Hindawi Publishing Corporation
Applied and Environmental Soil Science
Volume 2011, Article ID 175473, 12 pages
doi:10.1155/2011/175473

Research Article

Estimation of Soil Moisture in an Alpine Catchment with

RADARSAT?2 Images

L. Pasolli,>2 C. Notarnicola,? L. Bruzzone,! G. Bertoldi,> S. Della Chiesa,>* V. Hell,?
G. Niedrist,>* U. Tappeiner,>* M. Zebisch,? F. Del Frate,® and G. Vaglio Laurin®

! Department of Information Engineering and Computer Science, University of Trento, Via Sommarive, 14, 38123 Trento, Italy
2 EURAC-Institute for Applied Remote Sensing, Viale Druso, 1, 39100 Bolzano, Italy

3 EURAC-Institute for Alpine Environment, Viale Druso, 1, 39100 Bolzano, Italy

#Institute of Ecology, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria

3 Department of Computer Science, Systems and Production Engineering, Tor Vergata University, Via del Politecnico, 1,

00133 Rome, Italy

Correspondence should be addressed to L. Pasolli, luca.pasolli@eurac.edu

Received 15 December 2010; Accepted 22 February 2011

Academic Editor: Mehrez Zribi

Copyright © 2011 L. Pasolli et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Soil moisture retrieval is one of the most challenging problems in the context of biophysical parameter estimation from remotely
sensed data. Typically, microwave signals are used thanks to their sensitivity to variations in the water content of soil. However,
especially in the Alps, the presence of vegetation and the heterogeneity of topography may significantly affect the microwave signal,
thus increasing the complexity of the retrieval. In this paper, the effectiveness of RADARSAT?2 SAR images for the estimation of soil
moisture in an alpine catchment is investigated. We first carry out a sensitivity analysis of the SAR signal to the moisture content of
soil and other target properties (e.g., topography and vegetation). Then we propose a technique for estimating soil moisture based
on the Support Vector Regression algorithm and the integration of ancillary data. Preliminary results are discussed both in terms
of accuracy over point measurements and effectiveness in handling spatially distributed data.

1. Introduction

Soil moisture content is a key parameter in many hydrologi-
cal processes. It controls the infiltration rate during precipi-
tation events, runoff production, and evapotranspiration [1].
Thus it influences both global water and energy balances. As
a consequence, the information about the spatial distribution
and concentration of soil moisture is of great importance
in both hydrological applications, such as floods predictions
in case of extreme rainfall events, watershed management
during dry periods, irrigation scheduling, precision farming,
and earth sciences, like climate change analysis and mete-
orology. When we move the attention to the mountainous
environment, such as the Alps, the scale of the spatial and
temporal variability reduces, due to the heterogeneity and
the variability of the environment [2, 3]. This aspect makes
the knowledge of accurate and reliable information on soil
moisture status much more complex and at the same time

important and critical for all the applications cited above
[4].

In the last few years, the increasing number of space-
borne sensors, with complete and frequent coverage of the
Earth’s surface, has determined an increasing interest for
the estimation of bio-geophysical surface parameters from
remotely sensed data. In this field, one of the most challeng-
ing problems is related to the estimation of soil moisture
content from microwave sensors, in particular Synthetic
Aperture Radars (SARs).

The sensitivity of microwave signals to the soil moisture
content depends on the influence of water on the dielectric
constant and has been well established in several studies
[5-7]. The challenge in the moisture content retrieval from
microwave signals is represented by the complexity and non-
linearity of the estimation process. Moreover, several studies
pointed out the sensitivity of the microwave signal to oth-
er target properties, such as the roughness of the soil and



the presence of vegetation, which introduce additional am-
biguities and nonlinearity in the retrieval process [8, 9].
In order to reduce these effects, several studies have been
carried out on the use of microwave data acquired with
multiple incidence angles, frequencies, and polarization con-
figurations. In particular, the combined use of C and L band
microwave signals has shown to be particularly suitable in
order to disentangle the vegetation contribution from that of
the soil [10]. However, most operative satellite systems (e.g.,
ERS-2, RADARSAT, and ENVISAT) have onboard a C-band
SAR sensor only, thus limiting the possibility of applying
multifrequency approaches in operative conditions. Another
possible solution is the integration in the retrieval process of
data acquired by optical sensors, which may provide useful
information for reducing the ambiguity due to the presence
of vegetation [11]. Concerning the polarization features,
the use of both co- and cross-polarized backscattering coef-
ficients has shown to be effective for the reduction of the
ambiguity in the signal due to roughness [12]. However,
even though the polarimetric approach has demonstrated to
be very promising, it has not been fully exploited yet due to
only recent availability of fully polarimetric satellite orbiting
sensors. Some recent papers deal with the use of polarimetric
RADARSAT?2 images. Hendrickx et al., 2009, validate the
RADARSAT? retrieved soil moisture values against ground
measurements and optical indices in semiarid areas provid-
ing promising results.

