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Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is
activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls
gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs
(miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression.
This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.

1. Introduction

Solid tumor growth leads to hypoxia in poorly vascularized
regions due to limited nutrient andO2 supply [1]. Cancer cells
must adapt to hypoxia to survive, which requires hypoxia-
inducible factor 1 alpha (HIF-1α). HIF-1α regulates crucial
processes, such as drug resistance, cell proliferation, evasion
of tumor growth suppression, apoptosis, unlimited replica-
tion, induction of angiogenesis, invasiveness, and metastasis
[2]. Since the discovery of microRNAs (miRNAs), their
expression has been implicated in the etiology of several dis-
eases, including cancer. However, the regulation of miRNAs
expression, which involves noncoding RNAs of approxi-
mately 22 nucleotides, is not yet fully understood [3, 4]. The
purpose of this review is to briefly describe the effect of hyp-
oxia on miRNAs expression in cancer progression pathways.

1.1. Regulation of HIF-1α under Hypoxia. HIF-1 is a tran-
scription factor composed of an O2-regulated α subunit and
a stable β subunit. In mammals, there are three isoforms of
HIF-α: HIF-1α and HIF-2α (also known as EPAS1) are the

most structurally similar and well characterized. Meanwhile,
HIF-3α (or IPAS) has multiple splice variants, some of which
inhibit HIF-1α and HIF-2α activity in a dominant-negative
manner [5]. HIF-1α and HIF-2α are frequently overex-
pressed in cancer tissues, resulting in the progression of
tumors, resistance to chemotherapy and radiation, and a
poor prognosis. However, the role of HIF-3α in tumor types
is not yet fully understood. Studies suggest that HIF-3α may
suppress the expression of genes typically induced by HIF-1α
and HIF-2α [6]. Although HIF-2α is stabilized at higher O2

pressure than HIF-1α in vitro, it is not detected under nor-
moxic conditions. However, HIF-2α regulates intracellular
hypoxic responses in various highly vascularized organs
such as the brain, heart, lung, kidney, liver, pancreas, and
intestine [7].

HIF-1α and HIF-2α have distinct binding sites, targets,
and optimal O2 concentrations. HIF-2α is responsible for the
chronic hypoxic response, while HIF-1α activates genes that
regulate metabolic reprograming, vascularization, apoptosis,
and nitric oxide production. HIF-2α controls oxidative
stress, RNA transport, cell cycle progression, and vascular
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remodeling. Both HIF-1α and HIF-2α have been associated
with a poor prognosis. This is demonstrated by their correla-
tion with poor overall survival, disease-free survival, disease-
specific survival, metastasis-free survival, and progression-free
survival [8, 9]. Tissue hypoxia is a pathological feature of sev-
eral human diseases, including myocardial infarction, stroke,
and kidney disease. The expression of HIF-3α is often altered in
these diseases, which may contribute to their development.
HIF-3α mRNA expression increases as an early response to
acute hypoxia and acute myocardial ischemia in humans and
experimental animal models [6]. In addition, the transcrip-
tional activation of the RhoC-ROCK1 signaling pathway by
HIF-3α promotes invasion and metastasis of pancreatic cancer
cells [10].

Under normoxic conditions, prolyl hydroxylases 1-3
modify two proline residues (Pro402 and Pro564) located
in the O2-dependent degradation domain (ODD) of HIF-
1α through hydroxylation, making the α-subunit susceptible
to proteasomal degradation [11, 12]. The activity of PHD
enzymes is highly sensitive to the availability of O2, with a
reported KmO2 of ~230 µM, similar to the atmospheric pO2

(220 µM). However, even a small reduction in the cellular O2

concentration can limit the ability of these enzymes to post-
translational degradation of HIF-1α [9]. The intracellular
distribution of PHD1 did not affect HIF-1α activity. How-
ever, a PHD2 mutant lacking the region for nuclear export
had a significantly reduced effect on HIF-1α activity com-
pared to wild-type PHD2. Regulating the intracellular distri-
bution of PHD2 is an effective pathway for controlling the
hypoxic response [13, 14]. The PHD1 and PHD3 also con-
tribute to the regulation of the system. Under certain condi-
tions, PHD3 may contribute as much or more than PHD2,
while it was significantly induced by hypoxia in several cell
types [15].

