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�e focus of this study was to evaluate the performance of the regional climate models with regard to simulating stream�ow,
sediment yield, precipitation, and temperatures. It is recognized that RCMs are not free of bias and uncertainty when simulating
climate variables. �e evaluation was about simulating annual climatology, annual cycles, and annual variability of climate
variables by statistical tools and stream�ow and sediment yield by SWATmodel output. �e study used observed and CORDEX
Africa-44 meteorological data for RACMO22T, RCA4, CCLM4-8-17, and HIRHAM5 models using grid points. �is analysis of
the mean annual rainfall cycle in the summer season shows that all RCMs were underestimated. However, RACMO22Tand RCA4
are better suited for simulating climate variables. �e higher errors were associated with the simulations of maximum and
minimum temperatures in the highest terrain area of the catchment. �e statistical analysis with climatology indicates that all
RCMwas performed inmuch the same way, except for the seasonal perspective. In this case, RACMO22Twas best able to simulate
stream�ow and sediment yield with PBIAS of 0.14, NSE of 0.91, R2 of 0.82, R2 of 0.72, NSE of 0.78, and PBIAS of −2.61%,
respectively. RCA4 simulated stream�ow better, but it underestimated the simulated sediment yield. �e result proved that
RACMO22T and RCA4 performed better in the upper �oodplain area. �e performance of the climate model varied with
catchments, locations, and terrains. �e output of this statistical and SWATmodel shows that climate models do not accurately
simulate hydro-climatological variables. Finally, this study showed that climate models were better at simulating the rainy season
than the dry season. �is integration of statistical tools and the SWAT model to analyze the RCM’s performance is a unique
method to improve the quality of the output for its implementation in maintaining water balance and sediment load reduction.

1. Introduction

Climate models are critical for simulating and predicting
current, and future climate impacts on the world’s water re-
sources through comprehensive simulations of precipitation
and temperature [1]. Predictions from RCMs using multiple
emission scenarios show that mean surface temperature, will
rise from 1.1°C to 6.4°C over the next 100 years and will be
simulated di¢erently by di¢erent climate models [2, 3]. �e
global climatemodel is very powerful and suitable for predicting
the e¢ects of climate change onwater resources, but with certain
limitations [4].�e importance of the general circulationmodel
(GCM) in providing climate forecasts and managing adverse

climate change is well known [5, 6]. However, the downscaled
RCMs are more reliable than the general circulation model
(GCM) in identifying and assessing the climate e¢ects caused by
rainfall; and surface temperature on sediment yield, river �ow,
and runo¢, [7, 8]. Ethiopia is severely exposed to drought due to
climate variability as a result of traditional agricultural pro-
duction, which leads to more di§cult adaptation to climate
change [9].�is expansion of traditional agricultural activity has
been causing land use dynamics, soil erosion, and sediment
yield [10]. �e Awash River basin is the most irrigated area in
Ethiopia, which is why many farmers consider it their food
security [11]. Climate change has recently been one of the causes
of agricultural depletion and sediment yield in the region,
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affecting many farmers who are normally under-economically
productive [12]. 'us, it is very important to evaluate climate
variability’s impact on water and sedimentation using various
RCMs to map and prepare adaptation options [13, 14]. Espe-
cially, incorporating a climate model by considering its per-
formance in precipitation and temperature simulations is very
important to pave the way for further study and understanding
of climate change’s impacts on surface runoff, sediment yield,
and groundwater [15, 16]. 'e development of a new RCM
leads to another opportunity for scientists to analyze the effects
of climate change in a discrete manner that relies on a regional
rather than global context [17, 18]. But climatemodels that have
been developedwith the specified resolution are not consistently
predicting and simulating the climate variables that are intended
to cause climate change [19]. Currently, many climate models
have been used to simulate rainfall, surface temperature,
streamflow, and other hydrological processes without con-
ducting their performance [20]. Hence, the assessment of cli-
mate model performance encourages researchers to prioritize
relevant climate models during climate change impact assess-
ments [21]. Because, the changes in precipitation and tem-
perature patterns, simulated by climate models, on the other
hand, affect hydrological processes and cycles [22, 23]. 'e
effects of climate change on the watershed boundaries by lo-
cation and extent are primarily determined by the basin
character, the hydrologicalmodel used, regional climatemodels,
and the flow index to be investigated [24]. On the other hand,
the hydrological effects of each set of entry meteorological data
were determined by comparing the resulting simulations with
the observed to detect and estimate the other effects [25].
Furthermore, hydrological cycles aremore vulnerable to climate
change, and their potential vulnerability has been studied,
particularly on surface runoff, groundwater, and streamflow,
using SWAT model [26, 27]. However, it has not been seen
when climate models by considering the performances are in
use to simulate streamflow and sediment yield except in a few
studies [28].'is study assesses and prioritizes the performance
of regional climatemodels, namely RACMO22T, CCLM4-8-17,
HIRHAM5, and RCA4 in simulating climate variables to de-
velop streamflow and sediment yield models. 'e minor
changes in climatic variables can lead to significant changes in
the water cycle, which subsequently cause big changes to
streamflow and sediment yield [29, 30]. 'e main innovative
part of this study was the incorporation of both statistical tools
and the SWATmodel to assess the performance of RCMs in the
simulation of climate variables, streamflow, and sediment yield
variation in a wide watershed concerning the observed inputs
[31]. 'e aim is to detect RCM data uncertainty in order not to
cause misleading SWAT model output for strategic
implementations.