Topography is another important aspect (in addition to
the effects of vegetation and surface roughness) to be taken
into consideration when dealing with the estimation of soil
parameters. Satellite systems, in particular SAR systems, are
strongly affected by the topography of the area. Distortion
effects (i.e., foreshortening, layover, and shadowing) may
occur due to the side-looking acquisition geometry (specific
of the SAR sensor) and the presence of topography on the
ground. Even if these extreme distortion effects do not occur,
the SAR signal is affected by the local incidence angle and
the distance between the target area and the sensor antenna.
These topographic effects are usually taken into considera-
tion during the calibration of the data. However, when deal-
ing with mountain areas, such as the Alps, it is fair to expect
to have a nonnegligible residual contribution within the
signal due to the extreme topographic conditions [13]. Also
this contribution may significantly influence the sensitivity
of the microwave signal acquired by the satellite sensor to the
moisture content of the soil and consequently could further
increase the complexity of the estimation problem. However,
limited effort has been devoted to this challenging aspect in
the assessment of soil moisture in Alpine areas. For example,
Paloscia et al., 2010, investigate the effectiveness of ASAR
remotely sensed data in combination with optical images
for the estimation of soil moisture in the Cordevole area
(Veneto region, Italy). The analysis points out the significant
influence of the vegetation coverage on the backscattering
signal. However, the area of interest does not present
significant variability in terms of topography, thus limiting
the applicability of the presented analysis on other mountain
areas with different topographic conditions. Heitz et al.,
2010, correlated RADARSAT? backscattering coefficients to

Applied and Environmental Soil Science

ground measurements indicating that retrieved soil moisture
values are able to recognize the topographic soil wetness
gradient.

From the methodological viewpoint, the retrieval of soil
moisture content can be considered as a mapping problem
from the space of the measured signal (i.e., the backscattering
signal) to the space of the desired biophysical parameter (i.e.,
the soil moisture content). This task is commonly addressed
by means of the inference of the desired mapping from
theoretical forward models, such as the Integral Equation
Model (IEM), with the use of iterative methods or nonlinear
machine learning techniques [12, 14]. Theoretical models
can describe a great variety of experimental conditions in
terms of acquisition parameters and target properties. They
ensure a high degree of generality to the estimation process
and the possibility to handle operative conditions in which
no (or very few) field ground truth is available. However,
the formulation of theoretical models is typically extremely
complex and involves a certain number of input parameters,
thus making the inversion process nonlinear, analytically
nontractable, and ill posed. Another critical point is the
fact that theoretical models may relay on simplifications and
approximations of the physical phenomena which may not
be completely verified in the field especially in presence of
complex environmental conditions [15]. This could be the
case of the Alpine environment, due to the presence and
heterogeneity of the vegetation coverage together with the
effect of topography. These issues could significantly affect
the accuracy and reliability of the estimation.

All these aspects make the problem of the character-
ization of soil moisture in alpine areas from remotely sensed
data extremely complex and challenging. With the prospec-
tive of the integration of soil moisture estimates in real appli-
cative scenarios, like those cited above, it is important to have
a clear comprehension of the possibilities, but also the limi-
tations, of the new generation satellite SAR sensors in com-
bination with advanced state-of-the-art methodologies for
the retrieval of soil parameters in the Alpine environment.
Although some works in this direction have started, further
analysis is required. The SOFIA project (SOil and Forest
Information retrieval with RADARSAT?2 images) inserts in
this context and aims at investigating the capability of new
generation polarimetric RADARSAT? satellite SAR sensors
in combination with advanced state-of-the-art methods for
the estimation of soil and forest biophysical parameters in
the Alpine environment. This paper introduces the rationale
behind the experimental analysis carried out in the context
of the SOFIA project for the specific topic of soil moisture
estimation. The main objectives of the proposed work are

(i) to present the test area and the setup for the ground
measurements,

(ii) to analyze the sensitivity of the RADARSAT?2 polari-
metric data on the soil moisture content in an Alpine
catchment and the necessity to integrate SAR images
with ancillary data,

(iii) to present the first results of soil moisture estimation
derived from the inversion procedure based on the
Support Vector Regression technique.
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FIGURE 1: Study area of the SOFIA project: (a) Alto Adige Province and (b) Mazia Valley, with the localization of the fixed measurement
stations. The stations called “Transect” are the most complete ones, including 4 soil water content sensors in each station at two depths (5
and 20 cm). The stations called “Catchment” include one soil water content sensor at two depths (5 and 20 cm).

The rest of the paper is organized as follows. Section 2 intro-
duces the study area on which our analysis is focused and de-
scribes the dataset adopted. The analysis of the sensitivity of
the RADARSAT? data to the soil moisture content is present-
ed in Section 3, while Section 4 is devoted to the proposed
estimation algorithm and to the experimental setup for its
validation. Section 5 shows the first experimental results
achieved. Finally, Section 6 draws the conclusion of the work.

2. Study Area and Dataset Description

2.1. Study Area. The study area of the SOFIA project is
the Alto Adige Province, located in Northern Italy (see
Figure 1(a)). Alto Adige covers an area of about 7400 km?
with a lowest altitude of 220 m and a highest one of 3900 m.
Historical climate observations have proved that the climate
in the Alps has changed significantly. In the future, the
strongest climatic change in the Alps can be expected for the
summer months with much drier and warmer conditions in
all regions, particularly in the southern part [16]. In addition,
climate models agree on a higher interannual variability [17].
This means on the one hand increasing drought periods
(summer), while on the other hand higher probability of
heavy rain (winter). These variations may have a strong
impact on the water availability [18] for agricultural and
human purposes and may be strongly related to natural
hazards such as floods and landslides [19].

