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Conventional soil maps are designed based on expert criteria, a characteristic that reduces their reproducibility and generates
subjective uncertainty. Pedometric mapping uses mathematical and statistical principles, which makes it the opposite of con-
ventional mapping. It was proposed to apply the pedometric mapping in SanMateo de Otao and �nd out its characteristics against
the conventional one. Satellite and �eld data were used to extract covariables (soil-forming factors) and soil classes. �e data were
modeled with Naı̈ve Bayes, global uncertainty was calculated by resubstitution, cross-validation and retention, and local un-
certainty with the confusion and Shannon indices. A low uncertainty map was obtained with six identi�ed soil classes, relief, and
parent material having the most important covariates. We conclude that pedometric mapping has considerable advantages over
conventional mapping and its application is possible under the context of soil survey in Peru.

1. Introduction

Conventional soil maps present the location and boundaries
of soil groups (mapping units); they are consolidated as a
basic input for the creation of new maps that diagram the
properties of the soils used for various purposes. Its main use
is for the development of land use plans, its evaluation, and
prediction of the e�ects of these uses [1]. �e main limi-
tations they have are the lack of an uncertainty value, soil
classes cannot be mapped and the relationship of the soil
with its formation factors is understood subjectively. Even if
they are well designed with geographic information systems,
Brevik et al. [2] emphasized that this method preserves the
limitations of paper maps, since the use of human criteria for
the synthesis and interpretation of the model of soil for-
mation factors leads to an accumulation of error that is
impossible to measure and far from randomness. Con-
ventional soil maps are considered obsolete and are opposed
to pedometric soil maps [3] that apply mathematical, sta-
tistical, and computational methods to model, interpret, and
map soils. Several countries use this method to produce soil
classes maps on national scales, Germany [4], India [5], Iran

[6], France [7], and the United States [8] are some examples.
�e common characteristic of all studies is a large number of
predictors and samples used to generate and validate the
models.�e rugged topography of the Peruvian Andes limits
the sampling process to a low density of soil samples, which
limits the use of computationally sophisticated mapping
methods. �e recent increase in the number and types of
remote sensing platforms is an opportunity to improve the
number of predictors, staying as a challenge using machine
learning models to increase the pedological understanding
[9]. Few soil studies in Peruvian territory use statistical [10]
or computational [11, 12] methods to map soils, commonly
conventional mapping is chosen [13]. Bayesian methods can
be used for small datasets; Steinbuch [14] showed that in
small datasets, an appropriate prior selection improves
overall accuracy compared to non-Bayesian methods. A
common and simple machine learning method that incor-
porates the Bayesian approach is Näıve Bayes. Incorporating
pedometric mapping into Peruvian soil surveys can provide
new knowledge of the relationship of soil and their for-
mation factors and the uncertainty value of the maps. It was
proposed applying pedometric mapping in the district of San
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Mateo de Otao to map soil classes using Näıve Bayes model
and understand the differences from conventional mapping.

2. Materials and Methods

2.1. Location. (e study area is a small catchment
(77.48 km2) located within the limits of San Mateo de Otao
district of the Huarochiri Province, Lima, Peru. (e main
Holdridge life zones (Figure 1(a)) were tropical montane
moist forest (TM-mf), tropical premontane perarid desert
(TP-pd), tropical montane steppe (TM-s), tropical lower
montane thorn steppe (TLM-ts), tropical lower montane
desert scrub (TLM-ds), and tropical premontane desert
scrub (TPM-ds). All life zones, except the TM-mf, are arid
ecosystems (evapotranspiration> precipitation). (e eleva-
tion varies from 1200 (TP-pd) to 4350 (TM-mf) meters
above sea level; as a consequence, the air temperature is very
variable. TP-ds and TPM-ds are the warmest areas
(22–24°C), TLM-ds and TLM-ts are cool zones (15–17°C),
and TM-s and TM-mf are the coldest (10–12°C) zones [15].
(e relative area occupied by each life zone was 21.60 (TM-
mf), 2.12 (TP-pd), 21.59 (TM-s), 33.69 (TLM-ts), 9.79
(TLM-ds), and 11.22 (TPM-ds) percent. Geology
(Figure 1(b)) consists of alluvial deposits (Qp-al), porphy-
ritic andesite (P-r), rhyolitic tuff (Nm-h), andesites (N-and,
J-ar), tonalities, diorites, and granodiorites (Ki-bc/p-di, tn;
Ki-bc/sr-tn, gd; PN-tn, gd) [16, 17].

