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The availability of light detection and ranging data (LiDAR) has resulted in a new era of landscape analysis. For example,
improvements in LiDAR data resolution may make it possible to accurately model microtopography over a large geographic area;
however, data resolution and processing costs versus resulting accuracy may be too costly. We examined two LiDAR datasets of
differing resolutions, a low point density (0.714 points/m2 spacing) 1m DEM available statewide in Pennsylvania and a high point
density (10.28 points/m2 spacing) 1m DEM research-grade DEM, and compared the calculated roughness between both resulting
DEMs using standard deviation of slope, standard deviation of curvature, a pit fill index, and the difference between a smoothed
splined surface and the original DEM.These results were then compared to field-surveyed plots and transects ofmicroterrain. Using
both datasets, patterns of roughnesswere identified, whichwere associatedwith different landforms derived fromhydrogeomorphic
features such as stream channels, gullies, and depressions. Lowland areas tended to have the highest roughness values for all
methods, with other areas showing distinctive patterns of roughness values across metrics. However, our results suggest that the
high-resolution research-grade LiDAR did not improve roughness modeling in comparison to the coarser statewide LiDAR. We
conclude that resolution and initial point density may not be as important as the algorithm and methodology used to generate a
LiDAR-derived DEM for roughness modeling purposes.

1. Introduction

Over the past several decades, geomorphologists, soil scien-
tists, ecologists, foresters, and hydrologists have increasingly
utilized terrain data for landscape classification [1–4], pre-
dicting forest communities [5], predicting soil properties [6–
9], and understanding riparian zones and their stream net-
works [10]. Due to improvements in data acquisition, com-
puting power, and storage capacity, terrain data has become
increasingly available at finer and finer resolutions and at
broader scales, from National Elevation Dataset (NED) and
Shuttle Radar Topography Mission (SRTM) to LiDAR.

Although LiDAR-derived DEMs have been shown to be
extremely accurate when compared to non-LiDAR generat-
ed DEMs [11], the accuracy of LiDAR-derived DEMs for

measuring landscape microtopography is debated [12]. This
can be due to data interpretation difficulties arising from abi-
otic (such as slope complexity) and biotic terrain factors (such
as evergreen vegetation and coarse woody debris) [13, 14].
LiDAR processing methods may also result in terrain inter-
pretation difficulties. For example, some researchers have
found LiDAR-derived DEMs to be oversmoothed [12], which
can minimize surface roughness and result in less topo-
graphic complexity. In contrast, others have found LiDAR-
derived DEMs effective at identifying features such as land-
slides, which can have complex roughness patterns [15].

Microtopography is an important variable to measure
for modeling water movement [16], geomorphology [17],
vegetation dynamics [18, 19], riparian communities [20, 21],
and surface roughness [22–24] or geologic features such as
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landslides and alluvial fan deposits [25, 26]. Modeling micro-
topography and its associated topographic variables may
result in improved estimates of water storage and infiltration,
a greater capability to identify wildlife habitat and facilitate
high-resolution digital soil mapping. For example, pit-and-
mound topography is a type of microtopography very com-
mon in natural-forested ecosystems that is commonly driven
by historical incidents of wind throw [27, 28]. Pit and mound
topography is known to occurmore frequently in areas prone
to shallow rooting such as landscapes with a shallow soil
depth to a water table or other restricting layer [29]. Pit and
mound topography may also result from differences in tree
species, ages of stand, and other vegetation-based variables.
The application of LiDAR data in identification of such land-
scapes may result in improved understanding of cooccurring
soil and vegetation at site-specific to regional scales.

Various methods have been proposed to measure surface
roughness including analysis of fractal dimensions, [30] iden-
tifying eigenvectors parallel to microsurfaces [15], and ana-
lyzing variograms associated with surfaces at multiple scales
[31, 32]. Othermethods includemeasuring the standard devi-
ation or range of elevation over a particular scale, measuring
variation of slope or curvature over multiple scales [33], and
calculating variability over a small scale while removing the
effect of the broader scale topography [25, 26]. Unfortu-
nately, a consistent, preferred method of delineating surface
roughness has not emerged given the diverse array of user
needs. Scale is also an important consideration, as variation
of slope or curvature calculated using a 10m resolution DEM
is measuring something very different than variation of slope
or curvature calculated using a 1m resolution DEM [34].

