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Background. This study explored the mechanistic basis for nonsmall cell lung cancer (NSCLC) cisplatin (DDP) treatment resistance in
an effort to define effective approaches to abrogating the emergence of such chemoresistance.Methods. Analyses of NSCLC expression
of hsa_circ_0000190, miR-1253, and interleukin 6 (IL-6) were conducted via a quantitative real-time polymerase chain reaction (qPCR)
approach, while the ability of these tumor cells to resist DDP treatment was evaluated with a CCK-8 assay. Interactions between
different RNA molecules were assessed using both RNA immunoprecipitation and dual-luciferase reporter assays. Results. NSCLC cell
lines and tissues resistant toDDPwere found to express higher levels of hsa_circ_0000190, and knocking down this circRNA inNSCLC
cells was associated with greater sensitivity to DDP exposure. Further research identified miR-1253 as a hsa_circ_0000190 target, with
the ability of hsa_circ_0000190 knockdown to restoreDDP sensitivity being largely attributable to the ability of this circRNA to suppress
miR-1253 activity. IL-6 was identified as a major miR-1253 target in this context, withmiR-1253 regulating chemoresistance in NSCLC
cells in part by preventing IL-6 upregulation. Conclusion. Together, these data suggest that hsa_circ_0000190 can promote DDP
chemoresistance in NSCLC cells through its ability to modulate miR-1253/IL-6 axis activity, highlighting a novel pathway that can
be targeted in an effort to guide the more effective diagnosis and management of DDP-resistant tumors.

1. Introduction

Nonsmall cell lung cancer (NSCLC) cases make up an esti-
mated 85% of all primary lung tumor diagnoses [1]. NSCLC
patients are often treated with a chemotherapeutic regimen
that includes cisplatin (DDP) [2], but the emergence of DDP
resistance ultimately constrains the efficacy of this interven-
tional strategy and contributes to poor prognostic outcomes
[3]. Research focused on elucidating the mechanistic basis
for the emergence of chemoresistance in NSCLC thus has the
potential to provide a novel means of restoring therapeutic
sensitivity to target tumors, ultimately contributing to better
antitumor efficacy.

Circular RNAs (circRNAs) are a series of endogenously
encoded RNA transcripts that form a closed loop as a result
of the covalent linkage of the 3′ and 5′ ends of exonic
sequences [4, 5]. These circRNAs have increasingly been
codified as key regulators of a diverse array of oncogenic
processes [6]. Hsa_circRNA_104348, for example, is capable

of targeting the miR-187-3p/rhotekin 2 (RTKN2) axis and
driving the activation of Wnt/β-catenin signaling in a manner
conducive to hepatocellular carcinoma progression [7]. In
NSCLC, circRNA_0000429 has been reported as a molecular
sponge capable of sequestering miR-1197, thereby modulating
the expression of MAP-kinase activating death domain
(MADD) [8]. Hsa_circ_0000190 can also promote NSCLC
tumor growth by inducing soluble PD-L1 upregulation such
that these tumors can better evade immune-mediated elimina-
tion [9]. Hsa_circ_0000190 can similarly regulate epidermal
growth factor receptor (EGFR)/extracellular regulated protein
kinases (ERK) pathway activity in a manner beneficial to
NSCLC tumor cells [10]. Despite its important tumorigenic
role in this form of lung cancer, however, no publications to
date have documented the impact of hsa_circ_0000190 on the
emergence of DDP resistance in NSCLC.

Small single-stranded noncoding transcripts known as miR-
NAs are capable of regulating the vast majority of known bio-
logical processes [11], doing so by pairing with complementary
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target mRNA 3′ untranslated region (UTR) sequences and
thereby reducing the translation of these transcripts [12]. Many
tumors reportedly exhibit the dysregulation of miR-1253, and
this miRNA has been reported to be a target of several circRNAs,
functioning in a tumor suppressor-like manner [13–15]. Little
research to date, however, has focused on the association between
hsa_circ_0000190 and miR-1253 in NSCLC. IL-6 is a cytokine
that can drive NF-κB-mediated TIM4 upregulation and conse-
quent NSCLC cell metastatic progression [16], in addition to
inducing the phosphorylation of BECN1 so as to modulate che-
moresistance and autophagic activity [17].