Thus, Alto Adige represents an interesting test site for the
following reasons:

(i) high vulnerability to climate change in fields highly
connected to the projects objectives (drought, lack of
water, natural hazards, yield),

(ii) representativeness at least for the central and south-
ern Alps,

(iii) high diversity of land use with almost all types of land
use of central European mountain areas,

(iv) good data supply, good contact to partners and access
to the results of several scientific projects.

Within the Alto Adige area, the Mazia valley (Figure 1(b)),
and represented by the red contour in Figure 1(a), a small
side valley into the Venosta valley, has been chosen for
the first investigations on soil moisture content estimation.
Mazia valley covers an area of ca. 100 km? with altitudes that
vary from 920 meters a.s.l. (Sluderno) to 3738 meters a.s.l.
(Palla Bianca). The area is almost dry, with mean annual pre-
cipitation of 525 mm (Mazia, 1580 meters a.s.l.). However,
wet patterns with higher soil moisture can be observed
mainly due to irrigation practice in highly intensively man-
aged meadows (in the valley floor) and the presence of
wet buffers along small rivers going down from the top of
the mountains. The land use types present in the area are
well representatives for the whole South Tyrol, thanks also
to the high variability in altitude. Meadows and pastures
present heterogeneous characteristics in terms of vegetation
species and human usage, becoming less intensively managed
moving from the lower to the higher altitudes.

The valley is equipped with 16 fixed stations for the
measurement and monitoring in time of soil parameters
(moisture content at 5 and 20 cm depth) and meteorological
data (air temperature and humidity, precipitation, wind
speed and direction, solar radiation) [20]. The stations
are distributed along the valley in locations representative
of different elevation, slope, aspect, soil type, and land
cover conditions (see Figure 1). Meadows and pastures are
a significant presence in the valley. All these conditions make
this area particularly suitable for sampling the high spatial
variability typical of the mountain environment.



FIGURE 2: RADARSAT? image acquired on July 21st, false color RGB
composition (R =HH, G=HV,B=VV).

2.2. Satellite Imagery. During the summer of 2010, two
images were acquired by RADARSAT 2 over the Mazia valley
on 3rd June and 21st July. The sensor acquisition mode was
Standard Quad Polarization, with a mean incidence angle of
45° and an ascending orbit. The acquisition geometry has
been selected such that the area of interest, characterized
by a highly variable topography, was imaged minimizing
the layover and shadowing effects on the east side of the
valley, where a higher number of field measurement stations
are present. Original images were provided in single look
complex (SLC) format with pixel size of 4.93 m and 17.48 m
in azimuth and ground range directions, respectively. Thus
the data have been multilooked, calibrated, and geocoded
with the help of a high-geometrical resolution (2.5 meters)
digital elevation model and filtered with a Frost filter
(window size 5 X 5) in order to reduce the effect of
speckle noise. The final resolution of the processed images
is 20 m. All the preprocessing has been carried out with the
SARscape software (http://www.sarmap.ch/). Figure 2 shows
the results of the preprocessing in the case of the 21st July
image. Polarimetric features have been composed in this
RGB image in order to enhance the different information
content of each channel. On the west side of the valley, the
effects of geometric distortions (i.e., foreshortening, layover,
and shadowing) are particularly evident. These effects are
minimized in the east side, thanks to the specific acquisition
geometry selected.

2.3. Field Measurement Campaign. Contemporary to the
satellite acquisitions, two field measurement campaigns have
been carried out in the Mazia valley. The aim was to acquire
information on the soil parameters (moisture content and
roughness) and on the vegetation status (biomass and
vegetation water content) of meadow and pasture areas.
These measurements have been exploited during the project
for different purposes: (1) the calibration of the fixed
measurement stations located in the valley, in order to have
consistent information at these locations also in correspon-
dence to future satellite overpasses and acquisitions, (2)
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TaBLE 1: Ranges of variability of the dielectric constant (real part)
values measured during the field campaigns.

Meadow
June 2010  July 2010 June 2010 July 2010

Pasture

Min dielectric

6.7 3.8 6.4 3.2
constant value
Max dielectric 23.2 27 17.7 8.7
constant value
Average dielectric 16.7 15.4 11.6 5.7

constant value

the analysis of the sensitivity of RADARSAT2 measurements
to the properties of soils and vegetation in alpine areas, and
(3) the development and validation of the algorithm for the
estimation of the soil parameters from the satellite images.