LiDAR data is becoming increasingly available for broad
scale coverage of terrains. Often, this data is collected using a
low initial point density (0.714 points/m2 spacing) [35] when
compared to research-grade datasets (10.28 points/m2 spac-
ing) [36]. A goal of this research was to first evaluate two
LiDAR datasets of differing initial point densities for relative
accuracy using a field survey as a control. A second goal of
this study was to evaluate roughness metrics derived using
multiple methodologies to assess the effectiveness of both
LiDAR datasets for characterizing surface roughness and
microtopography. In addition, microtopographic signatures
of several landformswithin our research site aremodeled and
described. Surface roughness is modeled using a 1m DEM;
surface roughness and microtopography are used inter-
changeably. Although one of the questions investigated in this
research is whether different soil units may exhibit different
patterns of roughness, because this research was undertaken
at a larger scale than available soil survey data, boundaries
from the soil survey were not utilized to aggregate roughness
data.

2. Methods

2.1. Study Area. This study took place in a 119 ha watershed
located in the Ridge and Valley Province of Pennsylvania,
USA (Figure 1) known as Leading RidgeWatershed One.The
elevation of the watershed ranges from 260m at themouth of
the watershed to 512m at the top of its northwestern border.

Since this watershed is in the Ridge and Valley Province, its
hydrologic network tends to form a trellis pattern instead
of the more common dendritic pattern typical of sandstone
and shale bedrock [37]. The geologic formation underlying
the watersheds consists of deeply dipping strata ranging from
resistant Tuscarora quartzite and sandstone at the top of the
watershed to less resistant Rose Hill shale that comprises the
valley area [37] (Figure 2). This terrain is consistent with that
which makes up most side slopes and ridges of the Ridge and
Valley Province, which is generally characterized by canoe-
shaped valleys and long, linear, parallel ridges formed by
differential erosion [37]. Ridges tend to be extremely steep
and rocky, and the topography is generally well drained [37].
This landscape has also been largely influenced by periglacial
processes of the late Pleisticene [38]. The watersheds contain
a mature oak/hickory forest approximately 100 years of age.

This study site was chosen due to its history as an exper-
imental watershed and the vast dataset that currently exists
for the site.The Leading RidgeWatershed research units were
established in Penn State’s Stone Valley Experimental Forest
of central Pennsylvania in 1959 as paired watersheds to study
the hydrologic response of different forest practices [40].This
watershed is also within the larger Shaver’s Creek watershed
which is being used as part of the Susquehanna/Shale Hills
Critical ZoneObservatory (CZO), an interdisciplinary obser-
vatory toward quantitatively predicting creation, evolution,
and structure of regolith as a function of the geochemical,
hydrologic, biologic, and geomorphologic processes operat-
ing in a temperate, forested landscape [41, 42].

Digital U.S. Department of Agriculture Soil Survey Geo-
graphic (SSURGO) data [43] and field verification with soil
pits and auger holes show that soil series in the upper half of
thewatershed are derived from sandstone colluviumand con-
sist of the Hazelton and Dekalb series (Typic Dystrudepts).
Sandstone and shale colluvium are the parent material for the
Laidig series (Typic Fragiudult) found on the lower part of
the watershed, the Buchanan series (Aquic Fragiudult) found
across the valley bottom on the southwest portion of the
watershed, and the Andover series (Typic Fragiaquult) across
the valley bottom on the southeast portion of the watershed.
Shale residuum is the parent material for the Berks (Typic
Dystrudept) and Weikert series (Lithic Dystrudept) found
on shale hills in the southern end of the watershed [43]
(Figure 3).

