Associated with the
Tumour Immune Microenvironment and Immunotherapy.
In the immune microenvironment, immune infiltration is
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FIGURE 4: Proteomic differential analysis of SLC25A32 in pan-cancer. (a) The CPTAC database reveals differences in protein levels in multiple
cancers and the corresponding healthy tissues. (b) The PhosphpSitePlus platform counted the types of post-translational modifications of
SLC25A32 and the number of citations involved in previous studies. (c) Different tumour sample numbers reveal the frequency of SLC25A32
protein mutation in various cancer types. (d) The UALCAN database compares SLC25A32 protein expression individually in different
tumours. ∗P <0:05; ∗∗P <0:01; ∗∗∗P <0:001.
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FIGURE 5: Continued.

12 Analytical Cellular Pathology



closely related to tumour progression [33]. The TIMER database
mainly completed the analysis by using the R package integrated
with six state-of-the-art algorithms, including xCell, MCP-
counter, EPIC and quanTIseq, capable of allowing users to
study Spearman correlations between genes of interest and
immune cell types in the gene module. In addition, at the
algorithmic level, the algorithms used to calculate immune

infiltration can be divided into two categories: genetic feature-
based and deconvolution methods [12]. Thus, we calculated the
correlation between SLC25A32 expression and different
immune cell infiltration in multiple cancer types. Tumour-
associated fibroblast infiltration was positively correlated with
SLC25A32 expression in CHOL, HNSC, KIRP, MESO,
thymoma (THYM), UCS, and PAAD. Contrastingly, a
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FIGURE 5: The prognostic value of SLC25A32 in pan-cancer using the survival heat map and KM curve. (a) The GEPIA2.0 database, using
calculation of survival heat map and KM curves in each tumour, revealed that the high and low SLC25A32 expressions were closely associated
with OS levels in BLCA, BRCA, HNSC, KICH, KIRP, LAML, LUAD, MESO, SARC, and UVM. (b) Using a similar method for analysis, the
group with high SLC25A32 expression had a worse DFS in patients with BLCA, KICH, KIRP, and SARC. P <0:05, and |logFC |> 1 indicated
significant differential prognostic data.
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negative correlation was observed with SLC25A32 expression in
DLBC and brain lower grade gliom (LGG) (Figure 6(a)). A
heatmap of B-cell infiltration revealed that B-cell infiltration
was positively correlated with SLC25A32 expression in CHOL,
LGG, ACC, DLBC, KICH, PAAD, and PCPG and negatively
correlated in CESC, HNSC, LUSC, and STAD (Figure 6(b)).
Similarly, CD8 T cell infiltration was positively correlated with
SLC25A32 expression in DLBC, PAAD, and UVM; however, it
was negatively correlated with SLC25A32 expression in CESC,
HNSC, andUCEC (Figure 6(c)). Notably, CD4 T cell infiltration
determined using the XECLL algorithm revealed that Th1 cell
infiltration was negatively correlated with SLC25A32 expression
in almost all cancer types. In contrast, Th2 cell infiltration was
positively correlated with SLC25A32 expression. This indicated
that the Th1/Th2 ratio was significantly negatively correlated
with SLC25A32 expression in almost all cancer types
(Figure 6(d)). In addition, the correlation analysis between
SLC25A32 expression and 20 kinds of immune infiltrating
cells in pan-cancer revealed that SLC25A32 expression was
negatively correlated with Treg cells, CD8 T cells, plasma cells,
natural killer (NK) activated cells, mast resting cells, and B cell
memory in pan-cancer. A significant positive correlation was
observed with CD4 T cell memory, mast activated, M1 and
M0 macrophages, and B cell naïve (Figure 6(e)).

Therefore, SLC25A32 expression is closely associated
with immune cell infiltration in various cancer types. Addi-
tionally, it may serve as a novel immune-related biomarker
in tumorigenesis and progression. Subsequently, we investi-
gated the relationship between SLC25A32 expression, meth-
ylation, and CNA levels and three immunomodulators
(Figure S5). It should be emphasised that we focused on
the relationship between the above three research objects
and SLC25A32 expression, and the conclusions among the
three may be correlated, but there is no causal relationship,
and no causal inference can be made through our research
results.

