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Background. Diffuse large B-cell lymphoma (DLBCL) is one of the largest lymphoma subcategories. Usually, 50%–70% of DLBCL
patients can be cured by the standard treatment. But, at least one third have bad prognosis. Based on this situation, the research on
DLBCL therapy strategy is still indispensable.Methods. A prognostic signature was built according to the public data and bioinfor-
matics methods, the stability and reliability was assessed and validated. GSEA was performed to explore the difference in different
groups. Consensus clustering and immune infiltration analysis were conducted comprehensively. Results. In this work, a signature
based on multiple metabolism-associated genes (MTGs) was established, containing 16 MTGs, to predict the prognosis of DLBCL
patients. The accuracy and effectiveness of this signature have been verified by three external validation sets. According to the risk
formula, DLBCL patients were divided into high- and low-risk groups, and the survival rate of the low-risk group was significantly
higher than that of the high-risk group. Furthermore, gene set enrichment analysis (GSEA) demonstrated that beta-alanine
metabolism and regulation of actin cytoskeleton signal pathways were enriched in the low-risk group. The actual survival and
nomogram-predicted survival matched well both in the training cohort and verification cohorts. Conclusion. In general, our
prognostic signature can provide reliable and valuable information for medical workers in predicting the prognosis of DLBCL. A
preprint was made available by the research square in the following link: “https://www.researchsquare.com/article/rs-1468741/v2.”

1. Introduction

As one of the largest lymphoma subcategories, the diffuse large
B-cell lymphoma (DLBCL) with heterogeneous in clinical man-
ifestations and prognosis is a malignant tumor originating from
B lymphocytes [1–3]. Shipp classified two categories’ patients,
critical serine/threonine phosphorylation pathways and apopto-
sis, through supervised learning and some genes responses to B-
cell-receptor signaling [4]. The research of Dr. Staudt reviewed
that DLBCL could be identified two clusters (germinal center B-
cell-like (GCB-1ike) and activated B-cell-like (ABC-like)) and
GCB-like expressed genes characteristic of germinal center B
cells, whereas ABC-like expressed the characteristic of plasma
cells [5, 6]. In the latest framework, ABC cluster is split into
MCD, BN2,N1, andA53 four genetic subtypes, andGCB cluster
is divided into EZB-MYC+, EZB-MYC–, ST2, and BN2 [7–9].
However, there are still 10%–20% ofDLBCL cases that cannot be

classified into these two types mentioned above [6, 10, 11], the
new research showed that the unclassified DLBCL was enriched
in BN2 subtypes [7–9].

In the past 20 years, the results of many phase III clinical
trials have established the regimen of rituximab, cyclophospha-
mide, doxorubicin, vincristine, and prednisone (R-CHOP) as the
standard treatment for DLBCL patients, usually 50%–70% of
which are cured by this treatment method [12–14]. However,
the vast majority of the remaining patients is either intractable to
this treatment, or relapse after remission [10]. Therefore, the
research on DLBCL is absolutely essential.

A couple of prognosis models had been built, based on
immune-related genes (IRGs), epigeneticmodifications, lncRNA,
or miRNA [15–19]. More than two signatures were built
based on IRGs, whereas the prognostic signatures were incon-
sistent, data sources and analytical methods may account for
the inconsistent results, but the complexity of the pathogenic
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mechanismmay be the main reason. It is essential to establish
a prognosis signature from multiangle.

The attention of the researchers has been attracted by the
intricate connection between metabolic disorders and tumor-
igenesis. Metabolic pathways are evolutionarily conserved in
cells. So, metabolic reprograming has been regarded as a core
feature of cancer cells [20–23]. So far, several specific meta-
bolic pathways have been found to be directly involved in the
tumor metastasis and development [24]. The phosphatidyli-
nositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and
mammalian target of rapamycin (mTOR) pathways play key
roles in the proliferation and cell death of DLBCL [25, 26].
PI3Kδ signaling is overactive in many B-cell malignancies and
has been shown to drive proliferation and transport to lym-
phatic tissues [26]. Glutamine metabolism can regulate vari-
ous pathways in brain tumor cells, including macromolecule
synthesis, energy production, epigenetic regulation, and redox
homeostasis [27]. Inhibition of glutamine metabolism in vivo
can interrupt the blood supply for tumors and may the
increase treatment response [28, 29]. Therefore, inhibiting
metabolic pathways or restoring those altered pathways is a
promising therapeutic target strategy [30].