2. Materials and Methods

2.1. !e Description of the Research Area. 'e lower Akaki
catchment is located in the upper Awash sub-basin, a pri-
mary tributary of the Awash River, and contributes directly
to the Abba Samuel Reservoir, which produces national
hydropower [32]. 'e catchment area is geographically
located at latitudes of 8°46′ to 9°14′ north latitude and

longitude 38°34′ to 39°04′ east, with a sub-basin area extent
of approximately 9116.78 km2 with a boundary length of
95.5 km as shown in Figure 1.

2.2. !e Climate. 'e Akaki River basin has a subtropical
alpine climate and is geographically close to the equator,
so the temperature is extremely constant every month.
'e monthly averages recorded for 25 years (1980–2006),
the average minimum and maximum temperatures are
7°C to 11°C and 21°C to 28°C, respectively. 'e lowest
temperature in the study area was 7°C, recorded in No-
vember and December, and the highest temperature was
28°C, recorded in March and May [33]. 'e main rainy
season in the Akaki basin was from late June to early
September, and the dry season was characteristic of De-
cember, January, February, and mid-March. In general,
the project area is expected to receive an annual average
rainfall of 1965mm.

2.3. !e Observation Data. Recorded data at stations in the
catchment is needed for two main purposes. First, we used
the observed data as a reference and compared it with the
simulation data from the four RCM models to identify the
available biases that facilitate performance estimation. 'e
second is used to predict simulated climate variables through
climate models in different regions, compare them with
reference data to see the depth of variability between them,
and label them according to performance.'is observational
data were recorded and collected from designated locations
at four stations found throughout the catchment area, as
seen (Table 1).

2.4. RCM Data. For the statistical analysis, the simulated
RCM from CORDEX Africa driven by two GCM
(CCMCanSEM2 and ICHEECEARTH) under the African
domain was used. 'e RCM models are good at simulating
the climate variables from a distance because they are
representative of the entire catchment with a spatial reso-
lution of 50 km (0.44°). 'e lists of this RCM used in this
study were summarized and depicted in Table 2 with their
simulation periods.

2.5. Soil Classification. 'e soil raster data used for this
research was obtained from the Ministry of agriculture and
developed by the Ministry of water resources and irrigation
in vector form. Basedon the data, the study area has six soil
classes, namely, Calcic Xerosols, Chromic Luvisols, Chromic
Vertisols, Eutric Nitisols, Orthic Solonchaks, and Pellic
Vertisols. 'e Eutric Nitisols soil is one of the dominant soil
classes in the Akaki Watershed, as shown in Table 3.

2.6. Land Cover. 'e general land use/cover pattern of the
Akaki catchment was broadly classified into eleven groups:
dense forest, residential, agricultural land, sparse forest,
grassland, shrubland, waterbody, and bare soil. Residential
areas are either towns, cities, and villages, or sparse
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settlements of households. Half of the entire catchment was
characterized by urbanization, composed of built-up areas,
residential, and paved surfaces that limit the infiltration
capacity of precipitation into the ground, and most of the
rainfall is converted into surface runoff that drains into
networks of rivers. As seen in Table 4, the most popular land

cover in the study area is dominated by Shrubland and
cropland to some extent. Land use/land cover change brings
hydrological impacts like runoff and discharge rates and base
flow that is altered, which in turn causes morphological
change to streams, and increases pollutant loads and de-
creases stream biodiversity [34].

2.7. HRU Analysis. In this study, the analysis of the model
output, mainly relies on the hydrological response unit level
than sub-basin level. 'ese combinations of HRU composed
of land use (10%), soil types (20%), and slopes (10%) are very
significant in modeling sediment yield, streamflow, and
surface runoff in most of the watershed regions [35]. 'e
Akaki watershed was composed of 78HRU in combination
that has unique land use, slopes, and soil which is varying
within the watershed regions. For this study, 10% land use,
10% soils, and 10% slope threshold combination were used
to evaluate the status of streamflow and sediment loading by
the selected regional climate models.
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Figure 1: Map of the study area.

Table 1: Input data, their sources, and lengths of records.

Data types Stations Length of
records Source of data

Meteorological
data

Addis
Ababa

1980–2006 Ethiopia NMABoneya
Akaki
Sebata

Streamflow data At outlet 1991–2016

Sediment data At outlet 2000–2008 Ethiopia MO
WIE

LULC and soil
data 2013
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2.8. Sensitivity and Uncertainty Analysis. 'e level of un-
certainty generated by the model during the simulation of
streamflow and sediment yield was reduced by uncertainty
analysis parameters. 'is uncertainty was overcome by the
uncertainty analysis method SUFI-2 during simulation,
particularly in calibrating streamflow. 'e reason for
choosing SUFI-2 over others was its best performance in
reducing the climate uncertainty generated by the model.
'e performance of both hydrological model (SWAT) and
regional climate models in this study were evaluated by
various time series-based metrics like Nash–Sutcliffe effi-
ciency (NSE), coefficient of determination (R2), and prob-
ability of bias (PBIAS).