We then utilised the relationship between SLC25A32
expression and TMB and MSI in most cancer types to inves-
tigate the relationship between SLC25A32 expression and
immunotherapy. TMB and MSI are critical in deciding
whether to proceed with immune checkpoint therapy [34].
Our findings revealed that SLC25A32 expression was posi-
tively correlated with TMB in some cancers, including
DLBC, KICH, LUAD, and STAD. However, a significant
negative correlation was lacking between SLC25A32 expres-
sion and TMB in UVM, KIRP, and READ (Figure 6(f )).
SLC25A32 expression level was positively correlated with
MSI in most cancers, such as UCEC, SKCM, LUAD, and
glioblastoma multiforme (GBM) (Figure 6(g)). Tumour
stemness is closely associated with the development of
drug resistance and tumour cell proliferation during treat-
ment [35]. Therefore, we extracted the correlation between
SLC25A32 expression and stemness scores of different
tumour types. Figure 6 reveals a significant positive correla-
tion between stemness scores and SLC25A32 expression in
most tumours, including STAD, LAML, COAD, ESCA, and
STAD. LUSC, LUAD, BLCA, and LGG; stemness scores were
negatively correlated with SLC25A32 expression in some

tumours, such as THYM, CHOL, and KICH (Figure 6(h)).
These findings suggest that SLC25A32 may serve as a novel
immune-related biomarker for tumour development and
may provide new ideas for targeted immunotherapy.

3.7. SLC25A32 Expression at the Single-Cell Level Is Closely
Associated with Biological Tumour Behaviour. We analysed
the correlation data using the CancerSEA database to explore the
relationship between SLC25A32 expression at the single-cell level
and the biological behaviour and function of most tumours.
SLC25A32 expression is positively correlated with the malignant
biological functions of most tumours, including metastasis, dif-
ferentiation, inflammation, angiogenesis, apoptosis, cell prolifer-
ation, stemness, and epithelial–mesenchymal transition (EMT).
However, a significant negative correlation was observed with the
biological functions of cellular DNA damage repair and cell cycle
(Figure 7(g)). In addition, we explored the correlation of
SLC25A32 with biological behaviours and functions in single-
cell datasets of different cancers. SLC25A32 significantly pro-
moted angiogenesis and differentiation but inhibited DNA repair
in the RB-EXP0073 dataset (Figure 7(a)). In the ALL-EXP0046
dataset, it was positively correlatedwith apoptosis (Figure 7(b)). A
negative correlation was observed with DNA damage and repair
in UM-EXP0074 single-cell data (Figure 7(c)). Moreover,
SLC25A32 expression at the single-cell level was visualised using
t-SNE plots (Figure 7(d)–7(f)). In conclusion, SLC25A32 expres-
sionmay be closely associatedwith themalignant biological func-
tions of most cancer types, promoting tumour cell metastasis and
proliferation and inhibiting DNA damage repair. For clinical-
level applications, it can be suggested that patients with high
SLC25A32 expression may have a greater chance of tumour
metastasis and other malignant manifestations.

Since mRNA molecules in the droplets are not captured
by the magnetic beads in the same ratio, specificity bias may
be caused, and it becomes the main cause of data sparsity.
The main methods used to deal with data sparsity are nor-
malisation and scaling techniques [36]. Alternatively, batch
effects may be caused by unavoidable technical differences,
such as the number of repeated freeze–thaw of samples, dif-
ferences in methods of RNA extraction, sequencing depth,
etc. The recommended way to handle batch effects is to
record the batch information of the sample, subtract this
effect in the downstream regression analysis, and strive to
keep these variables constant during the experimental oper-
ation, or to avoid batch effects by combining cells from dif-
ferent experimental conditions and samples for subsequent
operations [37]. Regarding the issue of technical artifacts and
noise, the current CellBender model can model drop-based
single-cell detection and eliminate systematic background
noise, thereby enhancing biosignals and improving down-
stream analysis [38].