2.2. Data Source. All the Landsat 8 images collection 1 and
level 1 (courtesy of the United States Geological Service) of
2018 were downloaded. (e dark object subtraction atmo-
spheric correction was applied using the semiautomatic
classification plugin [18] of the QGIS 3.10; clouds and
shadows were removed using the quality assessment (QA)
band. (e images were averaged to later perform the index
calculation. ASTER L1T satellite image from 07/12/2015,
Jaxa/Meti digital elevation model, WorldClim 2.0 climate
grids [19], and the integrated geology map [20] were used as
base inputs for the generation of representative variables of
the soil formation factors.

2.3. Soil Sampling and Analysis. (e sampling design was by
stratification of study area and free mapping (locations were
selected by convenience within the strata). (e limits of the
strata were equivalent to the limits of the homogeneous land
units. (e geological units were grouped into extrusive,
intrusive igneous rocks, and alluvial sediments. Life zones
were grouped by climatic affinity in four keys: 1 (TP-pd), 2
(TLM-ds and TPM-ds), 4 (TLM-ts), 5 (TM-s), and 10 (TM-
mf). (e landscape was classified using Zinck methodology
[21] in valleys (Va), extrusive mountain slopes (Le), and
intrusive mountain slopes (Li). (e homogeneous land units
were obtained by the intersection of the landscape and
grouped life zones (Figure 1(c)). A total of 64 samples (soil
profiles) were selected by free mapping and were taken
within each homogeneous land unit. Each sample (soil
profile) was evaluated by describing the pedon’s internal and
external characteristics. (en, the subsamples (horizons)

were evaluated in the soil laboratories of the National
Agrarian University La Molina. (e physical-chemical an-
alyses were carried out based on the Soil Survey Staff pro-
tocols ([22, 23]). Particle size distribution was carried with
hydrometer method, pH, and electrical conductivity in
suspension soil:water 1 :1, total equivalent carbonates by
acid digestion, soil organic carbon by Walkley and Black
method, cation exchange capacity with ammonium acetate
at pH 7.0, and exchangeable cations by atomic absorption
spectrophotometry with a Perkin Elmer model AAnalyst 200
equipment. (e soil classes were obtained with the soil
taxonomy system [24] down to the subgroup level.

2.4. Predictor Variables. (e digital elevation model was
processed with the basic terrain analysis module of the
SAGAGIS 6.4.0 to extract ten representative variables of the
relief factor. (e climate factor was extracted from
WorldClim v 2.0. and the ET was calculated using the cli-
mate and weather-evapotranspiration module of SAGAGIS
6.4.0, Hargreaves method. (e ASTER images were used to
calculate the quartz, carbonate, and mafic index [25] and
Landsat 8 for the Normalized Difference Vegetation Index
and soil biological crust [26]. (e complete description of
the variables obtained is found in Table 1.

2.5. Sampling Quality. (e objective of the sampling is to
obtain a fraction of representative individuals of the pop-
ulation whose distribution function is close to the pop-
ulation distribution. (is comparison was made graphically
by observing the histograms of the population and the
sample with the Scott method for the number of bins and
using the Kolmogorov–Smirnov hypothesis test at a sig-
nificance level of five percent (α� 0.05).

2.6.ModelingandUncertainty. (eNäıve Bayes method was
used including the soil classes as the response variable
(qualitative) and the predictor variables. (e method re-
quires conditional independence between the predictors
[27], but all of them were used for our model. Before
modeling, a Yeo-Johnson standardization and transforma-
tion were performed. (e database presented unbalanced
classes, a problem that was solved using an oversampling
balancing in the response variable. We use a Laplace
smoother of 100 and the kernel method to estimate the
density function without adjusting the bandwidth (value of
one).

