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Premature rupture of membrane (PROM) refers to the rupture of membranes before the onset of labor which increases the risk of
perinatal morbidity and mortality. Recently, circular RNAs (circRNAs) have emerged as promising regulators of diverse diseases.
However, the circRNA expression profiles and potential circRNA–miRNA–mRNA regulatory mechanisms in PROM remain
enigmatic. In this study, we displayed the expression profiles of circRNAs and mRNAs in plasma and fetal membranes of PROM
and normal control (NC) groups based on circRNAmicroarray, the Gene Expression Omnibus database, andNCBI’s Sequence Read
Archive. A total of 1,459 differentially expressed circRNAs (DECs) in PROM were identified, with 406 upregulated and 1,053
downregulated. Then, we constructed the circRNA–miRNA–mRNA network in PROM, encompassing 22 circRNA–miRNA pairs
and 128 miRNA–mRNA pairs. Based on the analysis of gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway and gene set enrichment analysis (GSEA), DECs were implicated in immune-related pathways, with certain
alterations persisting even postpartum. Notably, 11 host genes shared by DECs of fetal membrane tissue and prenatal plasma in
PROM were significantly implicated in inflammatory processes and extracellular matrix regulation. Our results suggest that struc-
turally stable circRNAs may predispose to PROM by mediating systemic immune imbalances, including peripheral leukocyte
disorganization, local immune imbalance at the maternal–fetal interface, and local collagen disruption. This is the first time to
decipher a landscape on circRNAs of PROM, reveals the pathogenic cause of PROM from the perspective of circRNA, and opens up a
new direction for the diagnosis and treatment of PROM.

1. Introduction

Premature rupture of membranes (PROM) is defined as the
rupture of the fetal membranes before the onset of labor which
complicates ∼8% of pregnancies worldwide [1, 2]. PROM
before 37 weeks of gestation occurs in around 3% of all preg-
nancies, was significantly associatedwithmore severe perinatal
complications such as premature delivery, chorioamnionitis,
and placental abruption, and is the main cause of maternal
perinatal death [3, 4]. It is generally accepted that PROM is a
multifactorial disease with multiple causes (e.g., infection and
endocrine disruption) [5, 6], and the biological changes of

membranes are the core pathological basis of PROM, includ-
ingmatrix degradation, cell senescence, apoptosis, autophagy,
and epithelial–mesenchymal transition [7, 8]. However, as the
most common perinatal disease, research on PROM often
focused on the prediction of severe maternal–fetal outcomes
via common biomarkers [9, 10], and the core etiology and key
molecular mechanism of PROM remain unclear. Notably,
noncoding RNAs (ncRNAs) have brought new light to PROM
research, represented by miRNAs [11] and long noncoding
RNAs (lncRNAs) [12]. Therefore, we speculated that the novel
and more powerful ncRNA molecule, circRNA, could better
decipher the enigma of PROM.
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Circular RNA (circRNA) is a newly identified special
class of ncRNA molecules with a covalently closed loop
structure and great biofunctions [13, 14]. With the features
of great abundance, high stability, tissue- and developmental-
stage specificity, and wide distribution in the body, circRNA
could greatly reflect the morbid status [15, 16]. The molecular
mechanisms and future value of circRNA in participating in
and regulating biological and pathological processes are also
becoming increasingly apparent [17]. The ceRNA hypothesis
proposes that circRNAwithmiRNA response elements (MREs)
can act as an endogenous miRNA sponge to bind to miRNA
and regulate its function, thereby regulating the expression level
of downstream proteins [18]. Strikingly, recent studies have
proved that circRNA, as a competing endogenous RNA
(ceRNA), has a powerful regulatory effect in the pathological
processes of many diseases [19–22], especially immune imbal-
ances and extracellular matrix [23–25]. Besides, circRNA
could improve the prediction efficiency of traditional predic-
tion models composed of classical indexes (neutrophil to lym-
phocyte (NLR), platelet to lymphocyte (PLR), and lymphocyte
to monocyte (LMR) ratios) [26]. It provides a good theoretical
basis for early prediction and precise intervention of many
diseases.