3.8. Co-Expression Genes, Functional Enrichment, and
Protein–protein Interaction Network Analysis of SLC25A32
in Breast Cancer. Evaluation of the genes co-expressed with
SLC25A32 revealed the possible mechanism of SLC25A32 in
tumour progression (Figure S6). DCAF13 was strongly cor-
related with SLC25A32 in most cancers (R= 0.75), followed
by FAM91A1 (R= 0.69) and TAF2 (R= 0.68). Thereafter, we
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investigated the specific regulatory mechanism of SLC25A32 in
breast cancer progression. Enrichment analysis was used to eval-
uate the molecular mechanism of SLC25A32 action. GSEA
revealed that SLC25A32 was enriched in PI3KAKTMTOR-
SIGNALING _PATHWAY and EXTRACELcLULAR_
MATRIX_ ORGANIZATION pathways in breast cancer
(Figures 8(a) and 8(b)). Recent studies have shown that
SLC25A32 can activate the PI3K/AKT signalling pathway,
leading to malignant proliferation and invasion of GBM cells
[39]. Previous studies revealed that in addition to the structural
role, the extracellular matrix also affects cell behaviour, such as
proliferation, adhesion, and migration [40]. Furthermore,

SLC25A32 was enriched in the β-catenin repressor gene marker
(BCAT_BILD_ET_AL_DN), suggesting that SLC25A32 might
regulate β-catenin activity (Figure 8(c)). In addition, string and
bubble plots visualised the GO/KEGG analysis and revealed other
functional roles of SLC25A32 in breast cancer (Figures 8(d) and
8(e)). The LinkedOmics platform and Metascape were used to
further analyse the gene and functional enrichment of SLC25A32
co-expressed in breast cancer (Figure S7).

3.9. SLC25A32 Promoted the Proliferation, Invasion, and
Migration of Breast Cancer Cells. Bioinformatics analysis
revealed the role of SLC25A32 in breast cancer, and we
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FIGURE 6: SLC25A32 immune infiltration analysis in pan-carcinoma. (a) TIMER2.0 database analysis determined the relationship between
SLC25A32 expression and immune infiltration of tumour-associated fibroblasts in pan-cancer. (b) A similar approach was used to analyse
the relationship between SLC25A32 expression and B-cell immune infiltration in pan-carcinoma. (c) The relationship between SLC25A32
expression and immune infiltration of CD8 T cells in pan-cancer was analysed. (d) The relationships between SLC25A32 expression and CD4
T cells, Th 1, and Th 2 immune infiltration in pan-cancer were analysed. (e) Correlation analysis of integrated SLC25A32 expression with 20
immune-infiltrating cells in pan-carcinoma using UCSCXenaShiny. (f ) Radar plot of the correlation between mRNA SLC25A32 expression
and different levels of tumour stemness. (g, h) Radar plots displaying the correlation of SLC25A32 expression with TMB/MSI in pan-cancer.
∗P <0:05; ∗∗P <0:01; ∗∗∗P <0:001.
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further explored its biological function. PCR confirmed that
SLC25A32 expression was relatively highest inMDA-MB-231
and BT-549 cells; therefore, we selected both cell lines for
subsequent experiments (Figure 9(a)). The two siRNA knock-
down vectors were transfected into 231 and 549 cells, and the
knockdown efficiency was verified using RT-PCR and west-
ern blotting. The two fragments could be successfully trans-
fected in 231 and 549 cells (Figure 9(b)–9(e)). The effect of
SLC25A32 on cell proliferation was determined using the

CCK-8 assay. SLC25A32 knockdown by both fragments sig-
nificantly reduced the proliferation ability of 231 and 549 cells
(Figures 9(f) and 9(g). Plate cloning experiments demon-
strated similar results (Figures 9(h) and 9(i)). Subsequently,
the migration and invasion abilities of the 231 and 549 cells
was reduced when SLC25A32 was downregulated in triple-
negative breast cancer (TNBC) cells (Figure 10(a)–10(c)),
indicating that SLC25A32 can affect the biological functions
of TNBC cells proliferation and migration.