The hydroxylation of HIF-1α enables it to bind to the von
Hippel–Lindau protein (pVHL), a component of the E3-ubi-
quitin ligase complex. The complex is responsible for ubiqui-
tinating HIF-1α, directing it to be degraded by the proteasome,
reducing its half-life to 5min [16, 17]. The HIF-1α subunit
contains two transactivation domains (TAD-N and TAD-C).
These domains recruit coactivators, including the adenovirus
E1A-binding protein p300 (p300) and cyclic adenosine mono-
phosphate (cAMP) response element-binding protein (CREB)-
binding protein (CBP). Furthermore, TAD-C interactions by
proline hydroxylation have been demonstrated to inhibit
HIF-1α gene expression, preventing normal transcription and
translation [18]. Another mechanism for regulating HIF-1α
during normal O2 conditions involves the hydroxylation of
the β-carbon of the alanine residue (Ala851) present in the
TAD-C domain by HIF-1α-inhibitory factor (FIH-1). This
process results in the prevention of its interaction with p300/
CBP [19]. The hydroxylation is carried out by PHD and FIH-1
dioxygenases, which utilize Fe2+, 2-oxoglutarate, andmolecular
O2 as cosubstrates, producing succinate and CO2 as coproducts
[20, 21]. Additionally, the insertion of the second O2 atom into
HIF-1α oxidized amino acids (a.a.) allows for alterations in
regardless PHD and FIH-1 activity in response to varying O2

levels [22].

When O2 concentrations decrease to 1% or less, the
hydroxylation of HIF-1α declines, resulting in increased sta-
bility of the protein (with a half-life of 30min) and leading to
its accumulation in the cytoplasm [23]. HIF-1α contains two
nuclear localization sequences (NLS) in the N-terminal (17-
33 a.a.) and C-terminal (718-721 a.a.) regions [24]. These
NLS sequences are responsible for the transportation of
HIF-1α to the cell nucleus via interaction with the α/β recep-
tors of importins α1, α3, α5, and α7 [25]. Upon entering the
cell nucleus, HIF-1α and HIF-1β combine to form a hetero-
dimer, which binds to hypoxia response elements (HRE, 5′-
TACGTGCT-3′) present in multiple genes related to tumor
progression [26]. HIF-1α/HIF-1β dimer bound HRE are pri-
marily located in promoter neighboring regions, whereas the
binding of HIF-2α occurs more frequently than HIF-1α in
distal regions. The results of HIF-1α-mediated transcriptome
reprograming depend on the efficiency of stimulating gene
expression and the HRE selectivity for HIF isoforms. In
addition, genes induced during acute hypoxia remained
active during prolonged exposure, even though these genes
promoter regions were enriched with HIF-1αmotifs. In con-
trast, genes that were only affected during more prolonged
hypoxia had more HIF-2α motifs, suggesting that these two
HIFs do not compete for the same HRE [9].

Hypoxia is a common feature of the tumor microenviron-
ment in solid tumors, which often leads to therapeutic failure.
The stiffness of the extracellular matrix (ECM), pH gradients,
and chemical balance changes that contribute to multiple
cancer hallmarks are closely regulated by intratumoral O2