A single metabolic marker is not enough to reveal the
complex metabolic environment [16]. So, it is urgently
needed to find a feature based on multiple metabolism-
associated genes (MTGs) to provide more reliable informa-
tion for medical worker to effectively predict characteristics
of a tumor microenvironment and prognosis of DLBCL
patients. In this research, we combined the clinical informa-
tion and expression profile of MTGs to assess overall survival
(OS) for DLBCL patients. The prognostic model of MTGs
was conducted, and its prognostic value was validated by the
gene expression omnibus (GEO) databases (GSE32918,
GSE10846, and GSE53786). This work could provide valu-
able information for clinicians in the process of DLBCL
patients diagnosis, prognosis, and treatment guidance. A
preprint has previously been published [31].

2. Materials and Methods

2.1. Collection of MTGs and Datasets. MTGs were collected
from the GeneCards online database (https://www.genecards.
org), which provided universal human genetic information
[32, 33]. “Metabolism” was selected as the search keyword
from main menu, the noncoding RNA or uncategorized
gene Ids were deleted, then the left genes with relevance scores
>8 were regarded as MTGs.

We adopted a GEO database (https://www.ncbi.nlm.nih.
gov/geo/) to complete the following tasks: obtain the gene-
expression profile matrixes of DLBCL from GSE11318 (203
tumor samples) and GSE8762 (10 common samples) for dif-
ferential expression analysis (DEA), and the data from
GSE11318 for training, whereas data from GSE32918,
GSE53786, and GSE10846 for validation [34–41]. Log2 trans-
formation and canonicalization were performed on the
expression profile. Packages, affyPLM, and affy were used to
standardize the gene expression matrix [42]. R software 4.1.0
was used in this work. The information of GEO cohorts was
summarized in Table 1 and the clinicopathological character-
istics of each series had been displayed in Supplementary 1.
More detail information was included in GEO database.

All data comes from the public databases; no ethics com-
mittee approval is required.

2.2. Differential Expression Analysis. DEA of those MTGs
mentioned above in GEO cohorts was performed using the
limma and gplots package [43]. Identifying statistical signifi-
cance of differential expression genes (DEGs) was consid-
ered, while, the genes that the statistical significance reaches
adjusted p-value (adj. p) <0.05 and |fold change (FC)| >0.5
were determined as the candidate DEG. At the same time, we
also downloaded the DEGs ID of DLBCL patients from the
gene expression profiling interactive analysis (GEPIA: http://
gepia.cancer-pku.cn/index.html) [39]. Finally, the union of
differentially expressed (DE)-MTGs obtained in the above
two ways were taken for subsequent analysis.

2.3. Constructing a 16-MTGs Prognostic Signature. Univariate
Cox proportional hazard regression analysis was performed for
each DE-MTG to screen genes that were significantly related to
the overall survival (OS) in GSE32918 and GSE11318, and then
the common survival-related genes in the two data sets were
taken. The least absolute shrinkage and selection operator
(LASSO) Cox regression analysis was performed for those
screened genes in GSE11318, then a multivariable prognostic
signature with MTGs was founded by multivariate Cox
proportional hazards regression analysis. We estimated the
risk score of those genes with nonzero coefficients and
generated a prognostic risk score for each patient according
to the following formula: risk score= expression level of
gene1× j1+ expression level of gene2× j2+…+ expression
level of genex× jx, where j represents the coefficient. The
GEO DLBCL patients from GSE11318 were divided into
high- and low-risk groups with the median risk score as the
cutoff value. The same formula was used to calculate the risk

TABLE 1: The detailed information of GEO cohorts.

GEO ID The number of samples used Containing survival data or not Attribute Role

GSE8762 10 N Normal tissue DEA
GSE11318 198 Y DLBCL DEA, training model
GSE32918 189 Y DLBCL Validation
GSE53786 119 Y DLBCL Validation
GSE10846 395 Y DLBCL Validation

DEA: differential expression analysis
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value of the validation sets. Because the data comes from
different sequencing platforms and the standardization
methods are different, respective median values were taken
as cutoff values for the training and validation datasets.