expression profile of SLC25A32 at the single cell level in RB, three tumour types were visualised in t-ALL and UM using t-SNE plots. (g) The
relationship between various tumour-related biological behaviours and functions in pan-cancer; red and blue indicate a positive and negative
correlation, respectively, ∗P <0:05; ∗∗P <0:01; ∗∗∗P <0:001.
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3.10. SLC25A32 Promoted EMT of Breast Cancer Cells. Based
on biological behaviours and functions at the single-cell level,
SLC25A32 may positively correlate with malignant biological
behaviours, such as metastasis, tumour differentiation, angio-
genesis, and EMT.Moreover, enrichment analysis revealed that
SLC25A32 was enriched in PI3K/AKT/mTOR and β-catenin
signalling-associated pathways and extracellular matrix. We
hypothesised that SLC25A32 might similarly affect tumour
cell metastasis and EMT in TNBC cells. EMT is involved in
the malignant progression of tumours; therefore, we examined
the changes in EMT-associated indicators in transfected TNBC
cells. Western blotting revealed that EMT marker protein
expression was significantly changed after the SLC25A32
knockdown. N-cadherin, β-catenin, vimentin, and MMP9
expressions were significantly downregulated in both TNBC
cells, while E-cadherin expression was increased (Figures 10(d)
and 10(e)). Therefore, SLC25A32 promoted the invasion,
metastasis, and EMT of TNBC cells.

4. Discussion

The mitochondrial carrier family SLC25, one of the solute
carrier transporters embedded in its inner membrane, is
ubiquitous in eukaryotes. It transports multiple compounds
in the mitochondrial inner membrane, participates in multi-
ple metabolic pathways, and regulates cellular functions as a
pathway connecting the mitochondrial matrix and cyto-
plasm [41, 42]. However, studies on the role of its family
member SLC25A32 in malignancy are insufficient. Here, a
systematic bioinformatics analysis combined with experi-
ments can validate SLC25A32 as an innovative pan-cancer
prognostic and immune-related biomarker and reveal its tar-
getable mechanism of action in breast cancer. Folate

metabolism is regulated by SLC25A32 in Chinese hamster
ovary cells [43], and monocarbon and folate metabolism
have been previously linked to tumour growth [44]. A novel
data from a genetic mutant mouse model suggest that
SLC25A32 dysfunction leads to FAD deficiency, secondary
to defects in folate metabolism [45]. Another recent study
also shows that the knockdown of SLC25A32 resulted in
decreased mitochondrial flavin content and affected the sta-
bility and function of respiratory complex I [46]. Mitochon-
drial function is critical to cancer biology, and our
conclusion that knockdown of SLC25A32 impairs breast
cancer cell proliferation is consistent with the above conclu-
sion. This may indicate that SLC25A32, which is highly
expressed in cancer, acts as a mitochondrial FAD transporter
and responds to the high level of mitochondrial oxidative
phosphorylation in cancer cells to provide energy for the
rapid proliferation of cancer cells and improve the anti-
oxidative stress ability of tumour.

Thus, SLC25A32 might participate in carcinogenesis and
the growth of most malignancies.

Epigenetic abnormalities may alter gene expression
levels. Simultaneously, targeting epigenetic regulation to
reprogramme cancer to a healthy state has gained increasing
attention [47]. The correlation suggests that promoter meth-
ylation may cause the altered SLC25A32 expression in some
cancers. Genetic alteration affects gene expression [48].
Therefore, we analysed the gene mutations of SLC25A32
and CNV in pan-cancer. In most cancers, SLC25A32 CNV
types are mainly gene amplifications, and CNV alterations
exhibit some correlation with their expression level. These
results indicate that SLC25A32 alteration at the genetic level
may also affect tumour growth and prognosis. Thus, the
specific mechanism of CNV action on pan-cancer prognosis
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FIGURE 9: SLC25A32 promotes the proliferation, invasion, and migration of breast cancer. (a) Quantitative RT-PCR results comparing
SLC25A32 expression levels in healthy breast epithelium and four breast cancer cell lines. (b) The 231 and 549 cell lines were selected for
subsequent experiments, and SLC25A32 expression levels were verified using western blotting after knocking down both fragments. The blots
were cropped from the full-length original blot to improve the clarity and conciseness of the presentation. (c) Grey value ratio of target/
reference protein in 231 and 549 cell lines. (d, e) Changes in SLC25A32 mRNA levels post-transfection in 231 and 549 cells were verified
using PCR. (f, g) CCK-8 assay was used to detect the proliferation of 231 and 549 cells post-transfection. Plate cloning assay was used to
detect the colony-forming ability of the two cell lines post-transfection. (h, i) Plate cloning assay was used to detect the colony-forming ability
of the two cell lines post-transfection. ∗P <0:05; ∗∗P <0:01.
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requires further studies. It should be noted that there is great
intertumoral heterogeneity among different tumours, and
the application of results for SLC25A32 needs to be rigorous
and limited. For example, SLC25A32 had higher mRNA and
protein levels in most cancers, indicating a worse prognosis,
but in a few specific cancers, SLC25A32 expression was actu-
ally lower than that in normal tissues.