2.2. DEMData Sources. Two sources of LiDAR-derivedDEM
data were utilized for this project. The first data set was
collected in 2007 during leaf-off conditions as part of the
Pennsylvania base map (PAMAP) LiDAR program. After
spacing for the LiDAR returns used to generate the 1m DEM
was 1.4 meters, with a target vertical RMSE of 18.5 cm in open
areas and 37 cm in vegetated or forested areas. Points were
first classified as either ground or nonground points, with
ground points being thinned to create a TIN that fit the final
specifications by an independent vendor, BAE Systems. Using
company-specific proprietarymethods, an approximately 1m
resolution DEM was produced using the TIN. All finished
products were checked for quality and accuracy and were
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Figure 1: Site of the Leading Ridge Watersheds in Pennsylvania, USA.

shown to meet or exceed target Pennsylvania state-defined
RMSE requirements [35].

The second data set, CZO LiDAR, was collected in the
winter of 2010-2011 by the National Center for Airborne
Laser Mapping (NCALM). Initial LiDAR point density was
approximately 10 points/m2, with bare earth point spacing of
approximately 4 points/m2. Bare earth points were isolated
using TerraScan and then converted to a DEM using Golden
Software’s Surfer 8Kriging algorithmusing a linear variogram
model with a nugget variance of 0.15m and a search radius of
25m or 40m. Complete specifications can be found in the
2010 NCALM project report [36]. The final DEM resolution
of this dataset was also 1m. Final field-based RMSEmeasure-
ments were not calculated for this DEM, but errors on initial
point values were between 5 and 25mm horizontally and 15–
55mm vertically.

Although the LiDAR-derived DEMs from the PAMAP
program and the CZO LiDAR both have a 1m resolution,
many differences exist between the two datasets based on
their initial point density and subsequent processing tech-
niques. The PAMAP LiDAR was converted to a DEM using
a process based on creating a triangular irregular network

(TIN) from points classified as ground points using a pro-
prietary algorithm. This TIN was then converted to a DEM.
Conversely, the CZO LiDAR was converted to a DEM using
a kriging technique. Figure 4 presents shaded relief maps
created from each data set.The difference between the kriged
and TIN-based DEMs is expressed in the faceted appearance
of the shaded relief map of the PAMAP LiDAR dataset when
compared to the CZO-generated dataset.

2.3. Modeling. Surface roughness was assessed using four
methods: standard deviation of slope, standard deviation of
curvature, standard deviation of residual topography, and a
pit fill metric. These were chosen based on their appropriate-
ness for use at this scale and for geomorphometric analysis
[33]. ArcGIS (ESRI, Redlands, CA, USA) was utilized for
all roughness modeling. Standard deviation of slope was
calculated using focal statistics over a 5m by 5m moving
window of a slope layer measured in percent slope. A 5m
by 5m window was chosen in order to emphasize the fine
scale of microtopography that meets the mapping objective
for this study. This scale was chosen with consideration
to the resolution of the DEM and the types of features
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Figure 2:Map of the watershed showing approximate locations of contacts and the approximate arrangement of geology in the Leading Ridge
Watershed 1 (adapted from shields 1966 [39]). Rock formations are almost vertical in the watershed.

identified in the field that reflect microtopography of the
site. Similarly, a second roughness metric was calculated
using the standard deviation of curvature using a 5mmoving
window. Curvature was calculated for the LiDAR-derived 1m
DEMs using the curvature tool that measures a combination
of both plan and profile curvatures using the method of
Zevenbergen and Thorne [34]. Calculating curvature at this
scale is representing the microscale curvature of the surface,
not dominant surface features that would be traditionally
identified as curvature.

A third roughness dataset was created by characterizing
the difference between local elevation and residual topogra-
phy [25, 26, 33].Thiswas done by generating a new, smoothed
surface using a thin-plated spline on a resampled 10m
DEM. First, the LiDAR-derived 1 DEM was thinned to 10m
resolution. A regularized spline with a weight of 0 was fitted
to the thinned data, and the 10mDEMwas interpolated back
to a 1mDEM.The difference between the LiDAR-derived 1m
DEMand the resampled/splinedDEMwas calculated to show
localized differences from the broader scale topography.

The fourth metric of microtopography was the pit fill
metric, which measured the difference between a hydro-
logically corrected DEM (pits filled DEM) and the original
DEM. This method was proposed because it may be able to
identify pit and mound topography, vernal pools, and other
features of high ecological significance. In order to calculate

this layer, a filledDEMwas created using the fill tool [44] with
the LiDAR-derived 1m DEMs. The original DEM was then
subtracted from the filled DEM, and the values were summed
over a 10m area using the block statistics tool to improve
visualization of data.

