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Lymphangiogenesis, an integral contributor to lymphatic metastasis, is a significant reason for the poor prognosis of cancer patients.
Anti-lymphangiogenesis treatment is a promising novel therapeutic direction, especially for tumors resistant to conventional
therapies. We confirmed the ectopic expression of lymphangiogenesis-related genes (LRGs) in lung adenocarcinoma (LUAD)
cohorts based on the TCGA database. We constructed a prediction signature with 15 LRG prognostic signatures (F2RL1, LOXL2,
MKI67, PTPRM,GPI, POSTN, INHA, LDHA, LINC00857, ITGA2, PECAM1, SOD3, GDF15, SIX1, and FGD5), and the overall survival
(OS) was significantly different between the high- and low-risk groups (TCGA-training: p<0:001, TCGA-test: p¼ 0:02, GSE30219:
p<0:001, GSE37745: p¼ 0:002, and GSE50081: p¼ 0:002). Moreover, the risk score was also associated with the PIK3CA and BRCA1
pathways. In the nomogram, the prognostic prediction of the risk score was better than that of clinicopathologic parameters in OS,
including age, sex, stage, T stage, N stage, and M stage. In summary, we constructed and validated a 15-LRG signature, which may
help predict the prognosis of LUAD and offer a possible direction for future research on downstream molecular mechanisms.

1. Introduction

Lung adenocarcinoma (LUAD) is the prevailing form of pri-
mary lung cancer, constituting approximately 30%–35% of
cases [1]. Among patients diagnosed with LUAD, mortality
primarily results from distant metastasis and cancer recur-
rence [2, 3], leading to a mere 15%, 5-year survival rate [4].
Consequently, the identification of innovative therapeutic
targets for LUAD is of paramount importance.

A poor prognosis for cancer patients is largely the result
of the complex tumor microenvironment (TME), especially
the tumor immune microenvironment [5]. According to
research, the TME, composed of noncancer cells, extracellular
matrix (ECM), blood vessels, and lymphatics, facilitates the
growth of cancer cells [6]. Immune cells in the TME promote
cancer development and progression: They constitute the
immunosuppressive TME and prevent tumor immune escape
and carcinogenesis [7]. Chen et al. [8] found that the TME
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score was a significant parameter to evaluate the prognosis of
LUAD patients. On the other hand, the LUAD TME exhibits
extensive lymphangiogenesis, which is considered an integral
contributor to lymphatic metastasis [9]. Specifically, Sasso
et al. [10] found that lymphangiogenic tumors respond far
better to immunotherapy than their nonlymphangiogenic
counterparts [10]. It has been indicated that cancer-associated
lymphangiogenesis is involved in lymph node metastasis,
resulting in the unfavored survival of LUAD patients [9].
Recent studies on lymphatic vessel biology, such as advance-
ments in intravital imaging techniques for monitoring lym-
phangiogenesis and lymphatic metastases, have fostered a
recognition of the significant role played by the lymphatic
system in the initiation, advancement, and progression of
cancer [11–13]. There is still some uncertainty as to whether
lymphatic dissemination is mediated by cancer cell invasion
of newly formed lymphatic vessels induced by tumors [14].
To elucidate the role of lymphangiogenesis in the carcinogen-
esis of LUAD, we used multiple public databases to detect
lymphangiogenesis-related genes (LRGs) expression in LUAD.
Then, we confirmed the hub 15 LRGs with prognostic signifi-
cance in LUAD patients by Cox univariate regression, including
FGD5, SIX1, GDF15, SOD3, PECAM1, ITGA2, LINC00857,
LDHA, INHA, POSTN, GPI, PTPRM, MKI67, LOXL2, and
F2RL1. Subsequently, we constructed a prognostic model by
LASSO regression based on these hub LRGs for LUAD patients.
Moreover, we further confirmed the association between risk
score and multiple molecular pathological parameters, includ-
ing immune infiltration, DNA alteration, drug sensitivity, and
clinical stage.

2. Methods

2.1. Data Download. The processed LUAD original mRNA
data were obtained from the TCGA database (https://portal.
gdc.cancer.gov/) [15]. The GSE30219 [16] dataset, with an
annotation platform of GPL570, was downloaded, resulting
in the extraction of 85 samples. Additionally, the GSE37745
[17] dataset was downloaded, resulting in the extraction of
106 samples. The GSE50081 [18] was downloaded, with an
annotation platform of GPL570, and a total of 127 samples
were extracted.