tension through its controlled by HIF-1α. Regulation of sig-
naling pathways and transcription factors, including c-MYC,
E2F, NF-kB, Oct-C, AP2, PPARγ, SNAI2, TWIST, GATA1,
MAPK/ERK, STAT3, PI3K/Akt,Wnt, p53, and glycolysis, can
influence these changes [4, 9, 27, 28]. The HIFs isoforms serve
different physiological functions during hypoxia. HIF-1α is
responsible for promoting initial adaptation, while HIF-2α
and HIF-3α adjust these processes accordingly to the cells-
metabolic state and the efficiency of O2 supply restoration.
During the process of reoxygenation, the HIFs are responsible
for inducing the expression of PHDs and FIH-1, preparing the
cells for increases in O2 levels and with the rapid degradation
of α subunit [9]. The transcription factor HIF-1α plays a
dominant role in regulating gene transcription under hypoxic
conditions. Thus, the posttranscriptional regulation mediated
by miRNAs is another important part of adaptive response
[9]. Figure 1 displays the miRNAs expression under hypoxia
and their potential targets.

1.2. Regulation of miRNAs Expression by Hypoxia. Changes
in miRNAs levels during early hypoxia may contribute to
HIF-1α accumulation and the maintenance of steady-state
levels of HIF-2α and HIF-3α. During prolonged hypoxia,
miRNAs expression changes to help maintain low HIF-1α
function and elevated HIF-2α and HIF-3α levels. Therefore,
miRNAs can regulate the hypoxic HIFs switch in human
endothelial cells. Three miRNAs (miR20b, miR199a, and
miR424) have been shown to affect HIF-1α expression. In
breast cancer MCF7 cells, miR20b targets HIF-1α to suppress
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FIGURE 1: Regulation of miRNAs expression in hypoxia. (a) Illustrates the structure of the HIF-1α protein domain and regulation by miRNAs.
(b) Indicates the down- and upregulation of miRNAs in hypoxia. The regulatory feedback pathways are indicated in parentheses. Prolyl
hydroxylases (PHD); O2-dependent degradation domain (ODD); von Hippel–Lindau protein (pVHL); transactivation domains N and C
(TAD-N and TAD-C); HIF-1α-inhibitory factor (FIH-1); nuclear localization sequences (NLS). Upon entering the cell nucleus, HIF-1α and
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its expression. Meanwhile, the downregulation of miR199a
represses HIF-1α in cardiomyocytes. Additionally, miR424 reg-
ulates HIF-1α isoforms in endothelial cells by targeting cullin-2.
Additionally, four miRNAs affect HIF-1α expression regardless
of hypoxia. Specifically, miR107 reduces the expression of HIF-
1β induced by p53; the miR17-92 cluster suppresses the expres-
sion of HIF-1α induced by c-MYC, miR519c suppresses the
expression of HIF-1α suppressed by hepatocyte growth factor,
and miR31, which decreases the expression of the HIF-1α regu-
latory FIH-1 [29, 30]. Conversely, inhibiting miR-21 and miR-
210 resulted in a significant reduction ofHIF-1α gene expression.
These findings support the hypothesis of a hypoxia-triggered
feedback loop involving the expression of HIF-1α and several
miRNAs [31]. Tables 1 and 2 show the effects of hypoxia on
the expression of different miRNAs. These miRNAs may be
regulated by HIF-1α through a signaling pathway that contri-
butes to cancer progression [29, 30]