2.4. Field Verification. Elevation values from the LiDAR-
derived DEMs were validated in the field with a total station
used to survey transects and microplots throughout the
watershed (Figure 5). Four transects were located perpen-
dicular to landform breaks throughout the watershed. Each
transect was approximately 100m in length, with one end
being in one SSSURGO [43] soil map unit and landform,
and the other end in a different soil map unit and landform.
Across each transect, elevations were measured at every
slope break (approximately 80 points per 100m transect).
Two microplots (10m by 10m squares) were chosen on each
transect in which a topographic survey was conducted across
all areas of slope change (Figure 5).

2.5. Statistical Analysis. In order to test and compare the
accuracy of the LiDAR datasets to actual elevations, root
mean square difference (RMSD) between the DEM-modeled
elevations and the surveyed elevations was calculated for the
CZO LiDAR dataset and the PAMAP LiDAR dataset using
the field survey points as control points. There were over 700



Applied and Environmental Soil Science 5

0 250 500125
(m)

Buchanan extremely stony loam, from 8 to 25 percent slopes
Hazleton-Dekalb association, moderately steep
Hazleton-Dekalb association, steep
Hazleton-Dekalb extremely stony sandy loams, from 0 to 8 percent slopes
Laidig extremely stony loam, from 8 to 30 percent slopes

Soil map units in Leading Ridge Watershed 1
Microplot locations
Transect locations
Andover extremely stony loam, from 0 to 8 percent slopes
Berks shaly silt loam, from 8 to 15 percent slopes
Berks-Weikert association, steep

Figure 3: USDA-NRCS SSURGOmapping units for the Leading Ridge Watershed with transect and plot locations.
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Figure 4: Shaded relief maps generated from PAMAP LiDAR (a) and CZO LiDAR (b). The TIN-based algorithm was used for the PAMAP
LiDAR and is visible in the shaded relief map. Small trails and streams are clearly more visible in the CZO LiDAR image.
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Figure 5: Differences between the surveyed elevations and PAMAP
and CZO LiDAR. All values in the key are in feet to match the
original units of the DEM.

points that were surveyed from benchmarks.These points are
the same as those used in field verification. Each point was
converted to a 0.3m raster cell using themean value of points
to assign a raster value. RMSD of the LiDAR-derived DEMs
was calculated using the formula RMSD = sqrt((1/𝑁) ∗
sum((𝑥−𝑥󸀠)∧2)), where𝑁 equals the number of cells/points,
𝑥 is the surveyed value, and 𝑥󸀠 is the LiDAR DEM value.

Roughness metrics generated from the PAMAP LiDAR
were analyzed by landform position to improve the under-
standing of the surface expressions of particular soil types.
Landform position was identified by analyzing slope, slope
position, soil characteristics, and microtopography patterns
and was classified as being either Top of Ridge, Top Slope,
Lower Slope, Valley Bottom, or Shale Hill. The different soils
found in the watershed could be expected to have different
surface characteristics that could be represented as microto-
pography. Landform position was chosen because it approxi-
mately represents both geology and soil, and soil boundaries
are not available at a fine enough scale to differentiate the
watershed.

3. Results

3.1. Field-Based Modeling. Root mean square differences
from both datasets tended to mimic one another although
there were some differences. The CZO LiDAR RMSD was
slightly larger than the RMSD for the PAMAP LiDAR with
values of 0.417m and 0.410m, respectively (Table 1). Dif-
ferences between DEM elevations and surveyed elections
ranged within about 1.5 meters for both datasets (Table 2).
RMSD values for both datasets were greater on hillslopes
(Figure 6) with slopes approaching 100%. RMSD values for
both datasets were also greater directly along the stream

Table 1: RMSD for PAMAP LiDAR and CZO LiDAR in the Leading
Ridge Watershed (in meters).