In this study, an in-depth analysis was conducted of the
potential role of the hsa_circ_0000190/miR-1253/IL-6 axis
as a regulator of DDP resistance in NSCLC. Following initial
analyses of hsa_circ_0000190 expression patterns in NSCLC,
the mechanistic role of this circRNA as a modulator of
NSCLC cell malignancy and chemoresistance was assessed.

2. Materials and Methods

2.1. Clinical Samples. In total, 136 paired NSCLC tumor and
normal tissue samples were harvested from patients at Nanjing
Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing
Medical University. The patients from whom these samples
had been harvested were separated into two subgroups based
on their DDP sensitivity, including DDP-sensitive patients (n=
63) andDDP-resistant patients (n= 73). The Ethical Committee
of Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital,
Nanjing Medical University (No. 000128) approved all work
using human samples, and all patients gave written consent. The
patient characteristics of hsa_circ_0000190were showed asTable 1.

2.2. Cell Culture. The A549 and H460 human NSCLC cell
lines, control HBE1 cells, and 293T cells were from the BeNa
culture collection (Beijing, China). NSCLC cells resistant to
DDP (Sigma, MO, USA) were established as reported
previously to generate the A549/DDP and H460/DDP cell
lines. All cells were cultured in RPMI-1640 (Hyclone, UT,
USA) containing 10% fetal bovine serum (FBS; Gibco, CA,

USA) and penicillin/streptomycin (Sigma) in a 5% CO2

incubator at 37°C.

2.3. Quantitative Real-Time Polymerase Chain Reaction
(qPCR). At 48 hr posttransfection, Trizol (Invitrogen, CA,
USA) was used to extract total cellular RNA. When analyzing
hsa_circ_0000190 levels in samples, linear transcripts were
eliminated through RNase (Epicentre, WI, USA) treatment.
A First Strand cDNA Synthesis Kit (Toyobo, Tokyo, Japan)
and a MicroRNA Reverse Transcription Kit (Applied Biosys-
tems, CA, USA) were used for cDNA synthesis. All qPCR
reactions were performed using reaction wells containing
equal amounts of primers, cDNA, and reagents from the
SYBR Premix Ex Taq Kit (Qiagen, CA, USA). The 2−ΔΔCt

method was used to assess relative expression levels, with
GAPDH and U6 serving as normalization controls. The
primer sequences for QPCR are as follows: Hsa_circ_0000190,
5′GATCCAACAGAAATACACAATCGAGGG3′ and 5′GCA
GTAATACAGTGACAATGGTATGGC3′; miR-1253, 5′GCT
GTAACAGCGGCGGAACTCC3′ and 5′ATCCGCAGGAGT
GTCCGAG3′; IL-6, 5′ GCTGCTCCTGGTGATGACTTC3′

and 5′GGTGGTGTCATTTTTGAAATCTTCT3′; GAPDH,
5′GGATATTGTTGCCATCAATGACC3′ and 5′AGCCTTCT
CCATGGTGGTGAAGA3′; U6, 5′GCTTCGGCAGCACATAT
ACTAAAAT3′ and 5′CGCTTCACGAATTTGCGTGTCAT3′.

2.4. RNase R and Actinomycin D Treatment.Hsa_circ_0000190-
containing samples were treated using RNase R (Applied
BIOLOGICAL Materials, Vancouver, Canada) for 20min at a
dose of 100μg/mL with subsequent qPCR analysis in order to
confirm the circular nature of this transcript. To confirm the
stability of this circRNA transcript, NSCLC cells were treated
using Actinomycin D (Sigma) at a dose of 2mg/mL, with
transcript levels subsequently being analyzed via qPCR.

2.5. Subcellular Localization. A PARIS™ Kit Protein and
RNA Isolation system (Thermo Fisher Scientific, MA, USA)
was used based on provided directions to isolate RNA from
the nuclear and cytosolic fractions.

TABLE 1: Relationship between hsa_circ_0000190 and clinicopathological data of NSCLC patients.