1.3. The Involvement of Hypoxia in the Biogenesis of miRNAs.
During the biogenesis and maturation of miRNAs, they are
synthesized by RNA polymerase II. Hairpin-forming regions
are formed by pairing complementary sequences during tran-
scription, generating a double-stranded pri-miRNA that can
contain thousands of ribonucleotides. The primary miRNAs
(pri-miRNAs) have a hood structure at the 5′UTR end and are
polyadenylated at the 3′UTR end. The stem-bubble secondary
structure of pri-miRNAs is recognized and processed by the
enzyme Drosha-RNAsa III/DiGeorge syndrome critical region
eight protein (DGCR8) to generate a 60–70 nucleotide hairpin,
known as pre-miRNA [110, 111]. The pre-miRNA is then trans-
ported from the nucleus to the cytoplasm with the participation
of exportin five proteins in a Ran-GTP-dependent process. After
entering the cytoplasm, Dicer, a type III ribonuclease enzyme,
processes the pre-miRNA. Together with the double-stranded
RNA-binding protein (TRBP), Dicer cuts outside the hairpin
and generates an imperfect double-stranded RNA called
miRNA/miRNA. Subsequently, the TRBP protein recruits Argo-
naute endonuclease 2 (Ago2) to the miRNA/miRNA-Dicer
complex, forming the RNA-induced silencing complex (RISC)
[110, 111]. The guide strand (antisense strand) is transported by
Ago2 to the 3′UTR region of the target mRNA, where it binds
specifically by sequence complementarity. The passenger strand
(sense strand of the miRNA duplex) is released and degraded by
Ago2. When the complementarity between the miRNA and the
transcript sequence is almost 100%, deadenylation proteins are
recruited to initiate mRNA degradation. However, if the com-
plementarity is insufficient, the translation of the transcript is
inhibited. In both cases, miRNA-associated mRNAs can be
sequestered as RNA-protein complexes in P-bodies, where the
transcripts can be degraded or stored [110–112].

Hypoxia regulates the Drosha and Dicer complex, which
controls the maturation and expression of miRNAs [113–115].
Exposure to hypoxia (1% O2) reduces the mRNA and protein

expression of Drosha and Dicer in ovarian cancer A2780 and
OVCAR3 cells, breast cancerMCF7 cells, and rat lung fibroblasts
[110]. Similarly, Dicer mRNA and protein expression decrease
in human umbilical cord endothelial HUVEC cells exposed to
hypoxia at 1% O2 [111]. In contrast, under hypoxia (0.1% O2),
breast cancer MCF-7 cells exhibit a reduction in Dicer expres-
sion [112]. Hypoxia is involved inmiRNAs biogenesis, andAgo2
protein is a critical component of RISC. Hydroxylation of Ago2
is a crucial step for its assembly to heat shock protein 90 in RISC.
Previous studies have shown that hypoxia increases the level
of type 1 collagen prolyl-4-hydroxylase, which can lead to
prolyl-hydroxylation and accumulation of Ago2. This increases
the endonuclease activity of Ago2 through either the HIF-1α-
independent or HIF-1α-dependent pathways [27]. Six miRNAs
(miR-210-3p, miR-520d-3p, miR-98-3p, miR-4745-5p, miR-
139-5p, miR-6789-5p) were identified as potentially HIF-1α-
dependent. Among these, only miR-210-3p was induced in
both the global and RISC fractions. The induction of miR-98-
3p and miR-139-5p was observed only in the RISC fraction. In
the global analysis of hypoxic miRNAs distribution, the induc-
tion ofmiR-503-3p,miR-503-5p, andmiR-424-3pwas observed.
The RISC contents suggest changes in several miRNAs, includ-
ing miR-424-3p, miR-495-3p, miR-7-5p, miR-450b-5p, miR-
543, miR-503-3p, andmiR-503-5p. It is possible that other tran-
scription factors are replacing HIF-2α transcriptional activity or
that the expression of these miRNAs, driven by HIF-2α, is being
balanced by their functional utilization in RISC [116]. Finally,
due to experimental constraints, the influence of a singlemiRNA
on a specific HIF-1α level. The most probable scenario is that
in vivo, HIF-1α is regulated by a set of miRNAs simulta-
neously [117].

1.4. Angiogenesis. Angiogenesis activates multiple genes, includ-
ing those encoding proteins related to vasodilation (such as nitric
oxide synthase), vascular permeability (such as vascular endo-
thelial growth factor (VEGF)), angiopoietins (such as angiopoie-
tin-2 and Tie-2), degradation of the ECM (such as MMP-2 and
prolyl-4-hydroxylases of collagen), the release of growth factors
(such as urokinase-activating plasminogen receptor), and cell
proliferation and migration (such as VEGF and FGF) [1–4].