2.9. Methods. RCM simulated data were extracted by
ARCGIS 10.4.1 using their gridded points found in the
surrounding catchment with observational locations. 'e
meteorological data extracted from RCMs were evaluated
considering the recorded one for quality during simula-
tion from weather stations. 'e RCMs’ ability to predict
these climate variables was evaluated by statistical tools
such as standard deviation, skewness, kurtosis, mean, and
other time series-based indices. Finally, the inverse dis-
tance weighted (IDW) was used to interpolate the other
representative of simulated variables from the neighbors’
stations in the catchment. 'e climate assessment was

based on the country’s climate conditions, which are
known and locally classified as spring (Belg), summer
(Kiremt), autumn (Tseday), and the dry season (Belg)
[36]. 'e study conducted on rainfall interpolation at the
watershed level using grid positions at meteorological
stations concludes that IDW is a more sophisticated
method for interpolation [37]. 'e study concludes that
the performance of regional climate models in simulating
climate variables differs slightly in terms of station density
and further varies with a limited number of stations. 'is
study used the IDW method for simulated rainfall in-
terpolation as a representative of other records in the
watershed, because of a limited number of grid points
available in the watershed. 'e IDW is superior to kriging
recognizing that the minimum RMSE improves the model
performance when using a small number of stations to in-
terpolate climate variables [19]. 'e flow chart of the
methodology shows the overall sequence of work from input
data to performance evaluation of the model (Figure 2). 'e
inverse distance weighting (IDW) method is mathematically
defined as shown in equations (1) and (2).

Vf �
􏽐

n
i�1 1/di

2 ∗Vi

􏽐
n
i�1 di

2 , (1)

where Vf is the interpolated value at the considered station,
Vi is the data at grid point i, di is the distance from grid point

Table 2: Lists of used RCMs with their founding Institutions.

No Models found institute RCM Simulation period
1 Swedish meteorological and hydrological institute, Rossby Centre, Sweden RCA4 1980–2005
2 Climate limited area modeling community (CLM com), USA CCLM4-8-17 1980–2006
3 Koninklijk Nederland’s meteorologists institute (KNMI), Netherlands RACMO22T 1980–2005
4 Denmark’s meteorological institute (DMI), Denmark HIRHAM5 1980–2008

Table 3: Soil types of the study area.

S. no Soil types Area coverage (km2) Coverage (%)
1 Calcic Xerosols 280.79 3.08
2 Chromic Luvisols 1777.77 19.50
3 Chromic Vertisols 1212.53 13.30
4 Eutric Nitisols 3245.58 35.60
5 Orthic Solonchaks 346.44 3.80
6 Pellic Vertisols 2260.96 24.80

Table 4: Land use classification.

S. No Land cover types SWAT-CODE Area coverage (km2) Percentage (%)
1 Dense forest FRSE 833.27 9.14
2 Sparse forest FRST 612.65 6.72
3 Shrubland RNGB 4276.68 46.91
4 Cropland AGRL 1984.72 21.77
5 Waterbody WATB 75.67 0.83
6 Residential SETL 45.58 0.5
7 Bare soil BARN 578.92 6.35
8 Grassland RNGE 686.49 7.53
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i to the station, n is the total number of grid points sur-
rounding the stations, d is the distance between two points
on the Earth’s surface, and r is the Earth’s radius.

d � 2r sin− 1
��������������������������������������

Sin2
ϕ2 − ϕ1

2
( ) + cos ϕ1 cos ϕ2Sin

2 ∅2−∅1
2

( )

√
 , (2)

where d is the distance between two points on the Earth’s
surface and r is the Earth’s radius.

�e regional climate model’s performance has been
assessed by applying additional statistical tools such as
BIAS, RMSE, and correlation (r), which is mathematically
shown in equations (3)–(5). �e closer the RMSE value to
zero, the best ©tness of climate models in simulation. �e
BIAS also measures the di¢erence between the observed
and simulated climatic variables, where zero indicates
good performance and values away from zero indicate
deviations from the observed data. �e correlation co-
e§cient (r), on the other hand, is the best tool that decides
the relationship between the mean simulated rainfall by
RCM and the observed data. �e value of (r) close to one
means that the model closely matches what had been
observed, and away from it, there is insu§cient matching
between the variables.

RCM performance assessments were performed
based on daily mean precipitation simulated by regional
climate models and varied spatially from observational

data recorded in catchment areas. In addition, the
spatial map for each RCM was developed with the ob-
servation map created by each station in the catchment
area to represent the rainfall distribution across that
catchment. �e study also includes how RCM repro-
duces the seasonal precipitation and temperature dis-
tributions associated with the year-to-year variability of
these climatic variables throughout the Akaki River
basin.

BIAS � 1
n
∑
n

i�1
(Si − Oi), (3)

RMSE �

������������
1
n
∑
n

i�1
(Si − Oi)2

√√

, (4)

r �
∑ni�1(Si − Sm)(Oi − Om)�������������

∑ni�1 (Si − Sm)
2

√ ��������������
∑ni�1 (Oi − Om)

2
√ , (5)

where S is the simulated value of the RCMs and O is the
observed value of the climate variable, i refers to the sim-
ulated and observed pairs, n is the total number of the pairs,
and m refers mean.