Clinical feature Low hsa_circ_0000190 High hsa_circ_0000190 P

Age (years) 0.241
<55 25 21
≥55 43 47

Sex 0.185
Male 35 37
Female 33 31

TNM stage <0.05
I–II 45 20
III–IV 23 48

Tumor size <0.05
<5 cm 42 21
≥5 cm 26 47

Metastasis 0.091
No 33 31
Yes 35 37
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2.6. Cell Transfection. Lipofectamine 2000 (Invitrogen) was used
for all transfection experiments using si-hsa_circ_0000190, si-
NC, miR-1253 mimics, miR-NC constructs, miR-1253 inhibi-
tors (anti-miR-1253), miR-NC inhibitor (anti-miR-NC) con-
trol constructs, pcDNA3.1-IL-6, or pcDNA3.1, all of which
were produced by GenePharma (Shanghai, China) and Ribo-
bio (Guangzhou, China). At 8 hr posttransfection, media was
exchanged for fresh culture media.

2.7. CCK-8 Assay. The resistance of NSCLC cells to DDP
administration was evaluated with a CCK-8 kit (Beyotime,
Jiangsu, China). In brief, at 48 hr posttransfection with
appropriate constructs or plasmids of interest, cells were
plated in 96-well plates. Cells were then treated using
various DDP doses (0, 0.01, 0.1, 0.5, 1, 5, 10, or 20 μg/mL)
following overnight incubation, and 10 μL/well of CCK-8
reagent was added for 4 hr. Absorbance at 450 nm was then
measured as a means of quantifying the IC50 values for DDP.

2.8. Dual-Luciferase Reporter Assay. The Circular RNA Inter-
actome (https://circinteractome.nia.nih.gov/index.html) and
circBank (http://www.circbank.cn) databases were used to pre-
dict possible miRNA targets of hsa_circ_0000190, while Tar-
getScan was used to identify possible miR-1253mRNA targets.
To validate these interactions, the wild-type (WT) hsa_
circ_0000190 or IL-6 sequences harboring miR-1253 comple-
mentarity or mutated (MUT) versions of these sequences were
introduced into the pmirGLO vector (Promega, WI, USA).
The resultant plasmids (hsa_circ_0000190 WT, hsa_
circ_0000190 MUT, IL-6 3′UTR WT, and IL-6 3′UTR MUT)
were transfected into 293T cells together with miR-1253 or
miR-NC constructs as appropriate. A dual-luciferase reporter
assay kit (Promega) was used at 24 hr posttransfection to quan-
tify luciferase activity in these samples.

2.9. RNA Immunoprecipitation (RIP). To confirm the ability of
miR-1253 and hsa_circ_0000190 to interact directly with one
another, the EZ-Magna RIP™ RNA-Binding Protein Immuno-
precipitation Kit (Millipore) kit was used based on provided
instruction. Lysis buffer supplemented with RNase inhibitor
(Millipore) was used for the initial preparation of cell lysates,
which were subsequently incubated with Argonaute2 (Ago2;
Millipore) or Immunoglobulin G (IgG; Millipore) antibody-
coated magnetic beads. A qPCR approach was subsequently
used to quantify RNA enrichment.

2.10. Statistical Analysis. GraphPad Prism 8.0 (GraphPad, CA,
USA) was used to conduct all analyses, and data are presented
as meansÆ standard deviations (SD). Results were compared
with Student’s t tests and one-way ANOVAs. Spearman’s cor-
relation analyses were used to assess linear relationships
among variables. All experiments were conducted in triplicate,
with P<0:05 as the cutoff used to define statistical significance.

3. Results

3.1. DDP-Resistant NSCLC Tissues and Cells Lines Exhibit
Hsa_circ_0000190 Upregulation. To initially probe the
potential link between hsa_circ_0000190 and the emergence
of chemoresistance to DDP in NSCLC, tissue samples from