General uncertainty measures were obtained with three
procedures: (1) by resubstitution, generating a confusion
matrix with the same data that the model was generated; (2)
by retention, dividing the total data set into 70 percent to
estimate the model and 30 percent for validation; and (3) 10-
fold cross-validation with 100 repetitions. Local uncertainty
was measured using the confusion and Shannon indices.(e
first was proposed by Burrough et al. [28] and measures the
degree of confusion between the two soil taxa with the
highest probability of occurrence. A class close to zero
means that two soil taxa are similarly likely to occur and
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values close to one that only one soil taxa dominate. (e
Shannon Index is very common in ecology and is used to
measure the diversity of species; we use the original formula
proposed by Shannon [29] with base e for logarithm and the
result units were bits. Values close to zero indicate the
predominance of few soil taxa and high values the existence
of several taxa at the same pixel. (e feature importance
based on the ROC curve was calculated using caret package,
the result was scaled between 0 and 100, and radar plots were
used to summarize the importance of the variables in the
prediction of each soil class. All procedures previously de-
scribed were carried out in R language [30] and caret
package [31].

3. Results and Discussion

3.1. Soil Description. Six soil classes were determined at the
subgroup level: twenty-three Lithic Torriorthents (LT),
thirteen Typic Torriorthents (TT), eleven Typic

Haplocambids (TH), five Sodic Haplocambids (SH), six
Fluventic Haplocambids (FH), and six Lithic Haplocambids
(LH). (ey are distributed in colluvial-alluvial parent ma-
terials (4.3% of study area), residual intrusive materials
(35.4%), and residual extrusive materials (60.3%). (e in-
trusive material was the product of the weathering of
granodiorites and diorites while extrusive material was of
andesite and volcanic tuff.(e sediments are coarse-textured
with alkali pH, a product of the interaction with the arid
climate.

3.2. Soil Sampling Quality. (e results of the Kolmogor-
ov–Smirnov test (Table 2) indicate that the ICO, RSP, PPT,
and RS differ from the population distribution. In the
graphic analysis (Figure 2), no marked differences are ob-
served, which indicates that the samples are representative of
the population and will not have negative repercussions on
the estimation of the proposed model.(is way of evaluating
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Figure 1: Holdridge life zones (a), geological map units (b), homogeneous land units, channel network and sample locations (c), and the
location of the study area (d).
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the quality of the sampling based on the predictors was
successfully tested by Carvalho [32].

3.3. Uncertainty Analysis. All validation results show that
the model is good (Table 3); global accuracy values are

greater than the noninformative ratio which confirms the
statement. (e result for resubstitution is the highest; un-
fortunately, the numerical value is not very useful because
when using the same data in modeling and validation, it
tends to be overestimated [33]. (e retention values were
0.67 and 0.60 for global accuracy and Kappa Index, re-
spectively, and are the lowest of the three methodologies.
(ese have the disadvantage of sacrificing samples for val-
idation in a context where samples less than 100 units are not
convenient. Accuracy with cross-validation is lower than
retention, but the confidence intervals overlap, showing that
both results are not statistically different. Cross-validation is
one of the most widely used methodologies in soil classes
pedometric mapping [34–36] which reinforces that cross-
validation is the most appropriate method to estimate global
uncertainty in the conditions of our study.

(e results are very promising compared to similar
studies. Silva et al. [37] obtained values of 0.49 and 0.33 for
the uncertainty coefficients using the random forest in 74
samples. Taghizadeh et al. [38] modeled the subgroups of
194 samples with ensemble models and obtained 0.43 of
global accuracy and Mirakzehi et al. [39] obtained 0.44 with
108 samples and random forest. Jeune et al. [40] obtained a
Kappa Index of 0.45 with multiple linear regression and 0.42
with random forest. All cases used k-fold cross-validation to
obtain the parameters, but the values are much lower than
ours.