Although circRNA has not been adequately studied in
the perinatal field, its extraordinary biological activities and
clinical significance in gestational diseases have already been
shown [27–29]. For instance, circPUM1 could impair recurrent
spontaneous abortion occurrence and protect against inflam-
mation via the miR-30a-5p/JUNB axis [30]. The circ_0001861/
miR-296-5p/FOXP1 axis plays a regulating role in trophoblast
cell proliferation, migration, invasion, and EMT in pre-
eclampsia [31]. circ_0001578 promotes gestational diabetes
mellitus by inducing placental inflammation [32].Meanwhile,
our previous study also revealed for the first time that the
disturbance of circRNA expression in the maternal–fetal sys-
tem may induce preterm labor by mediating immune imbal-
ance [33]. These studies reveal that circRNA often mediates
pregnancy complications and immune imbalance in maternal
circulation and can also cause diseases locally at the maternal–
fetal interface by affecting cellular function. Despite this increase
in interest, the expression and biological function of circRNAs
in PROM have been reported rarely. Therefore, this study aims
to depict the expression profiles of circRNAs in PROM via the
RNA-seq data and microarray data. Our work will discover the

circRNA disorders in PROM for the first time, enrich themech-
anistic theory of PROM, and may provide a new strategy for its
diagnosis and treatment.

2. Materials and Methods

2.1. Sample Collection and Preparation. In this case–control
study of singleton, pregnant women were admitted to the
First Affiliated Hospital of Chongqing Medical University
in China between April 2019 and January 2020. The normal
control (NC) group was composed of healthy pregnancies
with intact fetal membranes and not afflicted by gestational
diseases. The inclusion criteria for the PROM group were as
follows: (1) patients with rupture of membranes before the
onset of labor; (2) without PE, GDM, and other severe ges-
tational complications. The characteristics of all participants
are summarized in Table 1. All cases identified were matched
1 : 1 to randomly selected controls. When they were admitted
to the hospital for delivery, ∼5ml of blood was collected into
EDTA-treated tubes. Then, the blood samples were centri-
fuged at 3,000 rpm for 15min at 4°C to retrieve plasma,
which was subsequently stored at −80°C until assaying. In
total, four paired peripheral blood plasma samples from the
NC and PROM groups were collected.

All participants provided written informed consent. The
protocols complied with the Helsinki Declaration (World
Medical Association Declaration of Helsinki).

2.2. circRNA Microarray. The total RNA of plasma was
extracted using TRIzol Reagent (Invitrogen, Gaithersburg,
MD, USA) for microarray analysis as previously described
[34]. Briefly, RNA was digested with RNase R, amplificated,
labeled, purified, and quantified according to the manufac-
turer’s protocol. Then, chip hybridization was performed
using Agilent Human circRNA Array (V2.0), which contains
probes interrogating about 170,340 human circRNAs in
CapitalBio company (Beijing, China). After being washed,
the arrays were scanned on the Agilent Microarray scanner
(G2565C). Agilent Feature Extraction (V10.7) software and
Agilent GeneSpring software were used to analyze the data.
All tests were completed by January 2020.

2.3. External Datasets Collection. The mRNA expression data
of four PROM and four NC blood samples (GSE212859) and
the miRNA expression data of three PROM and three NC

TABLE 1: The clinical characteristics of participants.