2.2. GO and KEGG Analysis. GO and KEGG pathway analy-
sis were based on the Metascape database (https://www.meta
scape.org) [19].

2.3. Model Construction and Prognosis. The lasso regression
model was constructed by 22 prognostic LRGs. Specific
methods can be found in our previous study [20].

2.4. Drug Susceptibility Analysis. The examination of drug
sensitivity to cancer treatments was conducted using a
genome database derived from the CancerRxGene, the largest
database of cancer drugs available at https://www.cancerrxgene.
org/ [21]. To predict the chemotherapy sensitivity of indi-
vidual tumor samples, the R software package “pRRophetic”
was employed.

2.5. Analysis of Immune Infiltration. The CIBERSORT
algorithm [22] was employed to deconvolve the expression
matrix of immune cell subtypes. Within the 547 biomarkers,
there were specific markers capable of distinguishing 22 subsets
of human immune cells, including T cells, B cells, plasma cells,
and myeloid cells. In this study, the CIBERSORT algorithm
was utilized to analyze patient data and ascertain the relative
proportions of the 22 immune infiltrating cell types. Pearson
correlation analysis was conducted to examine the relationship
between immune cell content and gene expression.

2.6. Gene Set Variation Analysis (GSVA) and Gene Set
Enrichment Analysis (GSEA). GSVA and GSEA were per-
formed as previously described [23, 24].

2.7. Statistical Analysis. All statistical tests conducted in this
study were two-tailed, with a significance level of p <0:05
indicating statistical significance. The analyses were carried
out utilizing the R language (Version 3.6).

3. Results

3.1. Identification of Lymphangiogenesis-Related Prognostic
Genes in LUAD. The LUAD mRNA original data were
obtained from the TCGA through the GeneCards database
and subsequently processed. This led to the acquisition of a
507 lymphangiogenesis gene set. The differential expression
of these genes was then validated using the limma package.
In order to ascertain genes that exhibited differential expres-
sion, the screening criteria employed were LogFC> 1 and
p <0:05. The differential expression of 104 lymphangiogen-
esis genes was assessed (Figure 1(a)), with 48 upregulated
genes and 56 downregulated genes. Cox univariate regres-
sion analysis was employed to identify prognostic genes in
patients with LUAD. The analysis revealed that a total of
22 genes exhibited significant predictive value (p value< 0.05)
in determining the prognosis of LUAD patients (Figure 1(b)).

3.2. Functional Enrichment for Transcriptional Network. We
used pathway analysis of these 22 prognostic genes, which
suggested that they were enriched in cell population prolif-
eration, blood vessel development, cell adhesion molecule
binding, and other pathways (Figure 2(a)). Using Cytoscape,
PPI network analyses were conducted on the genes in the
prognostic gene set (Figure 2(b)). These results suggest that
19 of the 22 prognostic genes interact and may play a major
role in regulating lymphangiogenesis in LUAD.

3.3. Construction of a Prognostic Model. For the confirmation
of LUAD signature genes, lasso regression was used as a feature
selection algorithm. By lasso regression, patients were randomly
assigned to training and validation groups in a 4 : 1 ratio
(Figures 3(a) and 3(b)). Therisk score=FGD5x − 0.12780561+
SIX1x − 0.120340655+GDF15x − 0.046094558+ SOD3x −
0.039896584+PECAM1x−0.010267393+ ITGA2x0.019577509+
LINC00857× 0.037512424+LDHA× 0.043340545+ INHA×
0.060290303+POSTN× 0.064482379+GPI× 0.064968889+
PTPRM× 0.067756826+MKI67× 0.118176034+ LOXL2×
0.148237808+ F2RL1× 0.186031784. The patients were
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categorized into low-risk and high-risk groups based on their risk
scores, and subsequently, their Kaplan–Meier curves were ana-
lyzed. In both the training and test cohorts, the overall survival
(OS) of patients with a high-risk profile in LUAD was signifi-
cantly shorter compared to those with a low-risk profile (training
cohort: p<0:001; test cohort: p¼ 0:02) (Figures 3(c) and 3(d)).
Additionally, the receiver operating characteristic (ROC) curves
for both the training and test sets demonstrated the model’s
effective validation performance (Figures 4(a) and 4(b)).