Two different kinds of measurements have been per-
formed: (1) destructive measurements of both vegetation
and soil samples, by physically taking a sample of grass and
soil. This kind of sampling was necessary to have accurate
measurements of biomass, vegetation water content, soil
gravimetric moisture, and bulk density. All the samples have
been acquired, weighted, and then sealed in order to be
dried in the laboratory according to standard measurement
protocols [21]; (2) nondestructive measurements, which
where possible thanks to the use of a mobile sensor (the
Delta T WET 2 sensor, http://www.delta-t.co.uk/); these last
measurements regarded only the soil dielectric constant, but
had the advantage to be easier and faster with respect to
the destructive measurements, so that it was possible to
collect a higher number of samples. Sampling areas were
selected in order to ensure a good representativeness in terms
of local topographic and land use conditions. Moreover,
repeated measurements (3 to 5) were collected in each
sampling area and then averaged, in order to increase their
spatial representativeness. More than 350 dielectric constant
measurements were collected in more than 100 different
sampling areas. Both destructive and nondestructive field
measurements were concentrated on the west side of the
valley, due to the better imaging properties of the selected
acquisition geometry. Table 1 reports minimum, maximum,
and average values of the dielectric constant measured on
meadows and pastures during the two field campaigns. As
can be observed, meadows present higher and much more
variable dielectric constant values with respect to pastures,
which are in general drier. This is probably due to the
irrigation practice in some areas and to the differences in the
soil type and vegetation coverage of meadows with respect
to pastures. In fact, soil is quite heterogenous, ranging from
Cambisols, Humic Leptosols, and Podsols to locally limited
Planolsols and Histosols in hydromorphic areas. Also organic
content, grain size distribution, and bulk density are highly
variable even within areas of the same land cover type. On
meadows and pastures, the dominant soil type is brown
soil. Above the tree line, combinations of brown soils and
ranker appear. In the forest in contrary also semipodzols
are common, partly also the overlapping transition in
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FIGURE 3: Scatter plots of backscattering coefficients extracted from the RADARSAT? images versus dielectric constant measurements in the
case of (a) HH polarization configuration and (b) HV polarization configuration.

semipodzolidation of brown soils. Podzols are predominant
for coniferous forests. In the vicinity of streamlets also gley
may appear. Regarding the soil texture of fine earth, the
fraction of sand is dominant (45-75%), the fraction of silt
is quite variable (10-40%), and the fraction of clay is mostly
low (5-15%). Therefore, soil moisture measurements might
be an additional information to validate soil maps as well as
to understand the effect of soil texture and organic matter.

In this paper, we address the real part of dielectric con-
stant because it represents the dielectric properties to which
the SAR e.m. waves are particularly sensitive. The imaginary
part of dielectric constant is in general very low and in most
cases can be considered negligible [5].

2.4. Ancillary Data. To carry out the analysis presented in
this work, ancillary data already available or extracted from
satellite optical sensors have been considered. In greater
detail,

(1) a digital elevation model (DEM) with high spatial
resolution (2.5m) obtained from the processing of
airborne lidar acquisitions over the whole Alto Adige
area during a measurement campaign in 2008,

(2) two normalized difference vegetation index (NDVI)
maps extracted from two images acquired by the
NASA MODIS sensor onboard the Terra satellite as
close as possible to the RADARSAT? satellite over-
passes (i.e., within +1 day from the RADARSAT? ac-
quisition). MODIS is a multispectral sensor with 36
spectral channels which acquires information in the
visible and infrared portions of the spectrum with
daily coverage of the whole Earth’s surface. The high
temporal resolution of this system allows extracting
useful information of the area of interest maximizing
the probability to have cloud-free acquisitions as
close as possible to the date of interest. The spatial
resolution of the sensor is 250 m in the red and near-
infrared bands, the portions of the spectrum consid-
ered for the computation of the NDVI values,

(3) a high-resolution (25m) land-cover map of the
Mazia valley derived from ortho-photos, ground
surveys, and visual interpretation.

Ancillary data have been geocoded and resampled (bilinear
convolution) in order to be completely superimposed with
the RADARSAT? images.

3. Sensitivity Analysis

In order to understand the sensitivity of the RADARSAT?2
signal to the moisture content of the investigated area, scatter
plots of the backscattering coefficients at different polariza-
tion configurations versus the dielectric constant values were
generated. To this purpose, in the two satellite images a small
3 X 3 pixels region was considered in correspondence of each
field measurement point. Then the backscattering values
were averaged and the resulting mean value was associated
to the corresponding field measurement. Samples associated
to foreshortening and layover areas were discarded from the
analysis. Finally, considering both the acquisition dates and
both meadow and pasture land cover types, 75 samples were
used in the analysis. Figure 3 shows the plots in the case of
HH and HV backscattering coefficients (analogous results
have been achieved for the VV and VH configurations).

From a first analysis, it is possible to observe that the
points associated to meadows present an expected increasing
trend versus the dielectric constant values (more evident in
the case of the HH with respect to the HV polarization). On
the contrary, no clear trend can be recognized in the samples
associated to the pastures. In greater detail, these samples
show a high level of ambiguity (i.e., samples with similar
dielectric constant values present significant differences
in terms of backscattering coefficients) especially for low
dielectric constant values. As explained previously, different
target properties and external factors may affect the mi-
crowave signal acquired by the satellite sensor. Taking into
account the environmental conditions observed during the
field measurement campaigns, two factors can be considered
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FIGURE 4: Scatter plots of backscattering coefficients extracted from the RADARSAT?2 images versus dielectric constant measurements over
pasture areas and with dielectric constant values between 4.5 and 5.5 in the case of (a) HH polarization configuration and (b) HV polarization
configuration. The samples are grouped into 4 clusters according to the topographic features extracted from the DEM.

as mainly responsible for the variability and ambiguity ob-
served in the pasture samples: (1) the topography and (2) the
heterogeneity of the vegetation/land-cover. In the following,
these two aspects are better investigated with the help of
ancillary data, in order to understand if and to what extent
they affect the RADARSAT?2 measurements.

3.1. Effect of Topography. As explained previously, topogra-
phy significantly affects the signal acquired by a satellite SAR
system. In our case, although the calibration of the signal
was carried out with the help of a detailed digital elevation
model, residual topographic effects are expected to introduce
significant ambiguity in the backscattering coefficients. This
is expected especially for pastures, since they extend over
large portions of the valley sides, with altitudes ranging
from 1200 to 2400 meters. On the contrary, meadows are
mainly located in the valley floor, thus they present similar
topographic conditions.