Input data for the model

Hydrological and
Sediment Data

Spatial Data

DEM

Watershed
Delineation

Soil map, LULC
and Slope Observed vs RCM

Statistical performance
of selected RCMs

Best performed model
by statistical tools

Sensitivity analysis for
streamflow and sediment yield Model Calibration & Validation

Annual
Sediment yield

Model performance
evaluationRe-run SWAT

Run SWAT model with
extreme scenario of best
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Figure 2: Flow chart of the methodology.
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3. Results

'e parameterization was applied to adjust the calibration
procedure with global modification terms relative to (r) and
replacement (v) based on soil types, LULC, slope, sub-basin
numbers, and locations. 'e sensitive flow parameters have
been effectively adjusted in the calibration process as the
basins are classified into different sub-basins with numerous
characteristics. Hence, prioritizing those parameters was
implemented during calibration with their intensity of ef-
fectiveness to simulate the streamflow. Based on the sen-
sitivity, Cn2.mgt, GW_DELAY.gw, Sol_AWC.sol,
ESCO.bsn, and SURLAG.bsn were classified as the most
sensitive flow parameters, while Alfa_Bf.gw, Ch_K2.rte,
Sol_K.sol, and GWqmn.gw were ranked as medium-sensi-
tive parameters along each sub-basin as seen in Table 5. 'e
best parameters were selected depending on the model’s
output during the simulation, and, the simulated values was
compared with observed streamflow data, which has been
concluded by [38] on similar subjects. Based on the cali-
bration and validation results, RACMO22T simulates the
streamflow very well compared with the observed and
performed best with the selected performance evaluation
parameters such as PBIAS = 0.14, NSE= 0.91, R2 = 0.82 for
calibration and PBIAS = 0.16, NSE= 0.90, R2 = 0.86 for val-
idation as shown in Figure3. Meanwhile, the RCA4, model
underestimates with R2 = 0.66, NSE= 0.73, PBIAS = 0.44 for
calibration and R2 = 0.70, NSE= 0.76, and PBIAS = 0.27 for
validation. 'erefore, the result obtained during calibration
with two regional climate models, RACMO22Tand RCA4 as
shown in Figures 4 and 5, indicates the model performed
well compared with the standard value set by the SWAT
model manual, as presented in Table 6.

3.1.Calibration andSensitivity Parameters for SedimentYield.
Sediment yield varies from sub-basin to sub-basin in a single
watershed region. 'is happened due to the land cover,
slope, and soil class available in the basin and the extent of
these watershed characteristics. 'e watershed characteris-
tics can vary the rate of water yield, surface runoff, and
sediment yield in catchments. Similar procedures have been
followed to model sediment yield at the outlet of the Akaki
River sub-basin. During the simulation of sediment loading,
sensitive parameters, seven highly recognized parameters
were ranked, which are USLE_P, CH_EQN, LAT_SED, and
USLE_C, and the next three (SPEXP, USLE_K, and
CH_ERODMO) parameters were determined to be highly
and medium sensitive, respectively, by using t-stat and p-
value. 'e other sensitive parameters were ignored due to
their less influence on changing the rate of sediment yield in
this basin. 'e six ranked sensitive parameters have been
given high priority for calibration and validation of sediment
yield as shown in Table 7.

'erefore, high and moderately sensitive six parameters
were taken as the most influential parameters based on the
associated low p-value and corresponding high t-stat values.
'e statistical results of the sediment calibration displayed
the good performance of the RACMO22Tmodel with an R2

of 0.72, NSE of 0.78, and PBIAS of −2.61% between the
simulated and observed with slight underestimation. 'e
scatter plot of the values of the measured and simulated
monthly sediment yield data also shows a good linear
correlation between observed and simulated indices as
shown in Figures 6(a) and 6(c) for calibration validation
using RACMO22T, Figures 6(b) and 6(d) for calibration and
validation using RCA4. On the other hand, the RCA4 model
underestimated sediment yield modeling both by statistical
tool values and SWAT model output with R2 � 0.65,
PBIAS� −7.69, NSE� 0.7. 'is study identified that RCMs
are more effective in modeling streamflow than sediment
yield.

3.2. Sediment Yields Spatial Map at the Sub-Basin Level.
Due to the combined effects of land use, land cover, weather,
and runoff conditions, sediment yields from each sub-basin
are varied.'us, the sediment yield spatial variability map in
the watershed was obtained by using the annual sediment
yield rate from each sub-basin area to indicate the most
severe sub-basin due to erosion severity classes. 'e spatial
map of sediment yield variability at a sub-basin scale for the
Akaki watershed was generated by the available, prone area
based on soil loss severity classes. Moreover, sub-basin
number 11 was designated as a severely affected area, 6 sub-
basins were extremely severely affected areas, 4 sub-basins
were highly affected areas, and the remaining one sub-basin
was designated as a low erosion prone area that is exposed to
sedimentation as seen in Figure 7. 'is study mainly
identified the watershed sediment severity classes from high
to severe, in which the first six sub-basins having an average
annual sediment load ranging from 73 t/ha/year were
identified as vulnerable areas. 'ese soil erosion critical sub-
watersheds are dominantly covered with agricultural areas,
urban, bare soil, and shrubland with a steeper mean average
slope as shown in Table 8. In general, 59.9 million t/year of
sediment yield is risking the catchment where the hydro-
power reservoir was found. All sub-watersheds that were
exposed to sediment yield were dominated by agricultural
and bare soil areas that needed immediate intervention to
minimize soil losses in order to protect the available hy-
draulic structure in the catchment.