3.4. Relationship between Prognostic Models and the Immune
Microenvironment. The TME encompasses a diverse array of
growth factors, inflammatory factors, ECM components, dis-
tinctive physical and chemical properties, cancer cells, and
fibroblasts [25, 26]. These TMEs significantly impact the
prognosis, diagnosis, and treatment response of patients
[27]. To gain deeper insights into the influence of the risk
score on the progression of LUAD, we conducted an analysis
to examine the association between the risk score and tumor
immune infiltration. Figure 5(a) illustrates the distribution of
immune cell percentages in both the high-risk and low-risk
groups. Furthermore, a comparative analysis was conducted
to examine the immune cell composition in low- and high-
risk groups. The findings revealed a significant decrease in
follicular helper T cells, activated NK cells, monocytes,

resting dendritic cells, and resting mast cells within the
high-risk group. Conversely, CD4 memory-activated T cells,
resting NK cells, and M0 macrophages exhibited a significant
increase (Figure 5(b)). Subsequently, an additional investiga-
tion was undertaken to evaluate the correlation between the
risk score and immune cell content. The findings of this
study indicate a significant positive correlation between the
risk score and activated memory CD4 T cells, M0 macro-
phages, and resting NK cells, among others. Conversely, a sig-
nificant negative correlation was observed with resting mast
cells, resting dendritic cells, and monocytes (Figure 5(c)). Addi-
tionally, an analysis of immune regulatory genes was conducted,
revealing disparities in the expression of immune-related che-
mokines, immunosuppressants, immune-stimulating factors,
and immune receptors (Figure 6(a)–6(d)).

3.5. The Clinical Significance of the Model through Multi-
Omics Research. In the context of early-stage LUAD, the
efficacy of surgery and chemotherapy has been established.
In our research, we employed the R package “pRRophetic” to
analyze the risk score and assess the sensitivity to chemo-
therapy drugs, utilizing the GDSC database. Through this
study, we observed a significant correlation between the risk
score and the chemosensitivity of LUADpatients toAS601245,
ATRA, ABT.888, MS.275, roscovitine, and salubrinal drugs
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FIGURE 1: Differential expression of hub LRGs in LUAD tissues. (a) The differential expression of LRGs in LUAD tissue by volcano plot.
(b) The hub LRGs in LUAD samples by Cox univariate regression.
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FIGURE 3: Continued.
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(Figure 7(a)). In the subsequent phase, we conducted an inves-
tigation into the specific signaling pathways and molecular
mechanisms implicated in high- and low-risk models, in order
to elucidate the potential molecular mechanisms through

which risk scores impact tumor progression. Based on the
findings from the GSVA analysis, it was observed that the dif-
ferential pathways between the two groups were predominantly
enriched in E2F targets, cell cycle checkpoint, unfolded protein
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FIGURE 3: Prognostic analysis of the 14-signature model in the training cohort and test cohort based on the TCGA database. (a) Prognostic
lymphangiogenesis-related signature construction based on LASSO Cox analysis. (b) The coefficient and log2(HR) for these prognostic
lymphangiogenesis-related signatures. Kaplan–Meier curves for the OS of patients in the high- and low-risk groups in the training cohort
(c) and test cohort (d).
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FIGURE 4: The ROC value of the prognostic model. (a) The ROC curves of OS in the TCGA training dataset. (b) The ROC curves of OS in the
TCGA testing dataset.
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response, and various other signaling pathways (Figure 7(b)).
The GSEA analysis further revealed that the highly expressed
pathways included mismatch repair, oocyte meiosis, and
ubiquitin-mediated proteolysis (Figure 7(c)). Furthermore,

an investigation into the mutation profile of patients catego-
rized as high and low risk was conducted. Notably, Figure 7(d)
demonstrates a significantly higher occurrence of mutations
in TP53 and other genes in the two groups. Combining the
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above results, we found that the high-risk group showed stron-
ger resistance to multiple drugs, such as AS601245, ATRA,
ABT.888, MS.275, roscovitine, and Salubrinal, compared with
the low-risk group. The differences may be attributed to the
abnormal function of various signaling pathways andmolecules,
as well as drug resistance caused by gene mutations.