Under hypoxic conditions, angiogenesis regulates vari-
ous miRNAs. For example, miR-27a overexpression, induced
by a concentration of 3% O2, suppresses the expression of
AGGF1, an angiogenic factor with G and FHA domain 1, in
bladder urothelial carcinoma J82 cells [118]. In hepatocellu-
lar carcinoma SK-HEP-1 and HCC-LM3 cells, as well as in
liver cancer tissues, hypoxia (1% O2) promotes angiogenesis
and increases miR-182 expression mediated by RASA1, a
protein activator 1 [52]. In gastric cancer MKN1 cells, hyp-
oxia (1% O2) promotes angiogenesis and suppresses 3,4,5-
trisphosphatidylinositol 3-phosphate 3-phosphatase (PTEN)
through the upregulation of miR-382 expression [119]. In
colon cancer HCT116 cells and tumor tissue under hypoxia

HIF-1β combine to form a heterodimer, which binds to hypoxia response elements (HRE, 5′-TACGTGCT-3′) present in multiple genes
related to cancer progression. RAS p21 protein activator 1 (RASA1), TP63, tumor protein P63; SNHG1, small nucleolar RNA host gene 1; and
mitochondrial transcription factor A (TFAM); Akt, protein kinase B; tissue inhibitor of metalloproteinases 2 (TIMP2); ATG5, autophagy
type 5 protein; fibroblast growth factor receptor 3 (FGFR3).
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(1% O2), miR-22 expression decreases and is positively cor-
related with the upregulation of HIF-1α and VEGF expres-
sion [79]. Under hypoxia (1%O2), multiple myeloma OPM2,
U266, KMS11, and MM1S cells overexpress miR-199a-5p
while downregulating HIF-1α and angiogenic factors such
as VEGF-A, IL-8, FGF, VCAM-1, and ICAM-1 [57]. In con-
trast, melatonin treatment of prostate cancer PC3 cells under
hypoxic conditions (2% O2) leads to increased expression of
miR-3195 and miR-374b, which suppress the expression of
HIF-1α and VEGF. However, the mechanism behind this
effect is unknown [100].

1.5. Energetic Metabolism. Adaptation to hypoxia alters the
energy metabolism of cancer cells, resulting in the produc-
tion of ATP independent of O2 and a decrease in mitochon-
drial O2 consumption (Warburg effect). Additionally, HIF-
1α can stimulate glycolysis by promoting the synthesis of
glucose transporters and glycolytic enzymes [120]. In lung
adenocarcinoma, A549 cells exposed to hypoxia (1% O2)
overexpress miR-210, which regulates genes associated with
cell death and mitochondrial dysfunction [58]. In gastric can-
cer, MKN45 and SGC7901 cells, overexpression of miR-186
reduces glycolysis by decreasing glucose uptake, lactate produc-
tion, and the ATP/ADP and NAD+/NADH ratios. In addition,
it decreases the expression of several genes, including those that
encode glycolytic enzymes such as cell death ligand 1 (PD-L1),
hexokinase 2 (HK2), and platelet-type phosphofructokinase
(PFKP) [114]. Hypoxia (2% O2) also reduces the expression
of miR-211 and pyruvate dehydrogenase kinase 4 (PDK4) in
melanoma A375 and WM1552C cells [94]. Furthermore,
under hypoxic conditions (1% O2), the expression of miR-
199a, HK2, and pyruvate kinase M2 (PKM2) significantly
decreases in hepatocellular carcinoma Hep3B cells [121].