Univariate and multivariate Cox proportional hazards
regression analyses were performed to test whether the prog-
nostic model based on MTGs was an independent prognostic
factor. The Kaplan–Meier survival curve (K–M curve) was
constructed, and the log-rank test was performed to evaluate
the survival differences between high- and low-risk groups.
Receiver operating characteristic (ROC) curve analysis was
used to evaluate the sensitivity and specificity of the prognos-
tic model. Calibration plots were applied to detect the differ-
entiation between the actual and predicted OS probability.
Decision curve analysis (DCA) was used to assess the utility
of metabolism-associated prognostic signature and compare
with the immune model established by Feng et al. [16].

2.4. Functional Enrichment Analysis and the Identification of
Potential Drugs. Gene functional analysis is a considerable step
to transform the molecular discovery of high-throughput meth-
ods into the biological significance. GSEA evaluates the expres-
sion profile of the whole genome at the level of gene sets, instead
of focusing on only a few genes that are mostly changed [44]. To
identify the relevant pathways and molecular mechanisms,
GSEA was conducted between the gene expression data of
high- and low-risk groups in the GSE11318 cohort. After
1,000 permutations, gene sets with p<0:05 and false discovery
rate (FDR) less than 0.25 were considered significantly enriched.
The R package “ClusterProfiler” and “org.Hs.eg.db” were used
for statistical analysis and visualizing the functional profiles of
the DE-MTGs, including gene ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis. Adj. p-value
<0.05 was taken as the critical value of significance. GDSC
(https://www.cancerrxgene.org/) was used to screen the potential
drugs for DLBCL patients [45].

2.5. Cluster and PCA Analysis. The expression data of MTGs
from GSE11318 were grouped by the “ConsensusCluster-
Plus” package, and principal component analysis (PCA)
was conducted to verify the cluster results [46]. PCA is a
multivariate data analysis tool that can be used to reorganize
the variables of a large multivariate data set, and reconstruct
the first few variables accounting for most of the data differ-
ences [47]. Lastly, we used “survival” package to estimate the
survival difference of subgroups.

2.6. Correlation Analysis between MTGs and Immune-
Related Genes (IRGs). IRGs were retrieved from the analysis
Portal (ImmPort) (https://immport.niaid.nih.gov) and immu-
nology database [48]. We conducted a correlation analysis
between MTGs and IRGs using the “Hmisc” package. Genes,
satisfying the correlation coefficient R> 3 and p<0:05, were
selected for this analysis. Finally, we visualized the values of R
using pandas, seaborn, and matplotlib in python.

2.7. Immune Infiltration Analysis.We used CIBERSORT from
Sangerbox (http://sangerbox.com/home.html) to detect the
abundance of tumor-infiltrating immune cells. Pearson’s
correlation coefficient and the estimated p value were utilized

to evaluate the relationship between IRGs and immune
infiltrating cells.

3. Results

3.1. Identification of DE-MTGs. Samples with survival time less
than 50 days were kicked out to make model more reliable and
reduce errors. Total of, 198 DLBCL patients with complete and
qualified survival statistics fromGSE11318 were used as training
group. Total of, 1,937 MTGs were screened from the Genecards
database. Total of, 750 MTGs differentially expressed in GEO
cohort were shown in heatmap figure, and 749 of which were
upregulated and 1 was downregulated (Supplementary 2). Total
of, 982 DE-MTGs were obtained from GEPIA. The union of
DE-MTGs (contain GEO and GEPIA cohorts) are shown by the
Venn diagram. We conducted this research following the
flowchart (Figure 1).

3.2. Construction of the 16-MTGs Prognostic Signature. There
were 616 common genes among GEPIA, MTG, and
differential expression MTG. Univariate Cox proportional
hazard regression filtered out 28 MTGs significantly relating
to OS from the 616 DE-MTGs (Figure 2). LASSO Cox
regression analysis was performed to construct the
prognostic signature and 16 MTGs were obtained. The
LASSO coefficient profiles are shown in Figure 3(a). When
16 MTGs (ABCB7, CBX5, CHDH, FBXW7, GYG1, IFIH1,
MPI, MYC, NOTCH3, POLG, PPAT, PRPS2, RARRES2,
RB1, TREM2, and UMPS) were included, the prognostic
signature performed best (Figure 3(b)). The prognostic risk
score of each patient was calculated based on an mRNA
expression level of these 16 MTGs, and patients were
divided into high- and low-risk groups, according to the
median risk score as the cutoff value (Figure 3(c)), and as
the risk score increased, so did the number of patient deaths
(Figure 3(d)). The detailed information of regression
coefficients and the risk formula were shown successively in
Table 2 and as follows.