4. Discussion

4.1. Evaluation of the Annual Rainfall Cycle from RCMs.
'e increase in warm climates has accelerated the dynamic
fluctuations of the water cycle, with changes in water balance
components changing precipitation patterns and runoff
magnitudes. Water stress is heavily influenced by climate
variables that determine the climate change that is triggered.
Indeed, different climate models developed by different
institutions around the world estimate, simulate, and predict
climate variables differently. 'ese regional climate models
are expected to simulate the most influential climate vari-
ables that influence climate change, such as precipitation and
temperatures, and reproduce the specific discrepancies be-
tween them. Precipitation in catchment areas was simulated
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Table 5: Description of parameters used for calibration, fitted value, and its sensitivity rank.

Parameters (SUFI-2) Description Lower Upper Fitted Rank
r_CN2.mgt Initial SCS runoff curve number −25 25 12.05 1
r_GW_DELAY.gw Groundwater delay 1 240 279.5 2
Sol_AWC.sol Available soil water capacity 1.23 52.6 36.12 3
r_ESCO.bsn Soil evaporation compensation factor 0.5 4 1.18 4
v_SURLAG.bsn Surface runoff lag coefficient 1.2 10.3 14.48 5
v_Alfa_Bf.gw Base flow alfa factor 3.2 8.23 7.05 6
r_Ch_K2.rte Effective hydraulic conductivity 0.12 12.3 6.03 7
v_Sol K.sol Soil hydraulic conductivity 0 31.5 16.72 8
v_GWqmn.gw Depth of water in the shallow aquifer 0 180 142.88 9
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and estimated using four selected regional climate models.
Seasonal statistical analysis applied to each catchment of the
entire river basin showed that CLLM4-8-17 and RAC-
MO22T underestimated annual precipitation during the
FMAM season in Addis Ababa and Sebata catchments with
BIAS of 28.6% and 17.5%, respectively. However, all models
underestimate the simulated precipitation during JJAS at all
stations, with the exception of the RACMO22T, which was
accurately estimated as shown in Figure 8. In fact, during the
important rainy season in this region (i.e., JJAS), the esti-
mates of RCA4 and RACMO22T were superior to the other
climate models of other regions.

In addition, most of the annual rainfall during the JJAS
season was reproduced in all climate models of the entire
river basin and was estimated at 78%. Apart from that, the
highest average annual rainfall during the JJAS season was
1701mm, recorded by RACMO22T. However, the mini-
mum rainfall recorded during the FMAM season was
337mm on the HIRHAM5 model. On the other hand,
average annual precipitation during the FMAM season was
overestimated by CCLM4-8-17 and RACMO22T with BIAS
of 28.6% and 17.5%, respectively, and underestimated by
RCA4 and HIRMA5 with BIAS of 49.9% and 22%, re-
spectively. 'e correlation coefficient of the RCMs with the
observed precipitation was good during the JJAS season, as
the coefficient of determination also reinforces and confirms
this conclusion. In fact, in many cases, there is no single
criterion other than a combination of RMSE, BIAS, and
coefficient of variation to indicate that the RCM has been
fully implemented. In a seasonal analysis of climate model
performance with statistical parameters, RCA4 and RAC-
MO22T performed best compared with other RCMs, as can
be seen from Table 9.

4.2. RCM Performance Evaluation Based on Average
Climatology. It is very important to evaluate climate models
in different ways to ensure their performance for use in

climate change impact assessments. 'e performance of
climate models is most often evaluated using the best sta-
tistical parameters that can estimate the differences between
observed and simulated data. In fact, the behavior of pre-
cipitation depends on the terrain, which in turn depends on
the complexity of the landscape of the area. During the
(summer season) Kiremt period in July and August, an
intensified with heavy wind-related rainfall was expected,
primarily in the catchment. However, from March to May
and June, mild rain was obligatory.'is is very important for
initiating agricultural-economic activities that greatly
progress in rural areas of the region. 'e results of the
statistical analysis of this study show that CCLM4-8-17
underestimates the precipitation estimates by 0.39mm to
1.47mm and an RMSE of 7.8mm/day. HIRHAM5 also has
an average gradient of 0.17mm to 0.46mm, and RMSE
underestimates precipitation (6.7mm/day). 'e RAC-
MO22T was relatively good, but precipitation was over-
estimated at the RMSE (−4.6mm) and BIAS (−0.21mm) at
Sebata stations. In addition, other models such as
CCLM4817 and HIRHAM5 underestimated precipitation at
Addis Ababa, Boneya, and Sebata stations. However, the
RCA4 and RACMO22T models were relatively good at all
stations, as seen from Table 10.

Seasonal analysis of the Akaki catchment clearly shows
that climate models can better simulate the rainy season than
the dry season. In general, RCA4 and RACMO22T were
optimal for simulating daily precipitation compared with the
other regional climate models evaluated in this study. Re-
garding the RACMO22T model, [19, 39] reached the same
conclusion. On the other hand, when assessing RCM per-
formance using correlation coefficients, the simulated pre-
cipitation from the two models (CCLM4-8-17 and
HIRHMA5) does not correlate well with the precipitation
observed at all stations in the catchment area. 'is simply
indicates that the simulated precipitation did not match
what was observed at the station. 'ese two RCMs were
poorly performed in the monthly precipitation simulation,

Table 6: Evaluation of RCMs performances by objective function directly from SWAT output.

Models Objective function Calibration (1991–2010) Validation (2011–2016)

RACMO22T
NSE 0.91 0.90
R 2 0.82 0.86

PBIAS 0.14 0.16

RCA4
NSE 0.73 0.76
R 2 0.66 0.70

PBIAS 0.44 0.27

Table 7: Sediment calibration parameters and their sensitivity rank.