(e local uncertainty (Figure 3) shows that in the lower
and upper part of the microbasin (lower left and upper right),
there is little diversity of soils (Shannon Index), but there is a
cooccurrence of the two most probable taxa (Confusion

Table 2: Population and sample comparison with Kolmogor-
ov–Smirnov test.(e null hypothesis is that sample and population
have the same distribution. Bold values are those that the hy-
pothesis was rejected.

Variable Statistical p value
MDE 0.075 0.864
PD 0.072 0.897
OR 0.069 0.925
ICO 0.229 0.002
CPP 0.103 0.508
CPL 0.088 0.708
LS 0.082 0.778
RSP 0.362 < 0.01
TWI 0.145 0.137
VD 0.156 0.088
ET 0.127 0.577
PPT 0.284 0.005
TM 0.081 0.967
WVP 0.103 0.820
WS 0.114 0.720
RS 0.243 0.023
QI 0.085 0.764
CI 0.087 0.719
MI 0.100 0.540
NDVI 0.154 0.098
CB 0.102 0.520

Table 1: Predictor variables description by soil-forming factor. Mean (µ) plus standard deviation (σ) and range (minimum, maximum) are
reported.

Name Units µ± σ Range
Relief
Elevation (MDE) m.a.s.l. 2739± 689.53 [1202, 4349]
Slope (PD) Percentage 70.97± 29.82 [0, 387.49]
Aspect (OR) Grades 194.99± 78.29 [2.62, 360]
Convergence Index (ICO) No units −0.04± 4.39 [−56.72, 93.72]
Plan curvature (CPP) No units 0± 0.02 [−0.17, 0.17]
Profile curvature (CPL) No units 0± 0.02 [−0.19, 0.16]
LS factor (LS) No units 12.16± 4.94 [0, 53.57]
Relative slope position (RSP) No units 0.38± 0.35 [0, 1]
Topographic Wetness Index (TWI) m2 5.52± 1.48 [1.86, 22.52]
Valley depth (VD) m 200.11± 163.82 [0, 663.53]
Climate
Annual cumulative evapotranspiration (ET) mm 1258.52± 98.99 [1066.92, 1414.09]
Annual cumulative precipitation (PPT) mm 348.53± 101.40 [135.95, 609.54]
Annual mean temperature (TM) °C 11.25± 3.03 [5.39, 16.59]
Water vapour pressure (WVP) kPa 1.06± 0.20 [0.71, 1.48]
Wind speed (WS) m.s−1 2.97± 0.28 [2.49, 3.54]
Total solar radiation (RS) kJ.m−2dı́a−1 17241± 445 [16357, 18295]
Parent material
Quartz Index (QI) No units 1.0± 0.0 0.99–1.01
Carbonates Index (CI) No units 1.01± 0.0 1.00–1.02
Mafic Index (MI) No units 0.99± 0.0 0.98–1.02
Organisms
Normalized Difference Vegetation Index (NDVI) No units 0.42± 0.16 0–0.96
Soil biological crust (CB) No units 0.84± 0.16 0.07–1.97

4 Applied and Environmental Soil Science



Index). (ese concepts can be used to delimit cartographic
consociations and associations. (e mean values of indexes
are 0.31 and 0.43; in general, we can say that the study area has
low pedodiversity. Lamichhane et al. [41] obtained similar
results for little soil diversity and a slight predominance of a
single taxon, with the exception of mountainous areas.

However, their study was carried out on a national scale (1 :
1000000) and as a result of a disaggregation process to es-
timate the distribution of taxa based on the cartographic units
of the soil. Odgers et al. [42] mentioned values of 0.1 and 0.9
to decide if there is confusion or not, these are very con-
servative, but using them as a reference, it is possible to affirm
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Figure 2: Histograms of population density (blue bars) and sample density (red lines).

Table 3: Global uncertainty parameters. Confidence interval (CI) and no information ratio (NIR) are reported for global accuracy analysis.