The applicability of the prognostic model was tested via
integrating the results of K–M curve, ROC curve, and decision
curve. The time-dependent ROC curves of the prognostic genes
signature in GSE11318 training cohort according to single gene
was shown in Figure 4(a). The results of K–M analysis had
revealed that the high expression of CHDH, GYG1, MPI,
POLG, and PPAT increased the risk of death, while IFIH1,
NOTCH3, RARRES2, and TREM2 have diametrically opposite
effects (Supplementary 2). TheK–Mcurve also suggested that the
survival probability of the low-risk group was higher than that of
the high-risk group (p<0:05; Figure 4(d)). The actual survival
and nomogram-predicted survivalmatcheswell, as shown by the
calibration curves (Figure 4(b)) and decision curves. The prog-
nostic signature established in this study has a higher net benefit
than the default strategies and outperforms the immune gene-
related model established by Feng et al. [16] across the relevant
threshold range (Figure 4(c)).

3.3. Verification of the 16-MTGs Prognostic Signature in GEO
Cohort. The GSE32918, GSE10846, and GSE53786 cohorts
were used to verify the prognostic value of this model. The
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verification results were the same as expected, the low-risk
group has a higher probability of survival and longer survival
time than the high-risk group, the high-prognostic value of
the signature was also observed as ROC curves showed (area
under curve, AUC= 0.792 at 3 years and AUC= 0.737 at 5
years in GSE32918; AUC= 0.639 at 5 years and AUC= 0.679
at 10 years in GSE10846; AUC= 0.639 at 5 years and AUC=
0.657 at 10 years in GSE53786) and the actual survival and

nomogram-predicted survival in which matched well. AUC
was defined as the area under the ROC curve enclosed by the
axes, which is used to evaluate the accuracy of the model. In
general, 16-MTGs prognostic signature is valuable for the
prognostic prediction of DLBCL patients. Similarly,
through DCA, for the three validation sets, the 16-MTGs
prognostic signature is better than the prognostic model of
IRGs previously reported (Supplementary 2).

3.4. Exploration of Related Signal Pathways and Potential
Drugs. We detected that beta-alanine metabolism and regu-
lation of actin cytoskeleton signal pathway enriched in the
low-risk group from the GEO cohort by GSEA (Supplemen-
tary 2). At the same time, the GO function enrichment and
KEGG pathway enrichment analysis were also performed.
The results revealed that 29 GO terms and 7 KEGG pathways
were significantly enriched. The GO function enrichment
showed that the MTGs were mainly associated with coen-
zyme binding, lyase activity, transferase activity, transferring
alkyl or aryl (other than methyl) groups, modified amino
acid binding, electron transfer activity, iron–sulfur cluster
binding, metal cluster binding, flavin adenine dinucleotide
binding, oxidoreductase activity, acting on the CH–CH
group of donors, NAD or NADP as acceptor, glutathione
transferase activity, nuclear receptor activity, transcription
factor activity, direct ligand regulated sequence-specific
DNA binding, promoter-specific chromatin binding, gluta-
thione binding, and oligopeptide binding in molecular func-
tion (Figure 5(a)). The result of KEGG pathways enrichment
analysis demonstrated that MTGs were mainly enriched in
pathways of biosynthesis of cofactors, drug metabolism-
other enzymes, biosynthesis of amino acids, valine, leucine,
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and isoleucine degradation, cysteine and methionine metab-
olism, N-Glycan biosynthesis, and glutathione metabolism
(Figure 5(b)).

There were 162 compounds found for DLBCL based on
differentially expressed genes between healthy and DLBCL
patients. Among 398DEG, between high- and low-level patients,
were used to searching potential drugs, only 6 were identified as
target genes and 17 potential drugs were found. DNA replica-
tion, mitosis, EGFR signaling, apoptosis regulation, chromatin
histone acetylation, ABL signaling, ERKMAPK signaling, PI3K/
MTOR signaling, genome integrity, kinases, protein stability and
degradation, RTK signaling, cell cycle, and WNT signaling may
be the major target pathways. The detailed information of target
genes, target pathways, and genome feature of patients were
summarized in Supplementary 1 and Supplementary 2.