Characteristics PROM (n= 4) NC (n= 4) P value

Age (years) 27.25Æ 0.50 32.25Æ 4.19 0.0557
BMI (kg/m2) 26.50Æ 2.43 30.85Æ 4.29 0.1277
Sampling 1 (gestational weeks) 33.93Æ 3.70 35.35Æ 4.75 0.6527
Delivery (gestational weeks) 34.28Æ 3.58 35.55Æ 4.74 0.6827
Sampling 2 (hr after delivery) 22.25Æ 16.86 30.25Æ 13.96 0.4924
History of PROM 0 0 —

Delivery modes 4 4 0.4857
Vaginal 3 1 —

Cesarean 1 3 —
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blood samples (GSE73685)were obtained from theGene Expres-
sion Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). The whole-transcriptome sequencing raw data of four
PROM and four NC fetal membrane samples (SRP139931)
were downloaded from NCBI Sequence Read Archive (SRA)
(https://www.ncbi.nlm.nih.gov/sra/) databases. The circRNAs
were identified and quantified by the CIRIquant software with
default settings. In this step, the genome file and the annota-
tion file were the UCSC human reference genome (hg38) and
gencode.v42.annotation.gtf.

2.4. Differential Analysis. The microarray data were prepro-
cessed by log2-transformation and quantile normalization.
Subsequently, the differential analysis was performed by the
R (version 3.6.2) package “Limma.” For RNA-seq count data,
the differential analysis was performed by the R package
“DEseq2.” The selection threshold was set to fold change
(FC)> 2.0 and P-value< 0.05.

2.5. Support Vector Machines (SVMs). SVM, a supervised
machine learning algorithm, was performed using the R
packages “e1071” and “caret” to initially screen genes that
contribute significantly to the differences between groups.
The “importance” function was used to rank the variables
by importance. The P-value< 0.05 was considered significant.

2.6. Construction of circRNA–miRNA–mRNA Networks. The
target miRNAs of key circRNAs were predicted by circBank
which integrates the result data frommiRanda and TargetScan
(http://www.targetscan.org/) based on the miRNA binding
site. Then, the downstream mRNAs of miRNAs were pre-
dicted by miRDB (http://www.mirdb.org/) and TargetScan.

The circRNA–miRNA–mRNA networks were built using
Cytoscape (version 3.6.1).

2.7. Functional Enrichment Analysis. The GO (gene ontology)
and the KEGG (Kyoto Encyclopedia of Gene and Genomes)
pathway enrichment analyses were conducted using the R
package “Clusterprofiler.”GO terms or KEGG pathways with
P-value< 0.05 were considered significant. Then, the results
were visualized by the “ggplot2” package of R software.

2.8. Gene Set Enrichment Analysis (GSEA). This analysis was
completed by the GSEA software (version 4.0.3) obtained
from the Broad Institute (http://www.broadinstitute.org/gsea).
The gene sets of biological processes were downloaded from the
Molecular Signatures Database (http://software.broadinstitute.
org/gsea/msigdb). The selection threshold was set to normalized
enrichment score (NES)> 0 and P-value< 0.05.

2.9. Statistical Analysis. Statistical analysis was performed
using the SPSS (version 25.0, Chicago, IL, United States),
GraphPadPrism (version 8.0, San Diego, CA, United States),
and R (version 3.6.2) software.

The mean and standard deviation (meanÆ SD) of all
data were calculated. Student’s t-test was used for variable
data analysis, and Fisher’s exact tests were used for statistical
analysis of categorical variables. The Pearson correlation
analysis was performed by the R software (version 3.6.2).

3. Results

3.1. The circRNAs in Prenatal Plasma of PROM and NC
Pregnancies. The circRNA microarray analysis was per-
formed to identify DEcircRNAs in the peripheral plasma of
PROM and NC pregnancies. After data clean and upper
quartile normalization, 99,287 circRNAs were screened out
(Figure 1(a)). In total, 1,459 circRNAs were significantly dif-
ferentially expressed in PROM compared to the NC group,
among which 406 circRNAs were upregulated and 1,053 cir-
cRNAs were downregulated (Figures 1(b) and 1(c)). The
genomic position from which these circRNAs derived is
shown in Figure 1(d), and no evident aggregation phenome-
non was observed.