DDP-sensitive and DDP-resistant patients were collected
and the levels of hsa_circ_0000190 therein were quantified
by qPCR. This approach revealed the significant
upregulation of hsa_circ_0000190 in DDP-resistant tumor
tissues as compared to DDP-sensitive samples (Figure 1(a)).
Hsa_circ_0000190 levels in NSCLC cell lines were also altered
relative toHBE1 control cells, and the expression of this circRNA
was further enhanced in DDP-resistant sublines derived from
these NSCLC cells (Figure 1(b)), supporting the observed data
derived from human tissues. The DDP of IC50 was enhanced in
DDP resistant cells relative to normal cells (Figure S1). Treatment
of RNA extracts from these cells revealed that the exonuclease
RNase R was not able to effectively digest hsa_circ_0000190,
consistent with its covalent closed loop structure (Figure 1(c)).
When transcription was inhibited using actinomycin D,
hsa_circ_0000190 also exhibited stability superior to that of
the linear CNIH4 mRNA transcript (Figure 1(d)). Subcellular
localization analyses of hsa_circ_0000190 also revealed that it
was primarily localized in the cytosol ofNSCLC cells (Figure 1(e)),
suggesting that itmay function as a sponge capable of sequestering
target miRNAs, providing a possible mechanismwhereby this
circRNA may shape the chemoresistance of NSCLC cells.

3.2. Silencing Hsa_circ_0000190 Sensitizes Chemoresistant
NSCLC Cells to DDP. Successful hsa_circ_0000190 knock-
down was confirmed via qPCR in treated NSCLC cell
lines (Figure 2(a)), and CNIH4 mRNA expression was no
difference between hsa_circ_0000190 knockdown cell and
control cells (Figure S2). The silencing of this circRNA
resulted in significant decreases in DDP IC50 values for
both A549/DDP and H460/DDP cells (Figure 2(b)) and
overexpression of hsa_circ_0000190 increased DDP IC50
values for both A549/DDP and H460/DDP cells (Figure
S3), suggesting that hsa_circ_0000190 can enhance NSCLC
cell resistance to DDP treatment in a manner.

3.3. Hsa_circ_0000190 Functions as a Molecular Sponge
Capable of Sequestering miR-1253. In total, the circular
RNA interactome identified 9 putative hsa_circ_0000190 tar-
get miRNAs. Of these, only miR-1253 was downregulated in
NSCLC tissues, whereas miR-1252, miR-1299, miR-1825, and
miR-382 were upregulated, and no differences inmiR-142-5p,
miR-516b, miR-580, or miR-767-5p were noted (Figure 3(a)).
The knocking down of hsa_circ_0000190 resulted in miR-
1253 upregulation (Figure 3(b)), and a miR-1253 binding
site was present within hsa_circ_0000190 (Figure 3(c)). RIP
and dual-luciferase reporter assays were next used to probe
the ability of these two transcripts to interact with one
another. Following miR-1253 mimic transfection, WT
hsa_circ_0000190 luciferase reporter activity was suppressed,
whereas the same was not true for the MUT reporter,
confirming a direct targeting relationship between hsa_circ_
0000190 and miR-1253 within 293T cells (Figure 3(d)). An
Ago2 antibody preferentially precipitated both hsa_circ_
0000190 and miR-1253 relative to a control IgG (Figure 3(e)),
confirming the ability of hsa_circ_0000190 and miR-1253 to
bind to one another within NSCLC cells. DDP-resistant
NSCLC patient tissues also exhibited pronounced miR-1253
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FIGURE 1: Continued.
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downregulation relative to DDP-sensitive tissues (Figure 3(f)),
and hsa_circ_0000190 levels were negatively correlated with
those of miR-1253 in tumor tissue samples from DDP-
resistant patients (Figure 3(g)). The downregulation of miR-
1253 was evident in parental NSCLC cells as compared to
control HBE1 cells, while levels of this miRNA were further
reduced in DDP-resistant NSCLC cells (Figure 3(h)). A
pronounced increase in levels of hsa_circ_0000190 was
evident in NSCLC cells when this circRNA was exogenously
overexpressed (Figure 3(i)). When hsa_circ_0000190 was
overexpressed, levels of miR-1253 fell markedly whereas the
opposite was evident in A549/DDP and H460/DDP cells upon
the suppression of hsa_circ_0000190 expression (Figure 3(j)).
Overall, these results support a model in which hsa_circ_0000190
can act as a molecular sponge capable of sequestering miR-1253
within NSCLC cells.