3.5. Identification of Two Clusters for DLBCL Patients. All
MTGs from GSE11318 were used for consensus clustering
analysis. The result illustrated that decreasing delta data from
2 to 9 of k, k= 2 was selected as an optimal cluster based on

consensus CDF, and two different subgroups were identified
(Figure 6(a)–6(d)). To validate the result of the cluster, we
conducted PCA analysis and found that the expression of
prognosis-related MTGs showed obvious group segregation
(Figure 6(e)). Furthermore, the K–M survival analysis of
cluster samples illustrated that the OS of Group 2 was sig-
nificantly lower than that of Group 1 (Figure 6(f)).

3.6. Correlation between MTGs and Survival-Related Immune
Genes at Transcription Levels in DLBCL Patients.To better pres-
ent the relationship between MTGs from GSE11318 and
survival-related immune genes, correlation analysis was per-
formed. As the correlation heatmap was shown in Figure 7,
most MTGs were correlated with survival-related immune
genes, especially CBX5, MPI, and PPAT. Besides, CBX5 and
MPI were positively correlated with these genes mostly, while
PPAT is negatively correlated with them. On the contrary,
CHDH and POLG have no significant correlation with
survival-related immune genes (Supplementary 2).
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3.7. Immune Infiltration. To explore the differences between
high- and low-risk groups on the cellular level and the
genome level, 24 types of infiltrating immune cell scores
were compared, and the same as immune gene-sets. The
results showed big differences between high- and low-risk
groups in terms of immune cell infiltration and immune
gene-set activity. We found that the expression levels of naïve
B cells, memory B cells, plasma cells, monocytes, M0 macro-
phages, M1 macrophages, M2 macrophages, resting den-
dritic cells, activated dendritic cells, resting mast cells, and
activated mast cells are higher in the high-risk group. While
various types of T cells, containing CD8 T cells, naïve CD4 T
cells, resting memory CD4 T cells, activated memory CD4 T
cells, and follicular helper T cells are higher in the low-risk
group (Figure 7).

4. Discussion

The altered energy metabolism is one of the most important
signs of cancer development. The famous Warburg effect
exists inmajority of cancers [49–51].More andmore evidence
proved that the chaotic energy metabolism played a signifi-
cant role in occurrence and development of DLBCL. The high
expression of lactate dehydrogenase (LDH) is a dangerous
signal for patients [52–54]. The inhibitor of monocarboxylate
transporter 1 (MCT1) suppressed the growth of DLBCL sig-
nificantly when combining with mitochondrial respiratory
Complex I inhibitor [55, 56]. The inhibition of mitochondrial
oxidative phosphorylation by OPB-111077 or metformin
could improve the clinical outcome of DLBCL [57, 58].

Many previous studies have shown that multiple MTGs
can be used as a diagnostic tool and provide medical workers
to predict values for many types of cancer, such as prostate

cancer, lung adenocarcinoma, low-grade glioma, oral squa-
mous cell carcinoma, and so on [30, 59, 60]. In this work, a
prognosis signature was established using 16-MTGs. Further-
more, unsupervised cluster analysis was performed, that result
demonstrated that DLBCL patients could be identified two
clusters and the overall survival rates of the two subgroups
were different. The new classification subtype is not exactly
the same as the previous one, but it provides energy-related
molecular characteristics. This result can deepen our under-
standing of the changes in energy metabolism during the
pathogenesis of DLBCL. An IRG signature was conducted
for DLBCL in the previous research, and we compared these
two models by DCA and found that the metabolic-related
prognostic model we established, perform better.

All of these genes were involved in the regulation of
cellular metabolism in a direct or indirect manner. Some
are directly involved in the TCA cycle (PPAT), some in lipid
metabolism (CBX5, FBXW7, and TREM2), some in glucose
metabolism (RB1), some in nucleotide metabolism (PRPS2),
and some in regulating mitochondrial function (ABCB7 and
POLG). The expression of ABCB7 was critical in regulating
iron metabolism and maintaining mitochondrial function
[61, 62]. One of the main functions of CBX5 is to participate
in gene silencing. The loss of CBX5 confers EGFR inhibitor
resistance in lung cancer cells [63]. CBX5 plays different
roles in different cancers, such as increased CBX5 transcrip-
tion causes carcinogenesis in gliomas [64], but its expression
product HP1α in breast cancer can inhibit the metastasis of
cancer cells [65]. Cholesterol dehydrogenase (CHDH) regu-
lates lipid metabolism by catalyzing cholesterol oxidation in
an oxygen-independent manner [66]. FBXW7 determines
cell fate by modulating lipid metabolism and glutamine
metabolism [67, 68]. Glycogenin-1 (GYG1) is involved in

TABLE 2: The unadjusted hazard ratios are expressed as 95% CIs.