3.6. Model Stability Verification by External Datasets. The
processed data from the GEO database of LUAD patients
(GSE30219, GSE37745, GSE50081) were obtained. The clin-
ical classification of LUAD patients in the GEO database was
predicted using a model, and the stability of the prediction
model was assessed through Kaplan‒Meier analysis, which

Points
0 10 20 30 40 50 60 70 80 90 100

Age
30 50 70 90

Gender
1

0

Stage
1 3

2 4

T
1
2

M
1

0

N
3
2

Risk score
–1.5 –1 –0.5 0 0.5 1 1.5 2 2.5

Total points
0 20 40 60 80 100 120 140 160

Linear predictor
–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

3-year survival probability
0.9 0.8 0.7 0.6 0.50.40.30.2 0.1

5-year survival probability
0.8 0.7 0.6 0.50.40.30.2 0.1

ðaÞ

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−prediced OS (%)

O
bs

er
ve

d 
O

S 
(%

)

n = 337 d = 119 p = 7, 100 subjects per group
Gray: ideal

X − resampling optimism added, B = 1,000
Based on observed−predicted

3-year
5-year

ðbÞ
FIGURE 9: Prognostic value of the risk score and other pathological parameters in LUAD. (a) Nomogram survival prediction chart for
predicting OS rates at 3 and 5 years. (b) Calibration curve of the nomogram in the TCGA database LUAD dataset.

Analytical Cellular Pathology 13



compared the survival differences between the two groups.
Based on the GEO external validation set (Figure 8(a)–8(c)),
it was found that the overall survival (OS) of the high-risk
group was lower compared to the low-risk group (GSE30219:
p<0:001; GSE37745: p¼ 0:002; GSE50081: p¼ 0:002). In
order to validate the accuracy of the model, we conducted
an analysis on an external dataset employing ROC curves.
The results exhibited a robust predictive efficacy in forecast-
ing the prognosis of patients with LUAD, as depicted in
Figure 8(d)–8(f ). These results suggest that our LASSO
algorithm-based prognostic model shows strong sensitivity
and specificity when validated by external datasets. This
further proves the clinical value of this prognostic model in
predicting the prognosis of LUAD patients.

3.7. Incidence Risk and Independent Prognosis Analysis. The
samples were categorized into high-risk and low-risk groups
based on the median risk score value, and a nomogram was
constructed using regression analysis. Logistic regression
analysis revealed that the risk score significantly influenced
the scoring in the nomogram prediction model for all sam-
ples (Figure 9(a)).

Furthermore, prediction analysis of LUAD OS at 3 and
5 years (Figure 9(b)) yielded consistent outcomes. Addition-
ally, univariate and multivariate analyses demonstrated that
risk scores were independent prognostic factors in LUAD
patients (Figures 10(a) and 10(b)). This nomogram indicates
that the risk score level is superior to the clinicopathological
parameters such as age, sex, and clinical stage in predicting
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the accuracy of survival time, and the accuracy of the risk
model in predicting the 3- and 5-year survival of LUAD
patients was also demonstrated in the column chart, and
these results in general also demonstrated the advantage of
the risk model in predicting the prognosis of LUAD patients.

3.8. Multivariate Correlation Analysis of Incidence Risk and
Clinical Indicators.Clinical index values were divided into groups
based on their size, and the outcomes of each group were
visually displayed using a boxplot format (Figure 11(a)–11(e)).
The Kruskal test revealed a significant difference in the
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distribution of risk score values among groups for the Fustat,
stage, M, N, and T clinical indicators (p value< 0.05). Utiliz-
ing modeling analysis, it was determined that LUAD samples
could be accurately classified using a risk score. To further
investigate this, a reverse prediction of 15 model genes was
conducted using the miRcode database, resulting in the iden-
tification of 13 model miRNAs.