3.2. The Key circRNAs and Their Regulatory Network in
Prenatal Plasma of PROM. Using the SVM algorithm, 140
candidate circRNAs that contributed significantly to the clas-
sification of the NC and PROM groups were screened from
the DEcircRNAs (Figure 2(a)). Considering the fold change
and importance value of these circRNAs, we selected the up-
and down-regulated top 5 circRNAs, whichmay have a greater
impact on the pathological process of PROM (Figure 2(b) and
Table 2). A total of 48 miRNAs and 545 mRNAs that signifi-
cantly dysregulated in the circulation of PROM patients were
identified from two independent datasets (GSE212859 and
GSE73685), respectively (Figures 2(c) and 2(d)). Based on
the miRNA binding site, 1,082-targeted miRNAs of key cir-
cRNAs were predicted. Then, 22 miRNAs bound by top cir-
cRNAs in PROM were obtained through the intersection of
the targeted and dysregulatedmiRNAs (Figure 2(e)). Similarly,
the 128 downstreammRNAs regulated by top circRNAs via 22
miRNAs were identified (Figure 2(f)). Thus, the regulatory net-
work of the key circRNAs consisting of 22 circRNA–miRNA
pairs and 128 miRNA–mRNA pairs was constructed in PROM.

3.3. The Biofunctions of Key circRNAs in Prenatal Plasma of
PROM. To investigate the biological role of key circRNAs,
annotation and enrichment analyses were performed for
the downstream genes regulated by these circRNAs via the
ceRNA mechanism. These genes are enriched in immune-
inflammatory and energy metabolism pathways represented
by “cytokine signaling in immune system,” “cytokine–cyto-
kine receptor interaction,” “fatty acid metabolism,” etc.
(Figure 3(a)). Consistent with this, they are also involved
in GO biological processes such as “leukocyte activation,”
“cellular response to cytokine stimulus,” “carbohydrate met-
abolic process,” etc. In addition, the terms related to cell
adhesion as well as extracellular matrix are also noteworthy
(Figure 3(b)).

The leukocyte levels in the prenatal peripheral blood of
PROM patients appeared to be disordered, especially lym-
phocytes (Table 3). Through linear regression analysis, we
found that the levels of key circRNAs were significantly
correlated with the percentage of neutrophils, lymphocytes,
and monocytes (|r|> 0.7 and P-value< 0.05) (Figures 3(c)
and 3(d)).
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3.4. The circRNAs in Postnatal Plasma of PROM and NC
Pregnancies. Interestingly, even after delivery (26.25Æ 14.95hr),
the plasma circRNA expression profiles of PROM and NC
groups were still different. There were 724 up- and 1,093
down-regulated circRNAs in PROM (Figure 4(a)). Of these,
233 downregulated and 8 upregulated circRNAs were present
with the same change pattern in prenatal plasma (Figures 4(b)
and 4(c)). All these 241 circRNAs were related to “metabolism

of carbohydrates,” “adaptive immune system,” “collagen deg-
radation,” etc. (Figure 4(d)). This suggests that the effect of
circRNAs on immune-inflammatory, energymetabolism, and
extracellular matrix in PROM may persist from the prenatal
to the postnatal period.

Of the 10 key circRNAs selected prenatally, three
remained significantly dysregulated in PROM postnatally:
hsa_circ_0096021, hsa_circ_0092529, and hsa_circ_0078356
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FIGURE 1: The differentially expressed circRNAs between the PROM and NC groups before delivery: (a) the normalized circRNA expression
level (log2-transformed signal intensity) in each sample; (b) DEcircRNAs with FC> 2.0 and P-value< 0.05; (c) the expression profiles of
DEcircRNAs in PROM and NC groups before delivery; (d) chromosomal distribution pattern of DEcircRNAs.
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FIGURE 2: Continued.
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(Figure 4(e)). Notably, hsa_circ_0096021 remained strongly
linearly associated with postnatal levels of peripheral blood
neutrophils, lymphocytes, and monocytes (|r|> 0.7 and
P-value< 0.05) (Figure 4(f ) and Table 4).