3.4. Hsa_circ_0000190 Silencing Sensitizes NSCLC Cells to
DDP in Part as a Result of miR-1253 Upregulation. Given
the observed negative regulatory association between hsa_-
circ_0000190 and miR-1253, a rescue experiment was con-
ducted with the goal of validating this functional relationship
and its implications for the ability of NSCLC cells to resist DDP
treatment. The efficiency of miR-1253 inhibitor-mediator
knockdown was confirmed via qPCR in these NSCLC cell
lines (Figure 4(a)). Hsa_circ_0000190 knockdown resulted in
miR-1253 upregulation in A549/DDP and H460/DDP cells,
but the treatment of these cells with si-hsa_circ_0000190 and
miR-1253 inhibitors was sufficient to rescue changes in the
expression of this miRNA (Figure 4(b)). Notably, miR-1253
inhibitor transfection reversed the si-hsa_circ_0000190-
associated changes in the chemoresistant status of A549/DDP
and H460/DDP cells (Figure 4(c)). These data are consistent

with a model in which the hsa_circ_0000190/miR-1253 axis
controls the ability of NSCLC cells to resist DDP treatment.

3.5. IL-6 Is a miR-1253 Target mRNA. The TargetScan tool
identified IL-6 as a putative miR-1253 binding target
(Figure 5(a)). Consistently, a dual-luciferase reporter assay
demonstrated that miR-1253 expression suppressed the activ-
ity of a reporter bearing a WT but not a MUT version of the
candidate miR-1253 binding sequence within the 3′UTR of the
IL-6 mRNA (Figure 5(b)), supporting the ability of these tran-
scripts to interact within 293T cells. DDP-resistant NSCLC
tissue samples also exhibited IL-6 mRNA levels significantly
higher than those in DDP-sensitive tissues (Figure 5(c)). The
expression of IL-6 in A549/DDP and H460/DDP cells were
higher than those in the corresponding parental cells from
which these sublines were derived (Figures 5(d) and 5(e)). In
DDP-resistant NSCLC tissue samples, IL-6 mRNA expression
was negatively correlated with the levels of miR-1253
but positively correlated with levels of hsa_circ_0000190
(Figures 5(f) and 5(g)). Silencing hsa_circ_0000190 resulted
in pronounced IL-6 downregulation in both DDP-resistant
cell lines, and this effect was counteracted by miR-1253
inhibitor treatment (Figures 5(h) and 5(i)), highlighting the
ability of hsa_circ_0000190 to function as a molecular
sponge for miR-1253 that promotes IL-6 upregulation in
chemoresistant NSCLC cells.

3.6. MiR-1253 Suppresses IL-6 to Sensitize NSCLC Cells to
DDP. To assess the ability of miR-1253 to modulate DDP
resistance and NSCLC cell malignancy through the
suppression of IL-6 expression, a final series of rescue
assays was conducted. Both qPCR and ELISA approaches
confirmed the efficiency of miR-1253 and pcDNA3.1-IL-6
transfection in DDP-resistant cells (Figure 6(a)–6(c)). The
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FIGURE 1: DDP-resistant NSCLC tissues and cells lines exhibit hsa_circ_0000190 upregulation. (a) Hsa_circ_0000190 levels were assessed via
qPCR in NSCLC tumor tissues harvested from DDP-resistant (n= 73) and DDP-sensitive (n= 63) patients. (b) Hsa_circ_0000190 levels were
analyzed in NSCLC cell lines, DDP-resistant NSCLC cell lines, and control HBE1 cells via qPCR. (c) The closed covalent loop nature of
hsa_circ_0000190 was evaluated through treatment with RNase R, using the linear CNIH4 transcript as a control. (d) Actinomycin D
treatment was used to inhibit transcription in order to evaluate hsa_circ_0000190 stability, using the linear CNIH4 transcript as a control. (e)
A PARIS™ Kit Protein and RNA Isolation system was used to evaluate the subcellular localization of hsa_circ_0000190. ∗∗∗P<0:001.
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upregulation of miR-1253 sensitized these chemoresistant
cells to DDP, whereas pcDNA3.1-IL-6 transfection partially
restored DDP resistance to these cells as determined based on
measured IC50 values (Figure 6(d)). These data suggest that
miR-1253 can control NSCLC resistance to DDP in part
through its ability to suppress IL-6 expression.