Rank Parameters Description Fitted value Lower limit Higher limit
1 USLE_P USLE support practice factor 1.567 1 2
2 CH_EQN Sediment routing method 0.4321 0 0.7
3 LAT_SED Sediment intensity in LAT and GW 98.345 0 110
4 USLE_C USLE land cover management factor 0.026 0.03 0.6
5 USLE_K USLE soil erodibility factor 0.014 0 0.1
6 SPCON Linear factor for channel sediment routing 0.0063 0.0001 0.01

8 Applied and Environmental Soil Science



but the correlation values show a positive correlation with
what was observed. On the other hand, RACMO22T and
RCA4 had a better correlation at all stations, with a cor-
relation coefficient value of over 50% at Addis Ababa and

Boneya stations. Furthermore, as shown in Figure 9, when
the annual precipitation was simulated, the correlation of all
RCMs downstream of the Akaki River basin was insufficient
and did not meet the required standard.
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Figure 6: Sediment calibration with (a) RACMO22T and (b) RCA4 models and validation on (c) and (d).
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4.3. Evaluation of theMeanAnnualCycle of Temperature from
RCMs. Temperature is a key weather variable that is used as
an uncooked input for hydrological models in predicting the
state of affairs associated with hydrological processes.
Currently, both maximum and minimum temperatures
display growing traits in all catchments and symbolize
worldwide warming. Using those climate models that
simulate the maximum and minimum temperatures could
be very crucial to anticipating the destiny of weather al-
ternate influences on the hydrological process as they may
now or no longer display a steady mode of change from time
to time by underestimating and overestimating the variables.
As visible from Figure 10, CCLM4-8-17 and HIRHAM5
have underestimated the maximum and minimum tem-
peratures in the course of the spring season (FMAM) and
overestimated the minimum temperature in the course of
the summertime (JJAS). However, each maximum and
minimum temperature trait displays a growing trend in a
consistent manner from year to year.

During the winter season, all climate models underes-
timate maximum temperature besides RCA4, which displays
overestimation to an identical extent. However, nearly all
models overestimate the minimum temperature inside the
catchment by about 1/2% in similar seasons. RACMO22T
and RCA4 models indicate higher overall performance than
others in simulating maximum and minimum temperatures
throughout the seasons, especially in the simulation of
precipitation on this seasonal analysis. However, the max-
imum temperature at Akaki and Sebata stations has been
understated by all models in all seasons, except the RCA4
version, which was overestimated at Sebata Station in the
spring (FMAM) season. On the other hand, CCLM4-8-17
and HIRHAM5 models have been fairly biased and indicate
underestimation, while RACMO22T and RCA4 models are
additionally fairly biased but suggest overestimation. 'is is
to indicate that if the value of BIAS computed by statistical
parameters displays a poor value, it indicates that the
minimum temperature simulated by RCM is much less than
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Figure 7: Spatial variability map of sediment yield in Akaki catchment.

Table 8: Sub-basins’ dominant land cover, surface runoff, and sediment loading rate.

Sub-basins Area (km2) Land cover land use types SUR_Q (mm) Sediment yield (ton/ha)
1 381.04 63% AGR, 30% FRST, 7% WATB 206.95 67.08
2 1047.86 68% AGR, 32% RNGE 207.55 54.84
3 2095.72 75% RNGE, 25% AGR 282.39 109.63
4 1047.86 72% RNGE, 25% URBN 229.42 1.099
5 95.26 100% RNGE 258.82 1.47
6 571.56 65% AGR, 23% FRSE, 12% URBN 301.61 84.11
7 476.3 38% FRST, 48% AGR, 14% URBN 232.17 16.38
8 666.82 78% AGR, 22% RNGB 293.26 70.19
9 95.26 70% AGR, 13% RNGE, 17% URBN 111.86 19.05
10 476.3 51% AGR, 38% BARN, 11% RNGE 251.13 52.15
11 476.3 100% AGR 152.17 37.66
12 67.08 64% AGR, 36% RNGE 162.74 17.56
13 1619.42 36% AGR, 62% RNGB 258.92 18.92
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Figure 8: Mean annual cycle analysis of precipitation based on rain season occurrences from RCMs.
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Table 10: Statistical relationship between observed and simulated rainfall on a daily basis.

Stations Performance statistics CCLM4-8-17 RACMO22T HIRHAM5 RCA4

Addis Ababa
RMSE −7.8 3.8 −6.7 6.8
BIAS 0.6 0.5 0.46 −0.46
r 0.33 0.7 0.5 0.89

Boneya
RMSE 6.9 1.23 −2.8 1.7
BIAS 1.47 0.49 −0.46 0.50
r 0.4 0.5 0.4 0.4

Akaki
RMSE −2.7 5.4 3.4 1.8
BIAS −1.4 0.3 −0.4 0.5
r 0.3 0.6 0.2 0.6

Sebata
RMSE 6.3 −4.6 4.2 4.4
BIAS −0.39 −0.21 −0.17 0.19
r 0.41 0.52 0.45 0.56

Table 9: Performance of RCMs in reproducing annual precipitation based on statistical parameters.