In order to investigate the effect of topography on the
backscattering signal, the digital elevation model has been
exploited for the extraction of two topographic features:
the local incidence angle of the SAR signal (i.e., the angle
between the line of sight of the SAR sensor and the direction
normal to the surface within the resolution cell, which
takes into account the local topography of the area) and
the local altitude. The samples associated to the pasture
(which demonstrated the highest ambiguity in the SAR
signal, as shown in Figure 3) were divided into different
dielectric constant classes (e.g., below 4.5, between 4.5 and
5.5, between 5.5 and 6.5, and so on until 12.5; after this value
the number of samples is reduced and the variability limited,
as shown in Figure 3) in order to keep constant this variable
in the analysis. Then, according to the topographic features,
the samples of each class were grouped into four clusters:
(1) low altitude/high incidence angle, (2) low altitude/low
incidence angle, (3) high altitude/high incidence angle, and

(4) high altitude/low incidence angle. Intermediate condi-
tions were excluded from the analysis. Figure 4 shows the
resulting scatter plot for values of dielectric constant between
4.5 and 5.5 (which demonstrated the highest variability in the
backscattering coefficients) and both HH and HV polariza-
tion configurations. Analogous results were obtained for the
other dielectric constant ranges.

In the plots, it is possible to observe that samples with
similar characteristics in terms of altitude and local incidence
angle are quite close one to each other and located in specific
portions of the feature space. In greater detail, samples
acquired in areas with low altitude and high local incidence
angles of the SAR signal present the lowest values of the
backscattering coefficient. On the contrary, samples associ-
ated to areas with high altitude and low local incidence angles
are characterized by the highest backscattering coefficients.
The difference between these two extreme topographic con-
ditions is particularly enhanced and can be quantified in 8-
9dB for both HH and HV polarization configurations. The
samples with intermediate topographic characteristics, that
is, low altitude and low incidence angle and high altitude
and high incidence angle, are located between these two
extremes. It emerges that both the local incidence angle of
the SAR signal and the local altitude of the investigated area
affect the backscattering coefficient, introducing attenuation
or increase of its value. However, a certain level of variability
still remains in the data, as can be observed for example, in
the cluster of samples associated to high-altitude and high-
local incidence angle. This suggests that topography is not the
only factor that affects the SAR signal in these environmental
conditions.

3.2. Effect of Vegetation/Land-Cover Heterogeneity. As it was
observed in the Mazia valley during field campaigns, the
Alpine landscape is characterized by a high variability and
heterogeneity in terms of vegetation/land-cover. Meadows,
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FIGURE 5: Scatter plots of backscattering coefficients extracted from the RADARSAT?2 images versus dielectric constant measurements over
pasture areas and with dielectric constant values between 4.5 and 5.5 in the case of (a) HH polarization configuration and (b) HV polarization
configuration. NDVI values are shown for the samples which show strong residual variability in the backscattering coefficient value.

located in the valley floor, are intensively farmed and irri-
gated. The soil is typically homogeneous, flat in terms of
roughness, and the grass is typically thick. Cut events during
the summer period determine variations in the biomass of
the vegetation coverage. Pastures have completely different
characteristics. First of all, they are located on the sides of
the valley where the terrain becomes steep and the altitude
increases. The soil is heterogeneous, with the presence of
stones and in some cases of large rock’s areas when the
altitude becomes higher. Also the vegetation coverage is ir-
regular, presenting areas with a significant presence of grass
and others less vegetated or quite bare.

Vegetation influences the microwave signal by introduc-
ing an attenuation effect with respect to bare soils, as indi-
cated in several studies [22]. On the contrary, the presence of
stones and rocks as well as the irregularity of the surface may
increase the backscattering coefficient values, due to both
multiple reflections and the high irregularity of the surface.
Thus, these two factors may explain the residual ambiguity
and variability observed in the SAR signal after taking into
account the topographic effects. In order to verify this
hypothesis, we exploited the normalized different vegetation
index (NDVI) extracted from two MODIS Terra satellite
images acquired as close as possible to the RADARSAT?2 over-
passes. This index is sensible to variations in the green leaf
vegetation and thus in biomass. For the purposes of our anal-
ysis, it can be exploited as proxy to quantify the vegetation/
land-cover heterogeneity of the alpine area. In particular, this
index will have the highest values in presence of meadows
with dense and tall vegetation, while the value will pro-
gressively decrease moving to cut meadows or pastures with
lower vegetation coverage and an increasing presence of
rocks. NDVI values were associated to the samples presenting
similar characteristics in terms of dielectric constant value,
topography, and land use class (meadow or pasture) but
showing a residual variability in the backscattering values.

For the sake of brevity, in this paper, we will present the
analysis just for the samples of Figure 4, but good agreement
was found also for the other cases.

Plots shown in Figure 5 suggest that the NDVI can
explain the residual variability within the samples of each
topographic cluster. In particular, for each class of topo-
graphic conditions (e.g., high altitude/high incidence angle),
it is possible to observe that lower NDVI values are associated
to higher backscattering values and vice versa. This confirms
the hypothesis that also the vegetation/land-cover hetero-
geneity affects the SAR signal in the investigated area. It is
worth noting that the NDVI map considered for the analysis
presented above is characterized by a quite coarse spatial
resolution (250 meters) with respect to both the SAR images
and the heterogeneity of the landscape. However, it provided
useful indications (at least qualitative) for explaining the
variability inside the SAR signal. Further and more detailed
analysis will be carried out on this point, with the help of
higher geometrical resolution images.