3.5. The Disordered circRNAs in the Circulation and Fetal
Membrane of PROM. In the fetal membrane of PROM and
NC pregnancies, we identified 119 DEcircRNAs, 68 and 51 of
which were up- and down-regulated in PROM, respectively
(Figure 5(a)). Furthermore, we found that 11 host genes were
shared by DEcircRNAs of fetal membrane tissue and prena-
tal plasma in PROM (Figure 5(b)). The circRNAs and
mRNAs derived from these 11 host genes might be the medi-
ator of communication between the circulation and fetal
membrane in PROM. Interestingly, about half of the host
gene encodes fibronectin and collagen (Figure 5(c)).

The circRNAs from these host genes were involved in the
processes of inflammatory and extracellular matrix, while
the “INFLAMMATORY_RESPONSE” was activated and the
“EXTRACELLULAR_MATRIX_ORGANIZATION”was inhib-
ited in PROM (Figures 5(d) and 5(e)). Finally, the linear regres-
sion analysis confirmed that these mediator circRNAs were
inextricably linked to the essential immune inflammation and
extracellular matrix processes in the circulation and fetal
membrane of PROM (Figure 5(f)).

4. Discussion

To our knowledge, systemic immune imbalances may be
responsible for the development of PROM, but its pathogen-
esis remains largely unclear [35]. It is necessary to research
the pathogenesis of PROMand search for its biomarkers. Recent
research on circRNA in gestational diseases has achieved con-
siderable development and breakthroughs [36–38]. Neverthe-
less, the circRNAs expression and functions in PROM remain
completely unknown. To address this knowledge gap, we inves-
tigated the circRNAs expression profile in plasma from PROM
and NC pregnant women and identified 1,459 DEcircRNAs.
Then, the regulatory network of the key circRNAs consisting
of 22 circRNA–miRNA pairs and 128 miRNA–mRNA pairs
was constructed. These DEcircRNAs mainly mediated periph-
eral leukocyte disorder expression which has been elucidated as
vital parts of PROM pathogenesis mechanisms. Interestingly,
there are no studies currently available about the dysregulation
and functions of these circRNAs in diseases, indicating that they
may have unique associations with PROM. Noteworthy, the
effect of circRNAs on immune-inflammatory, energy metabo-
lism, and extracellular matrix in PROM may persist from the
prenatal to the postnatal period.

Due to the lack of accurate and early prediction of the
outbreak window, we can hardly intervene early in the

Target miRNAs
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ðeÞ
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ðfÞ

ðgÞ
FIGURE 2: The top DEcircRNAs and their regulated network: (a) the top 20 circRNAs which are selected by the SVM algorithm (P-value
< 0.05); (b) the expression level of the top circRNAs in the PROM and NC groups (∗P-value< 0.05; ∗∗P-value< 0.01; ∗∗∗P-value< 0.001);
(c) the expression profiles of DEmiRNAs between the PROM and NC groups (FC> 2 and P-value< 0.05); (d) the expression profiles of
DEmRNAs between the PROM and NC groups (FC> 1.5 and P-value< 0.05); (e) the intersection of target miRNAs and DEmiRNAs; (f ) the
intersection of target mRNAs and DEmRNAs; (g) the ceRNA (circRNA–miRNA–mRNA) regulatory network of top circRNAs in PROM
(red squares: upregulated circRNAs; blue squares: downregulated circRNAs; yellow hexagons: miRNAs; dark blue circles: mRNAs).
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TABLE 3: Routine blood examination before delivery.