These miRNAs, along with 86 additional miRNAs and
486 mRNA‒miRNA relationship pairs, were visualized using
Cytoscape (Figure 12). We conducted a search in the Gene-
Cards database to identify genes associated with LUAD. Sub-
sequently, we analyzed the expression differences of these
LUAD-related genes between two groups of patients. Our
findings revealed significant differences in the expression of
ALK, BRCA1, KRAS, MAP2K1, MET, NRAS, PIK3CA, ROS1,
TERT, and other genes in the two patient groups (Figure 13(a)).

Furthermore, we observed a significant correlation between
the expression level of a model gene and several LUAD-related
genes. Notably, SOD3 exhibited a significant negative correla-
tion with PIK3CA (Pearson r=−0.24), while MKI67 showed a
significant positive correlation with BRCA1 (Pearson r= 0.71)
(Figure 13(b)). These results suggest that these hub LRGs, which
build prognostic models, are closely related to and regulated by
key LUAD genes and miRNAs.

3.9. Motif Analysis. The analysis evaluated prognostic genes
in the gene set and revealed that they were controlled by several
transcription factors. As a result, cumulative recovery curves
were used to analyze the enrichment of these transcription fac-
tors (Figure 14(a)). As a result of the analysis, cisbp__M5876

was identified as the MOTIF annotation. Four prognostic
genes exhibited enrichment in this motif, with a standardized
enrichment score (NES) of 5.0. Figure 14(b)–14(d) displays
the motifs that demonstrated enrichment in prognostic genes,
along with their corresponding transcription factors. These
results suggest that the 13 hub LRGs are also regulated by a
variety of transcription factors. It is further suggested that
transcription factors are responsible for the changes of these
hub LRGs, which also provides the direction for subsequent
research.

4. Discussion

LUAD is an important malignancy in respiratory disease and
in a complex disease [28]. While LUAD occurrence rates
have decreased in recent years as a result of reduced cigarette
use, it remains a malignancy with very poor survival rates
when diagnosed at later stages [29]. There are also other
factors that can adversely affect LUAD prognoses, such as
late diagnosis, lack of specific biomarkers, and cancer cells’
ability to metastasize [30]. According to recent research
conducted by Ren et al. [9], it has been observed that lym-
phangiogenesis could potentially play a crucial role in the
development of metastasis and unfavorable prognosis among
individuals diagnosed with LUAD. This phenomenon of lym-
phangiogenesis can manifest in pathological conditions such
as inflammation (referred to as inflammation-associated lym-
phangiogenesis) and tissue repair (known as repair-associated
lymphangiogenesis) [31, 32]. Similar to wound lymphangio-
genesis, tumor lymphangiogenesis may occur through similar
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mechanisms [33]. Moreover, Pastushenko et al. [34] found
that lymphangiogenesis was involved in the diagnosis, prog-
nosis, and treatment of melanoma patients.

In our study, we first confirmed 22 LRGs in LUAD with
prognostic significance, including LDHA, LOXL2, LINC00857,
PTGES, F2RL1, MKI67, INHA, MMP14, GPI, POSTN, SOD3,
SIX1, PECAM1, STYK1, ITGA2, CLEC14A, RAMP3, FGD5,
PTPRM, LCP1, TEK, and GDF15. Further, LASSO regression
suggested that F2RL1, LOXL2, MKI67, PTPRM, GPI, POSTN,
INHA, LDHA, LINC00857, ITGA2, PECAM1, SOD3, GDF15,
SIX1, and FGD5 were hub LRGs in the development and pro-
gression of LUAD with prognostic significance. In a previous
study, F2RL1 promoted LUAD-associated angiogenesis by
activating epidermal growth factor receptor signaling [35].