The sensitivity analysis presented in this sections sug-
gests that the backscattering coefficients measured by the
RADARSAT?2 SAR sensor are sensitive to variations in the
dielectric constant of soils, thus to variations in the moisture
content. However, the microwave signal is also strongly af-
fected by the topography of the area (also after standard
topographic correction) and the heterogeneity of the vegeta-
tion/land-cover. These factors should be properly taken into
consideration for the retrieval of the moisture content of soils
in presence of these challenging environmental conditions.

4. Soil Moisture Estimation Technique

Due to the effect of topography and vegetation/land-cover
heterogeneity on the SAR signal, the retrieval of soil moisture
content in alpine areas becomes particularly challenging and
complex. Estimation approaches based on the inversion of



theoretical models may be not effective. Due to the high
complexity and heterogeneity of the physical phenomena
that affect the microwave signal, it is fair to expect that
theoretical models (which introduce in their formulation
several approximations and simplifications) will be not
reliable and accurate in the estimation. In order to deal with
this issue, a possible solution is the direct exploitation of
the information contained in the data acquired during the
field campaigns by means of nonlinear machine learning
techniques. In particular, in this work we propose to address
the estimation problem with the e-insensitive Support Vector
Regression [23], which presents properties suitable for the
challenges and constraints of the estimation problem of
interest.

Thanks to its formulation, SVR is able to handle complex
nonlinear estimation problems with good intrinsic general-
ization capability also in presence of a limited number of
training samples [24, 25]. Moreover, it easily handles high-
dimensional input spaces, also with features extracted from
different sources. These properties allow us to effectively
exploit the samples collected during the field campaigns to
infer the mapping between the SAR images and the target
variable and at the same time to integrate in the retrieval pro-
cess the information extracted from ancillary data. The latter
is required to properly take into account the effects of topog-
raphy and vegetation/land-cover heterogeneity on the input
SAR data.

4.1. e-Insensitive Support Vector Regression. Let us consider
a generic estimation problem. We would like to retrieve a
continuous variable y (e.g., the soil moisture content), given
asetx = (x',x%,...,x™) of m features extracted from the
signals acquired using remote sensors. From an analytical
viewpoint, the estimation problem can be expressed as

y=fx +e (1)

where f denotes the desired and unknown input-output
mapping and e is a Gaussian random variable with zero mean
and unitary variance gathering all the noisy contributions
affecting the considered estimation problem. The estimation
of y corresponds to the problem of determining the function
f" as close as possible to the true mapping f for the task
considered.

Given a set of N reference samples {x;, y; | i = 1,...,N},
the goal of the e-insensitive SVR technique is to find a
smooth function f’ that approximates f while keeping at
most a deviation ¢ from the targets y; [23]. To this purpose,
the original m-dimensional input domain is mapped into
a higher dimensionality feature space, where the function
underlying the data is supposed to have an increased flatness.
Thus it is approximated in a linear way:

fx)=w-0(x)+b, (2)

where w represents the vector of weights of the linear
function, ®(-) is the mapping that projects the samples from
the original into the higher-dimensional feature space, and b
is the bias.
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Ficure 6: Example of a possible choice of the e-insensitive loss
function characterizing the SVR learning approach.

The optimal linear function in the transformed feature
space is selected minimizing a cost function, which is the
combination of the training error (empirical risk) and
the model complexity (structural risk). The first term is
calculated according to a e-insensitive loss function, for
example,

0= |y-fx)] <¢g
A(s):{ ly-f x| <e 3

ly—f(x)—¢|l = |y-f®]>s

where ¢ is the tolerance to errors, that is, it allows one to
define an insensitive tube surrounding the function f’ (see
Figure 6). Equation (3) means that losses smaller than this
tolerance are neglected (thus increasing the robustness of
the technique to the small errors and to the noise in the
training set), whereas a penalty is assigned to estimates lying
outside the tube. Equivalently, the penalty is expressed by
means of nonnegative slack variables &,&*, which measure
the deviation of the training samples outside the e-insensitive
tube and are defined as follows:
E=MAe) = Ae) >0,
(4)
E = Ae) = Ae) <.

The second term is expressed through the Euclidean norm
of the weight vector w, which can be inversely related to the
geometrical margin of the corresponding solution and thus
(under a geometrical interpretation) to the complexity of the
model. Thus, the cost function to minimize becomes

N
P, §) = SIwlP+ CY (6 +7), (5)
i=1

and it is subject to the following constraints:
yi—[w-D(x;) +b] < e+,
[W . (D(Xi) + b] —yi= £+£i*,

§in6" = 0.

i=12,..,N, (6)
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C is a regularization parameter that tunes the trade-off
between the complexity (flatness) of the function f” and the
tolerance to empirical errors.