Coef. Exp (coef.) Se (coef.) z Pr (>|z|)

ABCB7 −3.31521 0.036327 2.458541 −1.348 0.177516
CBX5 −6.41051 0.001644 1.922207 −3.335 0.000853∗∗∗

CHDH 1.191047 3.290523 0.543121 2.193 0.02831∗

FBXW7 0.862844 2.369891 1.727097 0.5 0.617362
GYG1 1.399984 4.055137 1.915406 0.731 0.464836
IFIH1 −1.07609 0.340927 0.919523 −1.17 0.241893
MPI 1.196945 3.30999 2.071136 0.578 0.56332
MYC 0.205369 1.227978 1.390967 0.148 0.882623
NOTCH3 −1.22966 0.292392 1.471355 −0.836 0.403305
POLG 2.473132 11.85953 1.51988 1.627 0.103697
PPAT 2.753012 15.68982 2.139887 1.287 0.198261
PRPS2 −3.22631 0.039704 1.775708 −1.817 0.06923
RARRES2 −1.56748 0.20857 0.780879 −2.007 0.044715∗

RB1 0.837596 2.310804 0.966283 0.867 0.386039
TREM2 −0.39228 0.675513 0.306536 −1.28 0.200641
UMPS 1.14927 3.155889 1.651583 0.696 0.486517

Note. ∗p <0:05, ∗∗p <0:01, and ∗∗∗p <0:001.) Risk score= (expression of ABCB7× 0.0363)+ (expression of CBX5× 0.0016)+ (expression of CHDH×
3.2905)+ (expression of FBXW7× 2.3699)+ (expression of GYG1× 4.0551)+ (expression of IFIH1× 0.3409)+ (expression of MPI× 3.3100)+ (expression
of MYC× 1.2280)+ (expression of NOTCH3× 0.2924)+ (expression of POLG× 11.8595)+ (expression of PPAT× 15.6898)+ (expression of PRPS2×
0.0397)+ (expression of RARRES2× 0.2086)+ (expression of RB1× 2.3108)+ (expression of TREM2× 0.6755)+ (expression of UMPS× 3.1559).
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glycogen synthesis [69]. Mannose phosphoisomerase (MPI)
is the first enzyme that leads to the production of GDP-
Mannose [70]. POLG is critical to the mitochondrial func-
tion and mitophagy in astrocytes [71, 72]. Phosphoribosyl-
pyrophosphate synthetase 2 (PRPS2) promotes nucleotide
biosynthesis [73]. The function of RAPPES2 in regulating
lipid metabolism has been investigated in breast cancer
[74]. The loss of RB1 promotes a glycolytic phenotype
[75]. TREM2 affects the metabolism of cholesterol, myelin,
and phospholipids [76–79]. MYC is usually overexpressed in
almost all cancers, and its ability to alter metabolism had
been well-established. MYC could induce aberrant choline
metabolism by transcriptionally activating the key enzyme
phosphate cytidylyltransferase 1 choline-α (PCYT1A) [80].
Minoacyl-tRNA_biosynthesis pathway was significantly
influenced by NOTCH3 [81].

Through survival analysis, we found the prognosis of
DLBCL significantly correlated with nine MTGs, containing
CHDH, GYG1, MPI, POLG, PPAT, IFIH1, NOTCH3,
RARRES2, and TREM2. Through literature review, we found
these genes are all related to the occurrence and development
of cancers or tumors. The high expression of IFIH1,
NOTCH3, RARRES2, and TREM2 shows satisfactory progno-
sis for DLBCL. While the high expression of CHDH, GYG1,
MPI, POLG, and PPAT is negatively correlated with the

prognosis of DLBCL. Consistent with our results, the high
expression of NOTCH3 is positively correlated with the
good prognosis of metastatic medullary thyroid cancer [82].
As a tumor suppressor gene, RARRES2 increases its expres-
sion in breast cancer and inhibits tumor growth by recruiting
NK and T cells [83]. Similarly, our results also showed that
high expression of RARRES2 was beneficial to the survival of
DLBCL. However, some of our results were not consistent
with the previous. The high expression of CHDH and
POLG has a poor prognosis in DLBCL, while, there are anti-
thetical outcomes for the research of estrogen receptor (ER)—
positive breast cancer and gastric cancer [84, 85]. Overexpres-
sion of NOTCH3 is associated with poor prognosis in human
ovarian epithelial cancer [86]. Moreover, the high expression
of TREM2 is related to the poor prognosis of gastric cancer
[86]. In a word, our research results were basically consistent
with the previous research results and proved that the
screened genes are valuable.