RCM Seasons Mean annual rainfall (mm) Bias (%) CV (%) RMSE (mm/year) r-Factor (%)

Observed JJAS 1777 — 45.1 — —
FMAM 505 — 11.8 — —

CCLM4-8-17 JJAS 1653 7.5 59.8 60.8 0.45
FMAM 707 −28.6 24.3 71.4 0.21

RACMO22T JJAS 1701 4.5 44.3 26.9 0.72
FMAM 697 −17.5 34.0 67.9 0.51

HIRHAM5 JJAS 1148 54.8 34.6 222.4 0.36
FMAM 337 49.9 13.4 59.4 0.52

RCA4 JJAS 1351 31.5 23.4 150.6 0.46
FMAM 414 22 8.9 32.2 0.67
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Figure 9: Correlation coefficients (r) and RMSE of mean annual precipitation between simulated and observed at Akaki catcments.
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the gauged at the stations. Furthermore, a BIAS displays a
positive statistical parameter value that suggests RCM
overestimation. Hence, RACMO22T and RCA4 models
display minimum temperature overestimation to a few
degrees and are considered the best performing models. In
the case of maximum temperature, CCLM4-8-17 displays
complete underestimation, while others display underesti-
mation and overestimation characteristics. But HIRHAM5
displays a little more precise simulation of maximum
temperature than ever seen in this study. However, RCA4
and RACMO22T nevertheless display a few modified and
coherent conducts in the simulation of the maximum
temperature associated with the foundation. Even though

the value of RMSE is greater than one, the RCA4 and
RACMO22T display more precise closeness for simulating
maximum temperature than other climate models. Gener-
ally, the minimum temperature simulated by RACMO22T
and RCA4 with BIAS of 1.5°C and 1.8°C, respectively, in-
dicates a mild deviation between the recorded and simulated
minimum temperature. On the other hand, while RMSE was
considered to analyze the efficiency of these climate models,
RCA4 and RACMO22T were the best fits, and the other
models, such as CCLM4-8-17 and HIRHMA5, were highly
deviated with RMSE values greater than four, which became
a long way from one (standard) in any respect stations, as
was also concluded by [15]. However, maximum
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Figure 10: RMSE and BIAS of mean annual minimum and maximum temperature between simulated and observed at Akaki catchments.

Applied and Environmental Soil Science 13



1990

–1
0

1
2

3

Observed
CCLM4-8-17
RACMO22T

HIRHAM5
RCA4

Observed
CCLM4-8-17
RACMO22T

HIRHAM5
RCA4

Observed
CCLM4-8-17
RACMO22T

HIRHAM5
RCA4

St
an

da
rd

 A
no

m
al

ie
s

1992 1994 1996 1998 2000
Years

2002 2004 2006

1990

JJAS

ANNUAL

–2
–1

0
1

2
3 

St
an

da
rd

 A
no

m
al

ie
s

4
–2

–1
0

1
2

1992 1994 1996 1998 2000
Years

2002 2004 2006

1990

FMAM

St
an

da
rd

 A
no

m
al

ie
s

1992 1994 1996 1998 2000
Years

2002 2004 2006

Figure 11: Interannual variability of standardized rainfall anomalies during summer (JJAS) and spring (FMAM) seasons of moderate
rainfall.

Table 11: Correlation coefficient for precipitation, maximum, and minimum temperatures of four RCMs.

Climate variables Seasons CCLM4-8-17 RACMO22T HIRHAM5 RCA4

Precipitations
Annual 0.43 0.76 0.57 0.66
JJAS 0.29 0.52 0.18 0.43

FMAM 0.42 0.43 0.5 0.03

Maximum temperature
Annual 0.36 0.59 0.72 0.41
JJAS 0.25 0.4 0.53 0.29

FMAM 0.83 0.14 0.28 0.87

Minimum temperature
Annual 0.18 0.21 0.32 0.23
JJAS 0.18 0.046 0.052 0.12

FMAM 0.53 0.42 0.28 0.38
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temperature simulation with CCLM4-8-17 shows a signif-
icant underestimation with a BIAS of −4°C in all respect
stations. However, the other climate models display honest
bias that is now no longer taken into consideration as ex-
cessive biasness.

4.4. Interannual Variability of Precipitation and Temperature
Anomalies. 'e analysis of temporal patterns related to
rainfall and surface temperature distribution in the catch-
ment is very important to predict future climatological

variabilities such as flooding or drought and its conse-
quences. 'is interannual variability of seasonal precipita-
tion anomalies over the Akaki catchment is represented in
Figure 11 by the mean observed and simulated by four
regional climate models. 'e RCM used in this study
simulated precipitation and temperature anomalies that
differed significantly during wet (JJAS and MAM) and dry
(ONDJ) seasons. Almost all regional climate models pro-
vided good information and high accuracy in predicting and
simulating the rainy season as opposed to the dry season.
'is indicates that climate models have good performance
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Figure 12: Interannual variability of Standardized minimum temperature Anomalies of Akaki catchment.
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and capability in simulating mean precipitation during the
main rain season compared to temperate (dry) seasons. On
the other hand, RCMs showed better simulation for both
maximum and minimum temperatures during the tem-
perate (dry) season than during the wet seasons. 'is in-
dicates that the RCM’s performance in satellite extraction
trends and precipitation and temperature acquisition was
largely dependent on the season. In this case, both RAC-
MO22T and RCA4 perform better than others in capturing
seasonal annual precipitation fluctuations. However, espe-
cially in the summer (JJAS), which is the main rainy season,

the performance of all models except the RACMO22T de-
teriorated. However, with a few exceptions, most RCMs are
suitable for reproducing average precipitation during sig-
nificant precipitation periods. As for the correlation coef-
ficient, all RCMs show a relatively good correlation with all
the parameters considered in this evaluation, as depicted in
Table 11. In comparison, RACMO22T and RCA4 correlated
better than others, at 0.52 and 0.43, respectively, in simu-
lations of annual variation in summer precipitation. But in
the spring season, the regional climate models RACMO22T
and RCA4 have poorer performance compared with others,
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Figure 13: Interannual variability of standardized maximum temperature anomalies over Akaki catchment.
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with correlation coefficients of 0.53 and 0.30, respectively,
also concluded by [4].