The promotion of LUAD development is facilitated by
LOXL2, which functions as a pivotal gene in both
epithelial–mesenchymal transition and copper metabolism
[36, 37]. MKI67 is a significant factor in multiple molecular
progression of LUAD [38, 39]. GPI has been considered a
significant biomarker in LUAD patients and is related to
immune infiltration [40, 41]. POSTN might be considered
as an important biomarker that accounts for the angiogenic
and immune infiltrationmechanism of LUAD [42, 43]. INHA
has been investigated as a potential biomarker for LUAD
immune infiltration [44]. The independent prognostic value
of LDHA for patients with LUAD was observed [45].
LINC00857 plays a key role in promoting LUAD progression
by multiple molecular mechanisms, including apoptosis
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escape, the cell cycle, and glycolysis [46, 47]. ITGA2 had
prognostic significance in the LUAD patient prognostic
model based on methylation and immune biomarkers [48].
PECAM1 makes up a large portion of endothelial cell inter-
cellular junctions, which could predict the prognosis for
LUAD patients [49]. GDF15 could enhance the invasion abil-
ity of LUAD cells [50]. SIX1 could rescue the anticancer effect
of miR-188 to activate the ERK pathway in LUAD cells [51].
However, PTPRM and FGD5 have not been studied in
LUAD. These results indicated that these 15 hub LRGs might
be involved in immune infiltration in LUAD patients.

Furthermore, we obtained a risk score based on these
15 hub LRGs, which could predict the prognosis of LUAD
patients. There was significant NK cell-activated infiltration

in low-risk LUAD patients. NK cell-based therapeutics show
great potential alone or in combination for the treatment of
LUAD [52]. Combined with our results, these LRGs may
influence the progression and prognosis of LUAD by regulating
the immune infiltration of NK cells. Additionally, disparities in
the expression of immune-related chemokines, immunosup-
pressants, immune-stimulating factors, and immune receptors
were observed between the high- and low-risk groups (Figure 6).
These findings suggest that these differentially expressed genes
may play a crucial role in modulating the extent of NK cell
infiltration in patients with LUAD. Previous studies suggested
that CXCL12/CXCR4 could stimulate NK cells to secrete
MMP1, resulting in the induction of NK cell invasion [53].
LGALS9 functionally impairs NK cells in humans and
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FIGURE 14: Motif analysis for LRGs. (a) These transcription factors were enriched by cumulative recovery curves. The normalized enrichment
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mice [54]. CD48 could enhance NK cell cytotoxicity in
T-cell lymphomas [55]. These results indicated that 15 hub
LRGs might drive these immune regulators to modulate NK
cell cytotoxicity, which will ultimately result in poor prognosis
in LUAD patients.

Furthermore, we also found that the possible molecular
mechanism between the risk groups. Our data indicated that
these 15 hub LRGs induced ectopic expression of multiple
signaling pathway regulators, especially PIK3CA and BRCA1.
Korhonen et al. [56] indicated that the Ang2/Tie/PIK3CA
pathway was required for lymphangiogenesis [56]. Coso
et al. [57] found that VEGFR3 could directly interact with
PIK3CA to promote lymphangiogenesis. PIK3CA could also
enhance the migration and invasion ability of LUAD cells
[58, 59]. Moreover, BRCA1 enhanced cisplatin chemoresis-
tance in LUAD patients [60]. Taken together, these results
indicated that these hub LRGs might also drive the PIK3CA
pathway and BRCA1 axis to accelerate lymphangiogenesis
and carcinogenesis in LUAD patients.

Moreover, we used multiple analysis to confirm upstream
molecular regulation of these LRGs, including miRNA net-
work, motif analysis, and correlation analysis among LRGs
and LUAD-related genes. A gene closely associated with prog-
nosis is often an excellent therapeutic target in itself. Such as
the well-known MCM6, p53, AKT, and ESM1 [23, 62, 63].
With the development of molecular biology, miRNA and
transcription factors have also shown high clinical therapeutic
value [64, 65]. Therefore, we screened a number of LRG-
related miRNAs and transcription factors, which not only
partially clarified the underlying molecular mechanism of
abnormal LRG expression but also provided directions for
future LUAD diagnosis and treatment.

Our study also has some limitations. We used a predictive
model to confirm the prognostic significance of hub LRGs in
LUAD patients, which was verified by multiple databases and
different independent LUAD datasets.We also analyzed the pos-
sible molecular mechanism for the risk score between the high-
and low-risk clusters. However, possible molecular mechanisms
need further experimental verification.

5. Conclusion

In summary, this study presents compelling evidence sup-
porting a newly identified gene signature associated with
lymphangiogenesis, which holds promise for investigating
the prognosis of patients with LUAD. The 15 LRGs identi-
fied in this signature demonstrate remarkable potential as a
prognostic tool for LUAD and offer valuable insights for
further exploration of underlying molecular mechanisms.
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