Indicators PROM (n= 4) NC (n= 4) P value

WBC (109/L) 15.26Æ 7.05 11.56Æ 3.39 0.3804
RBC (1012/L) 3.95Æ 0.35 4.31Æ 0.37 0.2039
Hb (g/L) 128.75Æ 11.09 126.50Æ 11.82 0.7906
PLT (109/L) 196.25Æ 38.81 170.25Æ 57.05 0.4796
NEUT% 84.45Æ 4.63 78.68Æ 3.29 0.0880
NEUT# (109/L) 13.09Æ 6.62 9.16Æ 3.00 0.3207
LYM% 9.48Æ 3.67 15.48Æ 1.56 0.0239
LYM# (109/L) 1.27Æ 0.17 1.76Æ 0.39 0.0619
MONO% 5.53Æ 2.09 4.08Æ 1.10 0.2660
MONO# (109/L) 0.83Æ 0.51 0.46Æ 0.15 0.2137
EO% 0.38Æ 0.32 1.55Æ 2.02 0.2944
BASO% 0.18Æ 0.05 0.23Æ 0.26 0.7216

WBC, white blood cells; RBC, red blood cells; Hb, hemoglobin; PLT, platelets; NEUT%, neutrophil percentage; NEUT#, neutrophil counts; LYM%, lymphocyte
percentage; LYM#, lymphocyte counts; MONO%, monocyte percentage; MONO#, monocyte counts; EO%, eosinophil percentage; BASO%, basophil percentage.
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occurrence of premature rupture of membranes [39, 40], and
only empiric treatment after the occurrence of the disease
can maximize the maternal and fetal outcomes; as a classical
obstetric practice, there have been no significant changes for
the last many years [4]. Therefore, we are committed to
finding the key to initiate premature rupture of membranes.
This study suggests that maternal systemic immune disorder
breaks out prematurely before delivery, and the maternal–
fetal interface receives false signals, which leads to local
immune imbalance and premature rupture of fetal mem-
branes. Finding the sentinel point of the outbreak of mater-
nal systemic immune disorders has become a top priority.

As a starting point for systemic immune disorders, we
focus on peripheral white blood cells. Neutrophils are often
exclusively considered as a first-line innate immune defense,
able to rapidly kill or trap pathogens, and cause in case of
overactivation tissue damage [41]. Increased maternal neu-
trophil may mediate chronic low-grade inflammation in
PROM [9, 42], gestational diabetes mellitus [43, 44], and
pre-eclampsia [45]. Neutrophil infiltration is also a key cause
of fetal membrane inflammation and tissue destruction at the
maternal–fetal interface [46]. On the other hand, the func-
tional significance of lymphocytes in pregnancy was affirmed
by a huge number of studies. Since embryo implantation, the
lymphocytes at the maternal–fetal interface begin to work for
the maintenance of pregnancy [47]. The abnormal distribu-
tion of lymphocytes may directly lead to the occurrence of
maternal–fetal interface infection, or lead to other complica-
tions of pregnancy such as recurrent abortion [48, 49] and
pre-eclampsia [50] after a long period of immune microen-
vironment changes. This abnormal distribution in pregnancy
complications can also be observed in the peripheral blood
[51]. During pregnancy, the communication between the
mother and the child may be reflected in the status of periph-
eral blood mononuclear cells [52]. Pregnancy comes with
increased number, phagocytic activity, and ROS production
capacity of monocytes [53]. Once the balance maintained by
monocytes during pregnancy is broken [54], it may induce
the release of proinflammatory factors, which may induce

premature rupture of membranes [55], premature delivery
[56], and other common complications of pregnancy. Our
results suggested circRNA may directly lead to immune
imbalance by mediating abnormal secretion of cytokines
and may also lead to the imbalance of peripheral leukocyte
distribution through the synergistic effect of cytokines, result-
ing in PROM finally. This provides a novel explanation for the
regulatory effect of circRNAs on peripheral blood leukocytes
and further expands the etiological evidence for immune
imbalance in PROM.