Evidence exists that genes influence tumour growth and
prognosis by changing the immune microenvironment and
cell infiltration [49]. Tumour-infiltrating CD8+ T cells demon-
strated anti-tumor activity in previous studies and had favour-
able effects on the survival of patients with breast cancer [50].
CD4+T cells have two subsets—Th 1 and Th 2 cells—and some
clinical data observed unbalanced Th 1/Th 2 levels in patients
with breast cancer, where Th 2 cells released the cytokines IL-4
and IL-10 and suppressed the host immune system, exhibiting a
tumour-promoting effect [51]. In contrast, Th 1 cell infiltration
resulted in a better prognosis and lower recurrence rate [52].
Thus, SLC25A32 might influence tumour progression by regu-
lating immune cell infiltration and function. Immune-related
markers are crucial in tumour immunity [53]. Hence, we inves-
tigated the relationship of mRNA expression, methylation, and
CNA levels of SLC25A32 with the three TISIDB immune mar-
kers. There may be correlation among the three conclusions, but
there is no causal link. Our findings suggest that the correlation
between SLC25A32 methylation, CNV levels, and immune-
related markers in some cancers provides new ideas for tumour
immunotherapy response regulation.

This study has limitations. First, the part of bioinformat-
ics analysis that only uses cross-analysis of multiple public

databases, despite multiple crossovers and repeated align-
ments, and did not use clinical samples specifically collected
for sequencing analysis, making our data more targeted. Sec-
ond, despite conducting multiple functional experiments to
verify the possible role and mechanism of SLC25A32 in
breast cancer, in vitro experiments and immune infiltration
of SLC25A32 and immunotherapy are lacking. Moreover,
the regulatory mechanism of SLC25A32 in specific signalling
pathways remains unclear. Our integrative analysis and
experimental validation provide insight for future studies.
In addition, although we have conducted bioinformatics
studies on a variety of pan-cancers, our experimental data
are only limited to breast cancer, and the inference of the
experimental results of SLC25A32 to pan-cancers is limited,
and more experiments are needed to verify it in the future.

It is worth noting that the consideration of tumour het-
erogeneity should be emphasised because this article involves
multiomics data between many different cancers and experi-
mental validation in a single cancer. Tumour heterogeneity
includes both intratumor and intertumoral heterogeneity,
and we have minimised the effect of reducing intratumor
heterogeneity by adding experimental tumour cell lines
and increasing the number of experimental replicates. Mean-
while, in the future, we expect to analyze multiomics data
and calculate Jaccard similarity coefficient to explore the
level of heterogeneity of SLC25A32 between tumours and
patients to increase the clinical translation prospects in dif-
ferent tumours.

Overall, this study integrated expression, genetics, prog-
nosis, immunity, and functional perspectives of SLC25A32, a
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FIGURE 10: SLC25A32 promotes EMT in breast cancer. (a) Transwell assays were used to detect the invasion of the two groups of cells. (b) The
migration ability of 231 cell lines was detected using scratch tests at 0, 24, and 48 hr, respectively. The migration rate at a certain time= (0 hr
scratch area− scratch area at a certain time)/0 hr scratch area× 100%. (c) The migration ability of 549 cells was determined using the same
method, and the bar graph illustrates the migration rate. (d, e) Western blot was used to detect the expression changes of EMT marker
proteins in 231 and 549 cell lines after transient SLC25A32 knockdown. The blots were cropped from the full-length original blot to improve
the clarity and conciseness of the presentation. ∗P<0:05; ∗∗P<0:01; ∗∗∗P<0:001.
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novel pan-cancer prognosis gene, and immunotherapy-
related biomarkers. We preliminarily demonstrated the influ-
ence and underlying mechanism of SLC25A32 on biological
tumour behaviour in breast cancer via functional and path-
way experiments on proliferation, invasion, and migration.
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