The constrained optimization problem in (5) can be
reformulated through a Lagrange functional, which leads in
the dual formulation to a convex (easy to handle) quadratic
problem (QP) and thus to a unique solution (global mini-
mum of the cost function). Leaving out mathematical details
(for those we refer the reader to [23]), the final result of the
estimation problem, in the original input domain, becomes

f(x) =D (0 —af)D(x;) - D(x) + b

ieN

= Z ((Xi — (X;k)k(Xi,X) + b,

iEN

(7)

where «; and o represent the nonzero Lagrange multipliers
of the QP and k(-,-) is a kernel function. The latter must
satisfy the Mercer’s theorem, so that it can be associated to
some type of inner product in the highly dimensional feature
space (i.e., k(x;,x) = ¢(x;) - ¢(x)). Thus, the kernel function
allows one to evaluate the similarity between a couple of
samples in the transformed feature space as a function of
the samples in the input space, that is, without the explicit
definition of the mapping function ¢(-). This strongly
reduces the analytical complexity related to the latter issue.
Commonly adopted kernels are polynomial functions and
Gaussian radial basis functions [24]. Lagrange multipliers
weight each training sample according to its importance in
determining the solution function f'. Samples associated to a
nonzero Lagrange multiplier are called support vectors. The
other samples have no weight in the definition of the result
since they fall within the e-tube (according to the definition
of the e-insensitive loss function). Consequently, to increase
€ means to reduce the number of support vectors. This will
increase the sparseness of the final representation of the data
at the price of lower approximation accuracy on training
samples. In this sense, ¢ quantifies the trade-off between data
sparseness and approximation accuracy of the model.

4.2. Estimation Algorithm and Experimental Setup. The re-
trieval process is divided into two phases: (1) the training of
the SVR algorithm and (2) the estimation phase.

During the training, the available training samples
(i.e., the measurements acquired during the field campaign
associated to the corresponding values of the microwave
signal extracted from the RADARSAT? images) are provided
to the technique in order to learn the underlying relationship
between the input features and the output target value.
Typically, the samples are divided into two subsets: the first
is used as training and the second is used as validation to
assess the estimation performance of the technique (in terms
of accuracy or other quality metrics) with different configu-
rations of the free model parameters. In our analysis, in order
to avoid problems related to the choice of the training and
validation sets, we applied a k-fold cross validation proce-
dure. Training samples are divided into k subsets. Iteratively,
k — 1 subsets are used for the training of the regressor
while the remaining subset is exploited for the validation.

At the end of the k iterations, the performance over the
validation sets is averaged. In this way, all the samples are
considered for both training and validation of the algorithm,
thus ensuring a high robustness and good generalization
of the training procedure. The selection of the best model
among different possible configurations of the free model
parameters (model selection issue) has been carried out by
means of a multiobjective model selection strategy, which
allows one to jointly optimize different and competing
quality metrics. In this way the model selection process
becomes more robust, since it relies on multiple criteria
and not just one. Moreover, multiple optimal solutions are
obtained according to the concept of Pareto optimality. Each
one represents a different tradeoff among the considered
quality metrics. The user has thus the possibility to choose
the configurations which meets the requirement in terms of
estimation quality related to the application considered. For
further details we refer the Reader to [26].

After the regressor is trained, it is applied to the multi-
dimensional image (which shall contain the same features
considered during the training of the technique) in order to
obtain the estimated moisture content map.

In our experiments, we considered a 5-fold for the cross
validation procedure and the mean squared error (MSE) and
the slope of the linear trend of estimated versus true target
values as quality metrics to drive the multiobjective model
selection. The optimal solution is selected on the basis of a
visual inspection of the estimated Pareto front (i.e., the set
of optimal solutions of the multiobjective model selection
problem). Concerning the SVR technique, we selected an
RBF Gaussian kernel and the following ranges for the model
parameters: [107%;10°] for y, the kernel width, [107%;10°] for
C, and [1074,10] for e.

As input features of the estimation system, we considered
the four polarimetric configurations of the RADARSAT?2
image: the altitude and the local incidence angle extracted
from the DEM as topographic features and the NDVI and
land-cover maps as features for the characterization of the
vegetation/land-cover heterogeneity. Different experiments
were carried out with different combinations of these fea-
tures selected according to a sequential forward selection
(SES) strategy, in order to define the subset of them that pro-
vides the best results in terms of estimation accuracy.

From an operative viewpoint, for the implementation
of the SVR algorithm, we considered the LibSVM software,
freely available online [27]. The multiobjective model selec-
tion and the sequential forward feature selection strategies
were implemented on our own using Matlab.

5. Experimental Results

5.1. Quantitative Assessment with Punctual Measurements. In
order to evaluate the estimation performance of the SVR
algorithm, different quality metrics were considered: the
mean squared error (MSE) (or equivalently the Root MSE
(RMSE)), which provides an information on the average
error over the estimates; the slope and intercept of the linear
regression line between estimated and true target values,
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TaBLE 2: Estimation accuracies achieved by the proposed algorithm
with the best input feature configuration.

Global Meadow Pasture
RMSE 2.68 4.05 1.68
R? 0.79 0.58 0.75
Slope 0.78 0.58 0.7
Intercept 2.26 7.15 2.3

which indicate whether and to what extent the retrieval
algorithm under- and overestimates the target variable with
respect to the ideal case of a one-to-one line; the determi-
nation coefficient (R?), which provides a measure about the
spread of the estimates around the linear regression line (in
the ideal case of a one-to-one line, this metric equals one).
These metrics were evaluated over the available reference
samples according to the 5-fold cross validation scheme
described before. As previously explained, different input
feature configurations were considered in the experiments
according to the SFS strategy. Here, due to space constraints,
we show and discuss the case with the input feature con-
figuration that provided the best performances, that is,
the configuration containing 2 polarimetric features (HH
and HV), the 2 topographic features (Altitude and Local
Incidence Angle), the NDVI, and the land-cover map. Table 2
presents the accuracies achieved by the proposed algorithm
in this case, while Figure 7 shows the scatter plot of estimated
versus measured dielectric constant values.