LiDAR Data source
CZO LiDAR PAMAP LiDAR

RMSD 0.417 0.410

Table 2: Difference between surveyed points and the CZO and
PAMAP LiDAR datasets (in meters).

LiDAR dataset Min
difference

Max
difference

Mean
difference SD

CZO −1.686 0.579 −0.311 0. 277
PAMAP −1.473 0.595 −0.317 0.259

channel. The mean difference between surveyed and LiDAR-
derivedDEMelevationswas−0.3meters (surveyed elevations
were on average about a third of a meter lower than the DEM
elevations).

3.2. Roughness Modeling. Due to differences in processing
algorithms of the two data sets and their respectiveDEMs, the
algorithms used to calculate the roughness metrics generated
roughness maps for each LiDAR product that appeared very
different at a fine scale, although the broad patterns of high
and low roughness were more consistent. In Figure 7, the
pit fill metric is shown for the PAMAP and CZO DEMs.
Both datasets presented similar patterns, with depressions
occurring on both tops of ridges and along valley bottoms.
Many of these depressions tend to be located along stream
areas in both datasets, and there is a clear line across the
middle of the slope where the prevalence of these depressions
increases. There is also an inverse relationship between the
rate of closed depressions and slope; areas on the watershed
with a higher slope also have a lower pit fill metric value.

The second roughness metric analyzed was standard
deviation of curvature over a 5 meter moving window
(Figure 8).Thismetric resulted in a very clear striping artifact
pattern approximately aligned to the dominant slope in the
CZO DEM. When the actual curvature values and shaded
relief maps were analyzed at a fine scale, it became apparent
that this striping was caused by the initial DEM processing
and its use of a kriging algorithm to generate the DEM
from the LiDAR points. Despite this striping, broad scale
patterns in roughness values were visible from this layer.
The PAMAP LiDAR did not display such striping artifacts
and showed similar broader patterns in roughness. Areas
of high standard deviation of curvature are found along
steeper rocky slopes and along linear features such as roads,
stream channels, and slope breaks. Features perpendicular to
the slope are prominent, particularly when compared to the
standard deviation of slope layer (Figure 9).

Patterns in the standard deviation of slope (Figure 9)
are similar to the patterns found in the standard deviation
of curvature (Figure 8), with both methods producing very
high values along linear features such as streams and roads.
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Figure 6: Close-up view of two plots and transect. Values represent the difference between surveyed elevations and LiDAR-derived elevations.
Images are overlain over shaded relief maps of corresponding DEMs. Values in the key are in feet to match the original units of the DEMs.

(a) (b)

Figure 7: Pit fill metric on 10 × 10 meter blocks from CZO LiDAR (a) and PAMAP LiDAR (b). White areas correspond to high roughness
values.

Standard deviation of curvature, however, tends to highlight
features perpendicular to the dominant regional slope, while
standard deviation of slope does not. Using the standard devi-
ation of slope metric, the top of Leading Ridge tends to have
low values, while the steepest portion of Leading Ridge and
the valley bottom both tend to have high values. Particularly

in the CZO LiDAR, small features on the landscape show up
with high values.

The last roughness metric (spline) was based on the
degree that the local topography differed from the regional
topography, andwas calculated by thinning theDEMand cre-
ating a splined surface, then subtracting the original from the
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(a) (b)

Figure 8: Standard deviation of curvature values for CZO LiDAR (a) and PAMAP LiDAR (b). White areas correspond to high roughness
values.

(a) (b)

Figure 9: Standard deviation of slope for CZO LiDAR (a) and PAMAP LiDAR (b). White areas correspond to high roughness values.

splined surface and measuring the absolute value to remove
negative numbers (Figure 10). Differences between local and
regional topography are in part due to artifacts from each
data sets’ respective interpolation algorithm, particularly in
the PAMAP LiDAR this time; however, in both data sets,
there is similarity in landscape patterns with high and low
roughness values. For example, high roughness values tend
to correspond to areas of high slope, and an area of low
roughness was highlighted along the top of Leading Ridge
and in the mid-slope area.