1.6. Cell Proliferation and Survival. Cells that undergo con-
tinuous proliferation require sufficient nutrients and energy.
Macromolecule biosynthesis is essential for tumor growth.
Signaling pathways, such as PI3K/Akt/mTOR, HIF-1α, and
c-MYC, facilitate metabolic reprograming to regulate these
processes [122]. Additionally, several miRNAs, including
miR-9 [32], miR-135b [44], miR-17-92 [34], and miR-20b
[36], play a crucial role in cancer cell proliferation. Under
hypoxia (1% O2), HIF-1α upregulates miR-147a expression
and inhibits the proliferation of cervical cancer HeLa cells,
indicating that HIF-1α regulates cell growth [46].

Hypoxia induces miR-224 expression, which is associ-
ated with HIF-1α and Ras-associated domain-containing
protein 8 (RASSF8) in samples of gastric cancer tissue and
gastric cancer SGC-7901 and MGC-803 cells [63]. In ovarian
carcinoma CaUV3 and RMUG-S cells, the expression of
miR-199a-3p decreases when exposed to 1% O2. Conversely,
overexpression of miR-199a-3p suppresses cell proliferation,
leading to decreased expression of c-MET [123].

1.7. Invasion and Metastasis. Tumor cells are characterized
by their ability to invade nearby tissues and undergo metas-
tasis, which is the spread of tumor cells via the bloodstream,
leading to the formation of secondary tumors distant from
the primary site [2]. Metastasis is the primary cause of

patient mortality due to phenotypic and biochemical altera-
tions that transform normal cells into cancer cells. Under
hypoxic conditions (2% O2), miR-18a inhibits the expression
of HIF-1α, which in turn suppresses lung metastasis in breast
cancer MCF7 cells [35]. In glioma U251 cells, the upregula-
tion of miR-184 targets FIH-1, leading to decreased cell
viability and increased apoptosis [54]. Exposure to hypoxia
(1% O2) leads to an increase in miR-191 expression in breast
cancer MCF7 and MM231 cells. This increase is dependent
on HIF-1α and transforming growth factor (TGF). This, in
turn, promotes cell migration by inducing TGFβ2, VEGF,
connective growth factor, and bone morphogenic protein 4
(BMP4) expression [55]. Additionally, miR-210 expression is
upregulated under hypoxic conditions (1% O2), which trig-
gers the upregulation of vacuolar membrane protein 1
(VMP1) expression. According to a study [59], VMP1 is
related to metastasis in colorectal cancer HT-29, SW480,
and SW620 cells, as well as colon cancer tissue [59].

Additionally, the overexpression of miR-584-3p suppresses
the migration and invasiveness of glioma U87 and U25 cells.
This overexpression is associated with the expression of Rho-
associated protein kinase 1 (ROCK1) under 1%O2 [54]. More-
over, in gastric carcinoma, MGC-803 and HGC-27 cells to 1%
O2 reduces the expression of miR-18a and HIF-1α, both of
which regulate apoptosis and invasiveness [78]. Exposure to
hypoxia (1% O2) upregulates HIF-1α expression while concur-
rently downregulating miR-199a-3p expression. This is associ-
ated with increased cell migration and metastasis in ovarian
cancer CaOV3 and RMUG-S cells [123]. Metastasis is associ-
ated with the epithelial–mesenchymal transition (EMT),
through which several lytic enzymes degrade the ECM and
promote migration [124]. In renal carcinoma ACHN, Caki-1,
and 786-O cells and renal tumor tissue, hypoxia (0.5% O2)
promotes EMT and reduces the expression of miR-30c [80].

Natural extracellular vesicles (EVs) play an important
role in many life processes, such as intermolecular transfer
of substances and the exchange of genetic information. EVs
are lipid-bound vesicles that are naturally released into the
extracellular milieu by prokaryotes and eukaryotes under
physiological and pathological conditions. They carry bioac-
tive molecules and modulate biological responses in recipient
cells. Altered EV composition and increased EV release are
associated with the initiation and progression of various
pathologies, including cancer. EV release increases concom-
itantly with sustained activation of HIF-1α and HIF-2α fol-
lowing the onset of hypoxia. HIF-1α is a key regulator of EV
release in human embryonic kidney HEK293 cells during
hypoxia [125]. Hypoxia in triple-negative breast cancer pro-
motes EV secretion and facilitates cell invasion. This is a
complex process that alters cell morphology, creates dynamic
focal adhesion sites, and remodels the ECM. These findings
demonstrate the importance of hypoxic signaling via EVs in
tumors for the early establishment of metastasis [126].