GEAs were conducted to gain insight into the molecular
mechanism of the occurrence and development of DLBCL.
Beta-alanine metabolism and regulation of actin cytoskele-
ton signaling pathway were enriched in the low-risk DLBCL
group by GSEA. The actin cytoskeleton is a highly dynamic
network composed of actin polymers and a large number of
related proteins. The remodeling and function of the actin
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cytoskeleton are regulated by signal pathways [87]. Resibu-
fogenin, as a traditional Chinese medicine for the treatment
of a variety of malignant tumors, inhibits the growth of
ovarian clear cell carcinoma (OCCC) by downregulating
the actin cytoskeleton signaling pathway [88]. Studies have
found that the actin cytoskeleton signaling pathway is signif-
icantly affected in patients with cervical cancer [89]. Previous
studies have shown that the stromal supply of alanine sup-
ports the metabolism, growth, and treatment resistance of
pancreatic ductal adenocarcinoma [90, 91].

KEGG pathways enrichment analysis indicated that these
pathways contained biosynthesis of amino acids, valine, leu-
cine, and isoleucine degradation, cysteine, and methionine
metabolism. Almost all enriched pathways have been con-
firmed to be closely related to cancer. Glutathione metabolism
is essential for normal cell function [71, 72, 92–96]. Many
cancer types, including breast, liver, colon, and gastric cancers,
have increased glutathione content in cancer stem cells and
counteract the activity of antineoplastic agents through the
detoxification ability of glutathione [97, 98]. In the study of
esophageal cancer, it has been confirmed that inhibiting gluta-
thione metabolism can slow down the progression of cancer
syndrome [99]. Oncogene-driven cell growth activation is
linked to the increased amino acid uptake and biosynthesis
[100]. When cysteine synthesis is upregulated in cancer, the
upregulation of catabolic pathways and the expression of cys-
teine transporters are often observed [100]. Tumor cells enthu-
siastically consume methionine by expressing high levels of the

methionine transporter SLC43A2, and then T cells cannot
obtain methionine, resulting in impaired T cell immunity
[101]. The change of N-glycan biosynthesis can interfere with
cell proliferation, differentiation contributes to tumor develop-
ment and enhance the metastasis and spread of primary
tumors [102].

Considering the vital role of immunity, we conducted the
correlation analysis between MTGs and IRGs and immune
infiltration analysis. Interestingly, among the 16 genes in this
prognostic signature, the genes that had the weaker impact on
the prognosis of DLBCL, such as CBX5, MPI, and PPAT, was
more closely related to the immune genes. However, their inner
connection needs further research. At the same time, a study
has found that there is a significant correlation between the
expression of CBX and the infiltration of immune cells (B cells,
CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and
dendritic cells) [103]. These immune cells are highly consistent
with those extracted from our immune infiltration analysis.
The expression level of follicular helper T cells was higher in
the low-risk DLBCL group, indicating that cancer patients with
a high proportion of helper T cells have a higher survival rate,
which has been verified in acute myeloid leukemia and mela-
noma [104, 105]. The presence of M2 macrophages was con-
ducive to the growth and spread of tumors, which was
indirectly verified by our result that M2 macrophages are
highly expressed in the high-risk DLBCL group.

Although our results have clinical prognostic signifi-
cance, their limitations also exist. First, compared with
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widely studied cancer types, the sample size of DLBCL is not
big enough. Second, the development of 16-MTGs prognos-
tic signature depended on the RNA-seq series, and the pro-
cedures of sample processing, RNA extraction, reverse
transcription, and detection needs to be standardized and
normalized. Third, we have verified the prognostic value of
this signature through three external data sets, but in vivo or
in vitro experimental verification were not conducted.

5. Conclusion

In summary, 6-MTGs prognostic signature was established
and verified, the 3-, 5-, and 10-year survival rate of DLBCL
patients can be well predicted. This signature provides
potential clinical application value for the precise treatment
strategy of DLBCL.
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