Visual analysis of all roughness metrics together allowed
for the identification of contrasting roughness patterns
(Table 3); descriptive statistics calculated for each roughness

metric per delineated landform and means are shown in
Table 4 (these values were calculated for the PAMAP DEM).
For example, the Top of Ridge position was characterized by
having high pit fill metric values, low values of standard devi-
ation of slope, low values of standard deviation of curvature,
and low values for the difference between splined surface and
regular surface. The Top Slope position exhibited an opposite
pattern. The Lower Slope was characterized by large amount
of variability in all of the roughness metrics, along with a
high value for the pit fill metric.The Valley Bottom contained
the highest values for all roughness metrics, while the Shale
Hill contained relatively low roughness values for all of the
metrics. Landforms in general have boundaries similar to
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(a) (b)

Figure 10: Difference between splined surface and original DEM for CZO LiDAR (a) and PAMAP LiDAR (b). White areas correspond to
high roughness values.

Table 3: Qualitative interpretive table used for visual interpretation.
Landformswere delineated using thesemeasurements. For example,
Top of Ridgewas delineated based on a low value for SD of curvature,
a high value for the pit fill metric, a low value for SD of slope, and a
low value for the spline.

Roughness metric
Top of
Ridge

Top
Slope

Lower
Slope

Valley
Bottom

Shale
Hill

SD of curvature (1) Low High Medium High Low
Pit fill metric (2) High Low Medium High Low
SD of slope (3) Low High Medium High Low
Spline (4) Low High Medium High Low

Table 4: Mean values of roughness metrics by landform delineated
by roughness metrics.

Roughness metric
Top of
Ridge

Top
Slope

Lower
Slope

Valley
Bottom

Shale
Hill

SD of curvature (1) 2.27 3.10 2.50 3.19 2.23
Pit fill metric (2) 0.08 0.01 0.03 0.30 0.02
SD of slope (3) 2.49 3.49 2.91 4.00 2.85
Spline (4) 0.21 0.29 0.29 0.49 0.26

soils; some soil types can be combined (e.g., Andover and
Buchanan in the Valley Bottom) given that there is no clear
difference in roughness metrics between them.

4. Discussion

We found that surveyed elevations were approximately 0.3
meters lower than the elevations measured by both LiDAR

datasets, with the largest differences occurring in areas of
high slope. This agrees with Spaete et al. [14] who found high
LiDAR-derived DEM error rates in areas with high slopes.
The presence of vegetation in the form of tree roots, coarse
woody debris, and evergreen vegetation could be the reason
the surveyed elevations were slightly lower than the modeled
elevations, as some LiDAR signals may have been reflecting
off of tree roots or coarse woody debris (CWD) instead of the
ground. Tenenbaum et al. [45] suggests that tree roots may
affect DEM results by creating noise in the original point
cloud data.This suggests that in forested settings, particularly
densely forested settings such as eastern deciduous forests,
there may be error in LiDAR-derived DEMs caused by
vegetation in the understory, coarse woody debris and roots
of trees, and leaf litter, even in leaf off conditions. In our study,
RMSD results were similar across the watershed, but this
could vary in different vegetation or landform settings. More
research should be conducted to explore whether this may be
due to topography or vegetation.

Both datasets represented roughness differently, which
may indicate that there is no clear advantage to research-
grade LiDAR for calculating roughness metrics unless ac-
companying resolution is also improved, such as moving to
a 0.5m resolution DEM. We suggest that for DEM genera-
tion and roughness calculations, initial point density is less
important than the algorithm type used to generate theDEM,
at least at the 1m resolution. A previous study analyzing
thinning of LiDAR ground points [46] found that initial
LiDAR point data can be thinned by at least 50% with
minimal effect to DEM accuracy, but that study was basing
their results on density of ground points, while this study
examined density of all points.Mitasova et al. [47] questioned
the appropriateness of using kriging methods to generate
DEMs from LiDAR point clouds, in part due to the high
initial density of LiDAR point clouds, which is also reflected
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Figure 11: Roughness landforms with bar graphs showing relative value of roughness indices for each landform.

in the results of this study. The kriging algorithm definitely
generated some periodic errors in the ground surface, as
expressed by the standard deviation of curvature metric.This
highlights that more research could be done to quantify the
impact of algorithm on roughness metric generation and
more care used in generating DEMs for different purposes.