In fact, the short precipitation period showed greater year-
to-year variation than the long precipitation period [40].
CCLM4-8-17 and RCA4 (on the other hand) performed well in
simulating the mean annual change in maximum temperature
during the FMAM season, with correlation indices (r) of 0.63
and 0.74, respectively. However, the RACMO22T and HIR-
HAM5 showed outshining performances for the summer
season.'e value of the correlation coefficient indicates that the
performance of all RCMs in the seasons is considered poor. So,
the annual variability of theminimum temperature anomaly for
this catchment area is less obvious Figure 12. In general, the
trend of change in mean maximum temperature was much
more pronounced in the temperate season than in the rainy
season, which shows a reverse case to the rainfall pattern in this
watershed as referred to in Figure 13.

4.5. Rainfall Distribution over Akaki Catchment by Spatial
Map. A spatial map is the most imperative way to identify
the deviation between the observed and simulated distri-
bution of precipitation and temperatures by developing a
spatiotemporal map. A recent study conducted on the spatial
interpolation of daily rainfall on systematic patterns at the
sub-basin scale has shown the comparison of different de-
terministic and statistical approaches [4]. 'e study also

indicated that the performance varied slightly according to
the density of the gauging stations and varied strongly for a
smaller number of stations. 'e developed spatial map from
average precipitations from different RCMs, indicated,
shows that most RCMs’ performance in representing
sampled locations from the neighboring stations through
interpolation was poor. In particular, the spatial distribution
of daily precipitation over the catchment was closely rep-
resented by CCM4-8-17, a highly intensive rainfall ranging
from 4.6mm/day to 5.8mm/day that showed similar ap-
proaches to the observed with limited area coverage.
However, it also shows the regular rainfall distribution
pattern by the spatial map from the RACMO22Tmodel over
the catchment area where the maximum precipitation
ranges from 2mm to 2.5mm in a day. In general, all RCMs
spatially represent daily rainfall with varying levels of per-
formance. 'erefore, the spatial map created Figure 14
shows that the spatial interpolated values of the distrib-
uted precipitation changed from the measurement station of
each RCM along the catchment area to the gauging
locations.

5. Conclusion

'is study examined RCM performance and sought to
simulate average annual climatology, interannual vari-
ability, and annual precipitation and temperature cycles in
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Figure 14: Spatial distribution of rainfall by four regional climate models at Akaki catchment.
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the Akaki catchment. 'is assessment identified many
uncertainties associated with RACMO22T, CCLM4-8-17,
HIRHAM5, and RCA4 regarding their simulation capa-
bilities that were estimated using statistical parameters and
the SWAT model based on root-mean-squared (RMSE),
BIAS, and correlation coefficient (r). 'e performance of
these climate models in achieving certain aspects of pre-
cipitation measurement indicates that the simulated and
observed climate variables did not show complete varia-
tion. However, RCMs show a practical significant deviation
when they simulate rainfall and sediment yield in the
catchment. In addition, despite their performance, it was
recognized that the values simulated by all RCMs had
reasonably biased that needed to be adjusted before being
applied for hydrological modeling. 'e results of the sta-
tistical analysis of this study show that CCLM4-8-17 un-
derestimates the precipitation time series-based indices on
a daily basis by RMSE with a deviation of 0.39mm to
1.47mm and 7.8mm. HIRHAM5 also underestimates
precipitation with an average gradient of 0.17mm to
0.46mm and an RMSE of 6.7mm/day. Overall perfor-
mance indicator shows that RCA4 and RACMO22Tmodels
were relatively good at all stations except the RCA4 with a
certain deviation in the simulation of climatological pa-
rameters. By comparison, RACMO22T and RCA4 corre-
lated better than others, at 0.52 and 0.43, respectively, in
simulations of annual variation in summer (Kiremt) pre-
cipitation. But in the spring season, RACMO22Tand RCA4
regional climate models were poorly performed, with
correlation coefficients of 0.53 and 0.30, respectively,
compared with others. On the other hand, the two models
simulated streamflow and sediment yield at different levels
of certainty. In this case, RACMO22T was good at the
simulation of both sediment and streamflow with better
time series-based indices. However, RCA was good at
simulating streamflow but underestimated sediment yield.
Furthermore, the developed spatial map by each RCM
shows the variation among them in simulating climate
variables. In general, the short-term precipitation season
experiences greater annual variability than the long-term
precipitation season. Seasonal analysis shows that climate
models are better suited for simulating the rainy season
than the dry season, and RACMO22T and RCA4 are su-
perior to others in all aspects of simulating the dominant
climate variables with better performance.
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