Global accuracy Kappa Index NIR
Mean CI Mean

Resubstitution 0.8610 0.7920–0.9140 0.8330
0.1680Cross validation 0.7433 0.6260–0.8606 0.6906

Retention 0.6290 0.4490–0.7850 0.5520
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Figure 3: Spatial distribution of local uncertainty. (e Confusion Index (a) shows the cooccurrence of soil classes and the Shannon Index
(b) is an indicator of the presence of more than two soil classes.
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that the blue areas have greater uncertainty. (is coincides
with the areas where the density of samples was lower due to
the harsh accessibility conditions.

3.4. Soil Classes Prediction. (e cross-validation model was
used to predict the probabilities of each soil class. A

threshold of 0.5 was used to decide the soil class to be
represented per pixel (Figure 4). Fluventic Haplocambids
cover 13.36 percent, Lithic and Typic Haplocambids occupy
11.28 percent each; 15.45 is occupied by the Typic Tor-
riorthents, 10.79 by the Sodic Haplocambids, and 37.84 by
the Lithics Torriorthents. Arid conditions, steep slopes, and
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Figure 4: Spatial distribution of soil classes at the subgroup level in soil taxonomy.(e black lines represent the boundaries of homogeneous
land units (MU).
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absence of vegetation favor the regressive evolution of soils
and result in the predominance of Torriorthents, especially
Lithic Torriorthents. (e map shows that Haplocambids
have random distribution and Torriorthents are spatially
aggregated. Despite the favorable climatic conditions for the
development of Aridisols, the other factors locally condi-
tioned their distribution.

Studies that seek to predict soil classes use an average of
20 covariates [43] and the most widely used are those related
to the digital elevation model, climate grids, and vegetation
[44]. Our study used 21 covariates where Topographic
Wetness Index (TWI), derived from the digital elevation
model, stands out in importance for the prediction of Lithic
Haplocambids, Sodic Haplocambids, Typic Torriorthents,
and Lithic Torriorthents (Figure 5). Fluventic and Typic
Haplocambids are more influenced by Total Solar Radiation
(RS), quartz (QI), and carbonate (CI) indices. (e irregu-
larity of the importance of predictors does not allow us to
indicate which soil-forming factor is the most influential for
the study area; however, in broad strokes, we can highlight
the relief and parent material.

Conventional soil maps represent the spatial distribution
of mapping units and abstractions of the soil boundaries
determined by photointerpretation [1]. In contrast, pedo-
metric maps show the distribution of taxonomic units or soil
classes. Consequently, conventional maps significantly un-
derestimate the area occupied by each soil class [45] having a
direct effect on the interpretation of the stakeholders.
Pedometric mapping also allows quantifying the uncertainty
of the final maps [46], data that is difficult to obtain with
conventional methods. Reproducibility is another factor
outperformed by pedometric mapping [47], using the
same data and computer codes, different users obtain the
same result. Some strong disadvantages are that pedol-
ogists require additional skills such as computational
and statistical knowledge [48]. In places where the
training of pedologists does not include these skills, it
leads to rejection in the adoption of these methods. (e
development of applied research on pedometric mapping
facilitates the migration from conventional methods and
shows the advantages of using the methodology in local
conditions.

4. Conclusion

Pedometric mapping applying the Näıve Bayes model
produced the soil map of San Mateo de Otao with low
uncertainty (accuracy� 0.77) and quantified the area oc-
cupied by each soil class. (e Lithic Torriorthents and Sodic
Haplocambids were the largest and smallest subgroups in
the district. An aggregate (Torriorthents) and random
(Haplocambids) distribution was observed present in the
maps, and relief and parent material were identified as the
most important factors in predicting soil classes. Everything
suggests a considerable advantage of pedometric mapping
compared to conventional mapping. (e application on San
Mateo de Otao and under the conditions of the soil survey of
Peru suggest that it can be used in the national territory. It is
recommended to continue investigating the application of

pedometric mapping at different cartographic scales and
with the most modern machine learning models.
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