Globally, the achieved accuracies are promising, with an
RMSE of 2.68 and a determination coefficients near to 0.8.
Analyzing in more detail the results, it is possible to observe
that the retrieval algorithm provides better performance over
pastures with respect to meadows. In the latter case, the error
is slightly higher and the algorithm tends to overestimate
low values and underestimate high values of the dielectric
constant. This effect is probably due to (1) the range of
variability of the target variable, which is much larger in the
case of meadows with respect to pastures and (2) the number
of reference samples, which is lower in the case of meadows
with respect to pastures (see Table 1). Both these factors may
increase the complexity of the retrieval problem in the case of
meadows. Further effort will be put on this issue, in order to
better understand and, if possible, overcome the limitations
of the estimation over meadows.

5.2. Soil Moisture Content Maps. After the training phase and
the assessment over point measurements, the SVR algorithm
was tested over the distributed dataset available, that is, the
RADARSAT?2 images acquired in June and July over the
Mazia valley. The two images were provided in input to the
trained SVR with in addition ancillary data according to the
input features configuration considered for the training of
the algorithm. The results of this processing step are two
maps representing the estimated dielectric constant values
over the area of interest and are shown in Figure 8. The
masked values correspond mainly to forest, water bodies,
rocks, and urban areas, according to the land use mask.
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FIGURE 7: Scatter plot of estimated versus measured dielectric
constant values obtained with the proposed algorithm with the best
input features configuration.

From a qualitative viewpoint, the maps reproduce well
the expected trend of soil moisture content, presenting high
values near to the valley floor (where the irrigated meadows
are located) and progressively decreasing values moving
to the pastures at higher altitudes. At the same time, the
humidity patterns are well recognized, as for example, in the
case of the small rivers going down to the valley floor along
the side shown in the details of the maps (Figures 8(a) and
8(b)).

A comparison between the map of June and that of July
indicates that the soil in the second date presents a drier
behavior, especially in the lower part of the valley side, as can
be observed in the details shown in Figure 8. This trend is
confirmed by the field measurements carried out in the areas
during the two campaigns, as indicated in Section 2.3. In the
upper part of the valley side, the maps indicate a slightly
drier condition in the case of the June 2010 acquisition. This
behavior will be better validated with the help of the soil
and meteorological measurements provided by the stations
located in the valley, as soon as the data will be available and
properly calibrated.

6. Conclusion

In this paper, polarimetric RADARSAT2 SAR images are
exploited for the estimation of soil moisture content in an
alpine catchment. We first carried out a sensitivity analysis
with the help of field measurements of the target parameter
and ancillary data. This analysis pointed out that both
topography and vegetation/land-cover heterogeneity strong-
ly affect the backscattering signal acquired over alpine areas,
introducing a significant variability and ambiguity in the
data. The altitude, the local incidence angle, and the NDVI
revealed to be useful features to explain the high level of
variability intrinsic in the SAR data.

The following step was the development of a tech-
nique for the estimation of soil moisture content from
the RADARSAT?2 images. We opted for an algorithm based
on the e-insensitive Support Vector Regression technique.
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(a)

(®)

FIGURE 8: Maps of the dielectric constant of the east side of the Mazia valley: (a) 3rd June 2010 and (b) 21st July 2010. The small squares
represent a zoom over particular areas extracted from the maps of June and July (indicated with the white square).

Thanks to its formulation, this method is able to handle com-
plex nonlinear estimation problems with good generalization
ability also when a limited number of reference samples
is available. Moreover, it handles easily high dimensional
input spaces, also containing heterogeneous features. The
latter characteristic is important in order to integrate in the
retrieval process the information extracted from ancillary
data. Preliminary results achieved indicate that the proposed
technique is promising in terms of (1) capability to exploit
the information provided by the ancillary data to reduce
the ambiguity intrinsic into the SAR signal and address the
complex estimation problem in alpine areas, (2) estimation
accuracy over punctual measurements, and (3) capability
to reproduce the soil humidity patterns when applied on
distributed data.

Future development of this work regards first of all a
better characterization of the effect of vegetation/land-cover
heterogeneity on the SAR signal. This will be carried out with
the help of high geometrical resolution data. In particular,
the effect of rocks and stones on the microwave signal in
relationship to the retrieval of soil parameters will be ana-
lyzed. A second interesting development is the exploitation
of the polarimetric capability of the RADARSAT?2 sensor
by means of polarimetric decompositions of the signal, in
order to improve the feature extraction/selection process and
thus the retrieval of soil parameters. Moreover, an extended
validation of the algorithm, by exploiting the measurements
provided by the field stations in the Mazia valley and further
RADARSAT?2 SAR acquisitions over the whole Alto Adige
area will be considered. Finally, the availability of high
resolution spatially distributed surface soil moisture maps
coming from the RADARSAT? sensor can represent a major
improvement for the validation of distributed hydrological
models.
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