4. Discussion

High-throughput sequencing efforts have enabled the iden-
tification and characterization of a growing number of cir-
cRNAs [18, 19]. As they are rich in binding sites for miRNAs,
circRNAs are often studied as miRNA sponges [20], provid-
ing a mechanism through which they control the onset and
development of particular cancers [21]. In the present report,
the ability of hsa_circ_0000190 to shape NSCLC resistance to
DDP treatment was assessed in depth. Several prior publica-
tions have documented the importance of circRNAs as reg-
ulators of chemoresistant phenotypes. The circ-CPA4/let-7
miRNA/PD-L1 axis, for example, is reportedly capable of

supporting NSCLC cell growth, chemoresistance, stemness,
and the ability of these cells to evade immune-mediated
elimination [22]. Exosomal circVMP1 can also facilitate
NSCLC progression and resistance to DDP owing to its abil-
ity to modulate the miR-524-5 p-methyltransferase like 3
(METTL3)/sex determining region Y box 2 (SOX2) axis
[23]. There is prior evidence for the ability of hsa_
circ_0000190 to control NSCLC tumor progression [9]. In
this study, the importance of hsa_circ_0000190 as a regulator
of NSCLC cell DDP resistance was assessed. DDP-resistant
NSCLC cell sublines exhibited increased hsa_circ_0000190
expression. When this circRNA was silenced in these DDP-
resistant cells, this partially restored their chemosensitivity,
emphasizing the status of hsa_circ_0000190 as a promoter of
the ability of NSCLC cells to resist DDP treatment.

The most widely studied process through which cir-
cRNAs exert their biological functions is the so-called
miRNA sponge mechanism [24]. Through, their ability to
effectively sequester specific miRNAs, circRNAs can regulate
the onset and progression of a range of cancer types [25]. The
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fact that hsa_circ_0000190 expression in NSCLC cells was
primarily restricted to the cytosol was consistent with its
ability to serve as a sponge for specific miRNAs. Consis-
tently, predictive analyses identified miR-1253 as a candidate
hsa_circ_0000190 binding target, and this was subsequently
validated through RIP and luciferase reporter assays. DDP-
resistant NSCLC cells and tissues exhibited pronounced
miR-1253 downregulation. Moreover, there have been sev-
eral prior studies documenting varied roles for miR-1253 in
particular cancers. In NSCLC, for example, this miRNA has
been reported to suppress proliferative activity and stem-like
phenotypes [13]. Through its ability to target WNT5A, miR-
1253 has also been reported to inhibit NSCLC invasivity and
proliferation [15]. In this study, rescue experiments demon-
strated that silencing hsa_circ_0000190 suppressed the resis-
tance of NSCLC cells to DDP in part owing to the ability of
this circRNA to act as a miR-1253 sponge.

A growing wealth of evidence has clearly demonstrated
the ability of miRNAs to facilitate posttranslational target
mRNA degradation [26]. The TargetScan database identified
IL-6 as a putative miR-1253 target, as subsequently validated
through a dual-luciferase reporter assay. IL-6 has been docu-
mented to enhance the chemoresistant properties of several
types of cancers, for example through its ability to induce the
phosphorylation of BECN1 and to control autophagic activ-
ity [17]. In colorectal cancer, HIF-1α/miR-338-5p/IL-6 axis
activation in response to hypoxic conditions is also report-
edly conducive to tumor growth [27]. The ability of cancer-
associated fibroblasts to secrete IL-6 has also been mechanis-
tically linked to the emergence of chemoresistant disease in
individuals with NSCLC [28]. DDP-resistant tissue samples
and cell lines exhibited high levels of IL-6 expression in the
present analyses, and further research demonstrated that
hsa_circ_0000190 was able to promote IL-6 upregulation
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through its ability to function as a sponge capable of seques-
tering miR-1253. Strikingly, interference with miR-1253 in
NSCLC resistant cell lines was sufficient to enhance their
resistance to DDP, at least in part owing to the consequent
restoration of IL-6 expression.

In summary, DDP-resistant NSCLC cells and tissues
exhibit pronounced hsa_circ_0000190 and IL-6 upregulation
together with the downregulation of miR-1253. Functional
assays demonstrated that hsa_circ_0000190 can target this
miR-1253/IL-6 regulatory axis in a manner that promotes
the emergence of DDP chemoresistance in NSCLC. Overall,
these data highlight novel targets for efforts aimed at more
effectively treating patients with NSCLC.
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