By analyzing patterns of the different roughness metrics
(Table 3), we can delineate physiographic features based on
roughness. Figure 11 shows landforms with a graph of the
various roughness values for each landform. For improved
visualization, roughness metrics were converted to relative
roughness indices by dividing each mean roughness by the

highest mean roughness value for that metric. In Figure 11,
Valley Bottom features have the highest roughness values for
all four roughness metrics. Ridge Top features have relatively
low roughness values except for the pit fill metric, which is
high. The pit fill metric and the spline both indicate rougher
surfaces in the Valley Bottom than in other sites, while the
SD of curvature and the SD of slope are more similar across
formations. The Top Slope area has higher relative roughness
values for SD of slope and SD of curvature, while the Bottom
Slope and Shale Hills are fairly similar. The Bottom Slope still
has a relatively high value for pit fill metric, and the Shale Hill
has almost no filled pits.
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The Ridge Top feature has very high values in the pit fill
roughness metric which measures the difference between the
filled and original DEM.This may be due to terrain rockiness
or an interaction between the LiDAR beam and the high
density of ericaceous shrubs (e.g., blueberry, huckleberry,
and laurel) which may have created error in the DEM. The
ridge top soils are known to contain a high rock fragment
content [48], which may be reflected in these results. Even
though LiDAR data was collected during leaf-off deciduous
conditions, dense branching patterns of deciduous shrubs
could have resulted in erroneous pits being represented on the
landscape due to false ground points that have a higher ele-
vation. Some watershed areas, particularly rocky terrain and
mid-slope areas of thewatershedwhich have visually complex
terrain patterns, did not have a high surface roughness as
might be expected. In addition, talus areas in the watershed,
with rocks approximately 0.5m on a side, did not have high
roughness values using any of the metrics. This suggests
that other studies that have successfully modeled roughness
[25, 26] may have been detecting features on the ground such
as landslides and alluvial fan deposits that are seen on the
surface as larger features than the talus slopes in this study
area. This may also indicate that the scale of the LiDAR,
although extremely fine, is still not sufficient for predicting
talus areas under a canopy cover. Another factor that may
complicate roughness measurements at a finer scale is the
effect of coarse woody debris on the LiDAR signal. The noise
generated by forested terrain may be enough to obscure the
signal of rocks and other small surface features. Features that
have high roughness values using these roughnessmetrics are
larger features such as major slope breaks, stream channels,
roads and trails, and other man-made features. Textural
features such as rockiness occur on too fine of a scale to
be detected and measured using a 1m DEM. Much of the
modeled roughness on Leading Ridge seems to be from
intermittent and ephemeral flow channels which are very
dense in the lower portion of the watershed.

We found differences in the boundaries of soil series
and landforms associated with soil series boundaries when
using LiDAR-derived DEMs, which reflects mapping scale
differences between soil polygons as delineated from USDA-
NRCS SSURGOdata and our roughnessmetrics.However, by
incorporating roughnessmetrics into our analysis, wemay be
able to refine our soilmapping polygons and thus improve the
soil survey. For example, the presence or absence of a fragipan
could be expressed on the landscape as an increase in local
features created from increased pit and mound topography
caused by increased windthrow due to more shallow rooting
depth in these sites (due to a fragipan) [29].

5. Conclusions

When compared to a high-resolution ground survey, both the
CZO DEM and the PAMAP DEM had a RMSD of approxi-
mately 0.4m,with surveyed elevations being on average 0.3m
lower than DEM-modeled elevations. Therefore, research
suggests that research-grade LiDAR was not any more accu-
rate than the statewide LiDAR dataset. Additionally, we sug-
gest that the high-resolution research-grade LiDAR did not

improve roughness modeling in comparison to the coarser
statewide LiDAR. No single roughness method stood out as
the most effective at delineating physiographic landforms,
but when viewed simultaneously, roughness patterns relating
to the presence or absence of hydrogeomorphic features
were visible from the data and associated with landforms. A
question requiring further research is the effect that the algo-
rithm used to generate a DEM can have on resulting patterns
of surface roughness.
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