1.8. Programed Cell Death: Apoptosis. Apoptosis occurs in
various conditions and is regulated by multiple factors, includ-
ing the balance of pro- and antiapoptotic proteins, caspase
activity, and cell death receptors. These factors may contribute
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to cancer drug resistance [127]. In pancreatic cancer, AsPC-1
andMiaPaCa-2 cells, the hypoxia (1%O2) induces overexpres-
sion of miR-21, which leads to reduced proliferation and
increased apoptosis [37]. In hypoxic conditions (0.5% O2),
miR-769-3p expression andNDRG1 gene are reduced in breast
cancer MCF7 cells, resulting in apoptosis [128].

1.9. Drug Resistance. The resistance of cancer cells to stan-
dard treatment is a significant obstacle. Identifying new
molecular and cellular targets, developing novel drugs, and
establishing thorough therapeutic protocols are imperative to
improve treatment effectiveness while minimizing adverse
effects among patients [129]. Chemotherapy resistance is
associated with various mechanisms, including drug metab-
olism, modifications in DNA therapeutic targets, drug trans-
port, DNA repair, inhibition of cell death, and EMT [129]. In
lung adenocarcinoma A549 cells under hypoxia (0.01% O2),
inhibition of miR-155 expression radiosensitizes cells [47]. In
contrast, when prostate cancer DU-145 and PC3 cells are
exposed to hypoxia (2%O2), there is a decrease in the expres-
sion of miR-124 and miR-144. This reduction seems to be
associated with increased sensitivity to radiotherapy [82].
Table 3 shows the involvement of miRNAs expression in
resistance to conventional drug treatments.

1.10. Autophagy. Autophagy is a process that involves the
breakdown of cellular proteins and organelles. These are
then included in autophagosomes and ultimately digested
by lysosomes, preventing the accumulation of damaged pro-
teins and organelles, which can be toxic [135]. Additionally,
autophagy provides metabolic substrates for cells that lack
nutrients. In cancer, autophagy plays a dual role. It functions
as a tumor suppressor by preventing the accumulation of
damaged proteins and organelles while promoting cell pro-
liferation, ultimately fueling tumor growth. Autophagy

activation in cancer cells is associated with cellular stress or
increased metabolic demand due to rapid cell proliferation
[136]. The protein mTOR is the primary regulator of autop-
hagy, which is activated by the PI3K/AKT pathway and
tumor suppressors, specifically LKB1, PML, PTEN, and
TSC1/2 [48]. Hypoxia (1% O2) enhances miR-96 expression
and stimulates autophagy in prostate cancer LNCaP and
22Rv1 cells [75]. However, hypoxia (1% O2) suppresses
miR-224-3p expression and inhibits autophagy in glioblas-
toma U251 and U87 cells, as well as corresponding tumor
tissue by inhibiting the genes encoding an autophagy-related
protein (ATG5) and 200 kDa focal adhesion kinase family-
interacting protein (FIP200) [137].