Considering the unique stability of circRNA [57], this
study sequentially concerns the continuous regulation of
circRNA in the mother after delivery. The results suggest
that among the 10 key circRNAs selected prenatally, 3 are
still significantly dysregulated in PROM after birth: hsa_
circ_0096021, hsa_circ_0092529, and hsa_circ_0078356.
Among them, hsa_circ_0096021 maintains a strong linear
correlation with the level of peripheral blood leukocytes after
birth, which may be due to the need for maternal immune
maintenance and tissue repair after delivery [58]. Meanwhile,
circRNA also participates in maternal metabolic function,
which plays an important role in maternal recovery after
delivery [59]. Whether these circRNAs exist in the body of
pregnant women with premature rupture of membranes for
a long time, regulate other functions of the human body, or
even lead to more diseases is not clear.

Rupture of fetal membranes is the moment of the out-
break of local inflammation of fetal membranes [60] and
tissue collagen recombination degradation [61] and finally
lead to structural destruction. Therefore, we also analyzed
the function of local circRNA in the fetal membrane. We
found that 11 host genes were shared by DEcircRNA in fetal
membrane tissue and prenatal plasma in PROM, which sug-
gested that these circRNAs may act as communication med-
iators, transmitting signals of peripheral immune imbalance
to the local fetal membrane and opening local immune dis-
order in fetal membrane tissue. Moreover, about half of
the host genes encode fibronectin and collagen. It can be
explained that these circRNAs act as communication

TABLE 4: Routine blood examination after delivery.

Indicators PROM (n= 4) NC (n= 4) P value

WBC (109/L) 13.97Æ 4.61 14.12Æ 3.09 0.9580
RBC (1012/L) 3.78Æ 0.49 4.02Æ 0.55 0.5375
Hb (g/L) 123.00Æ 9.76 120.50Æ 14.93 0.7887
PLT (109/L) 190.75Æ 50.59 181.75Æ 52.77 0.8137
NEUT% 77.95Æ 4.00 85.20Æ 4.52 0.0533
NEUT# (109/L) 11.01Æ 4.23 12.11Æ 3.12 0.6901
LYM% 13.45Æ 3.97 9.25Æ 2.94 0.1397
LYM# (109/L) 1.77Æ 0.38 1.25Æ 0.22 0.0554
MONO% 7.70Æ 0.52 4.73Æ 1.28 0.0051
MONO# (109/L) 1.09Æ 0.43 0.66Æ 0.21 0.1187
EO% 0.68Æ 0.67 0.70Æ 0.96 0.9671
BASO% 0.23Æ 0.19 0.13Æ 0.13 0.4128

WBC, white blood cells; RBC, red blood cells; Hb, hemoglobin; PLT, platelets; NEUT%, neutrophil percentage; NEUT#, neutrophil counts; LYM%, lymphocyte
percentage; LYM#, lymphocyte counts; MONO%, monocyte percentage; MONO#, monocyte counts; EO%, eosinophil percentage; BASO%, basophil percentage.
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sentinels, which not only open the disorder of peripheral
blood leukocytes but also accurately transmit the signal to
the local fetal membrane, mediate the degradation and reor-
ganization of local tissue collagen, and finally lead to the
collapse of fetal membrane structure. At this point, prema-
ture rupture of membranes occurred.

This study still has some limitations. First, we analyzed
the circRNAs in PROM via bioinformatics methods, but
given the complexity of biological activities in vivo, the actual
specific functions of circRNAs should be further in-depth
explored and validated. Second, studies with a larger sample
size are needed to verify our results better. Thereby, more
systematic studies would be performed to gradually reveal
the complex roles of circRNAs in PROM in the future.

In conclusion, this study revealed the DECs in PROM for
the first time and suggested that these circRNAs may modu-
late the abnormal distribution of peripheral blood leukocytes
via circRNA–miRNA–mRNA mechanisms, then resulting in
PROM. Our study provides a novel insight into the patho-
genesis for PROM from circRNA’s view, and further studies
are warranted to investigate the specific regulatory mechan-
isms of circRNAs in PROM.
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