1.11. Expression of miRNAs as Prognostic Markers. The role
of miRNAs in cancer cell biology is critical for disease progres-
sion [110–112, 115]. However, identifying specific miRNAs
that explain the underlying mechanisms of cancer cells is chal-
lenging. Hypoxia has a heterogeneous impact on miRNAs
expression depending on the cancer type. For instance, in colo-
rectal, breast, and head and neck cancer cells exhibit overex-
pression of miRNA-210 in response to hypoxia (0.1%–1%O2),
which is suggested as a prognostic factor [59–61]. Conversely,
research has shown that overexpression of miRNA-19b is asso-
ciated with prolonged periods of disease-free survival in
patients with hepatocellular carcinoma [138]. Additionally,
reduced expression of miR-155 is an unfavorable prognostic
marker in advanced-stage renal carcinoma [49]. SomemiRNAs
may act as prognostic indicators for certain types of cancer.
However, identifyingmultiple miRNAs that can accurately and
definitively distinguish between cancer types is a complex task.
MiRNAs play a crucial role in regulating gene expression, and
their abnormal expression has been linked to the development
of cancer, cardiac, immune-related, and other diseases. Current
research also involves studying circulating miRNAs in serum,

TABLE 3: Effect of hypoxia on miRNAs expression and drug resistance.

miRNA Cancer type Expression∗ Drug References

miR-24 Breast ↑ Cisplatin [130]
miR-27a Ovarian ↑ Paclitaxel [38]
miR-98 Head/neck ↑ Doxorubicin, cisplatin [42]
miR-191 Breast ↑ Doxorubicin [55]
miR-196b Liver ↓ Etoposide [28]
miR-199a Osteosarcoma ↓ Cisplatin [90]
miR-199a-3p Liver ↓ Doxorubicin [131]
miR-210 Colon ↑ 5-fluorouracil [132]
miR-210-3p Glioblastoma ↑ Temozolomide [133]
miR-224-3p Glioblastoma ↓ Temozolomide [96]
miR-338-3p Liver ↑ Sorafenib [98]
miR-338-5p Colon ↓ Oxaliplatin, 5-fluorouracil, doxorubicin [99]
miR-421 Breast ↑ Cisplatin [69]
miR-424 Melanoma, colon, glioblastoma ↑ Doxorubicin, etoposide [134]
miR-494 Breast ↓ Docetaxel [103]
miR-497 Glioblastoma ↑ Temozolomide [72]
miR-675-5p Colon ↑ 5-Fluorouracil [74]
miR-758-3p Esophageal ↓ Cisplatin [108]
∗Up or down arrows indicate increasing and decreasing miRNAs expression, respectively.
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plasma, and other body fluids. The presence of miRNAs in
body fluids may serve as noninvasive biomarkers for cancer.
Measuring circulating miRNAs levels could be useful for early
cancer detection since deregulated miRNAs expression is an
early event in tumorigenesis [139–141]. Figure 2 illustrates the
potential of miRNAs as a biomarker in biological fluids. Fur-
thermore, the miRNAs expression measurement in serum/
plasma/saliva/urine levels is necessary to identify the adaptive
response to hypoxia, offering a promising avenue for the devel-
opment of therapies [9]. Although it is possible to modulate the
cellular miRNAs levels through overexpression (analogs/ago-
miRs) or reduction (inhibitors/antagomiRs), another approach
involves binding of all mature miRNAs by stably overexpres-
sing an mRNA with multiple miRNA binding sites. However,
since a single miRNA can regulate several mRNAs, alterations
in these miRNAs levels will have wide-ranging and unantici-
pated consequences on cells-metabolism. Consequently, the
therapeutic approach based on the inhibition or overexpression
of a specific miRNA is complex [117].

2. Conclusion

Hypoxia is a common feature of most tumors and their
microenvironments. The adaptive response to hypoxia

influences life expectancy, disease progression, and resis-
tance to therapeutic approaches. Changes in miRNA–mRNA
composition are related to hypoxia and serve both the devel-
opment and control of adaptive responses. These changes are
not solely dependent on transcriptionally driven alterations
in miRNAs expression levels. Hypoxia and HIF-1α regulate
cellular processes that promote cancer progression. MiRNAs
also play a crucial role in cancer cells by regulating signaling
pathways that encourage cancer cell proliferation and sur-
vival. Although miRNAs have potential as therapeutic targets
for improving cancer treatment, further research is necessary
to develop treatment options that increase patient survival
rates while minimizing adverse effects.
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