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This paper is dealing with the fuzzy clustering method which combines the deterministic annealing (DA) approach with an entropy,
especially the Shannon entropy and the Tsallis entropy. By maximizing the Shannon entropy, the fuzzy entropy, or the Tsallis
entropy within the framework of the fuzzy c-means (FCM) method, membership functions similar to the statistical mechanical
distribution functions are obtained. We examine characteristics of these entropy-based membership functions from the statistical
mechanical point of view. After that, both the Shannon- and Tsallis-entropy-based FCMs are formulated as DA clustering using
the very fast annealing (VFA) method as a cooling schedule. Experimental results indicate that the Tsallis-entropy-based FCM is
stable with very fast deterministic annealing and suitable for this annealing process.

1. Introduction

Statistical mechanics investigates the macroscopic properties
of a physical system consisting of several elements. Recently,
research activities that attempt to apply statistical mechanical
models or tools to information science have become popular.

The deterministic annealing (DA) method [1] is a deter-
ministic variant of the simulated annealing (SA) method
[2]. DA characterizes the minimization problem of the cost
function as the minimization of the free energy, which
depends on temperature and tracks its minimum while
decreasing the temperature, and thus it can deterministically
optimize the cost function at each temperature. Hence, DA
is more efficient than SA, but does not guarantee a global
optimal solution.

There exists a strong relationship between the member-
ship functions of the fuzzy c-means (FCM) clustering [3]
with the maximum entropy or entropy regularization meth-
ods [4, 5] and the statistical mechanical distribution func-
tion. That is, FCM regularized with the Shannon entropy
gives a membership function similar to the Boltzmann (or
Gibbs) distribution function [1, 4], and FCM regularized
with the fuzzy entropy [6] gives a membership function
similar to the Fermi-Dirac distribution function [7]. These

membership functions are suitable for the annealing meth-
ods because they contain a parameter corresponding to the
system temperature.

Tsallis [8] achieved nonextensive extension of the
Boltzmann-Gibbs statistics. Tsallis postulated a generaliza-
tion form of entropy with a generalization parameter q,
which, in a limit of q → 1, reaches the Shannon entropy.
Later on, Ménard et al. [9] derived a membership function
by regularizing FCM with the Tsallis entropy.

In this study, the membership function which takes
the familiar form of the statistical mechanical distribution
function is derived by maximizing the Shannon and fuzzy
entropy within the framework of FCM. Similarly, the Tsallis
entropy-based FCM membership function is derived [10, 11]
by maximizing the Tsallis entropy. Then, the formulations of
the free energy for these membership functions are calculated
and examined from the statistical mechanical viewpoint.

On the other hand, there are some representative cooling
schedules of the temperature for SA; for example, inversely
proportional to a logarithmic function and inversely propor-
tional to exponential function are well adopted. Rosen [12]
proposed the more effective method for SA known as very
fast annealing (VFA).
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However, an applicability of VFA to DA is not known
yet. In order to achieve good clustering by DA, a reliable
annealing process is desirable. Therefore, by introducing
VFA to DA, we formulate the Shannon- and Tsallis-entropy
based FCMs as very fast DA clustering, to examine their
reliabilities.

Experiments are performed on the numerical and iris
data [13], and the obtained results indicate that Tsallis-
entropy-based FCM clustering is suitable for very fast DA
clustering because of its shape of the membership function.

2. Entropy Maximization Method

Let X = {x1, . . . , xn}(xk = (x1
k , . . . , x

p
k ) ∈ Rp) be a data set in

the p-dimensional real space, which should be divided into c
clusters. In addition, let V = {v1, . . . ., vc}(vi = (v1

i , . . . , v
p
i ))

be the centers of clusters, and let uik ∈ [0, 1] (i = 1, . . . , c; k =
1, . . . ,n) be the membership functions. Furthermore, let

J =
n∑

k=1

c∑

i=1

umikdik (m > 1) (1)

be the objective function of FCM, where dik = ‖xk − vi‖2.

2.1. Shannon Entropy Maximization of FCM. First, we intro-
duce the Shannon entropy into the FCM clustering. The
Shannon entropy is given by

S = −
n∑

k=1

c∑

i=1

uik loguik. (2)

Under the normalization constraint of

c∑

i=1

uik = 1 (∀k), (3)

and setting m to 1, the fuzzy entropy functional is given by

δS−
n∑

k=1

αkδ

⎛
⎝

c∑

i=1

uik − 1

⎞
⎠− β

n∑

k=1

c∑

i=1

δ(uikdik), (4)

where αk and β are the Lagrange multipliers and αk must be
determined so as to satisfy (3). The stationary condition for
(4) leads to the following membership function

uik = e−βdik∑c
j=1 e−βdjk

(5)

and the cluster centers

vi =
∑n

k=1 uikxk∑n
k=1 uik

. (6)

2.2. Fuzzy Entropy Maximization of FCM. We then introduce
the fuzzy entropy into the FCM clustering.

The fuzzy entropy is given by

Ŝ = −
n∑

k=1

c∑

i=1

{
ûik log ûik + (1− ûik) log(1− ûik)

}
. (7)

The fuzzy entropy functional is given by

δŜ−
n∑

k=1

αkδ

⎛
⎝

c∑

i=1

ûik − 1

⎞
⎠− β

n∑

k=1

c∑

i=1

δ(ûikdik), (8)

where αk and β are the Lagrange multipliers [14]. The sta-
tionary condition for (8) leads to the following membership
function:

ûik = 1
eαk+βdik + 1

(9)

and the cluster centers

vi =
∑n

k=1 ûikxk∑n
k=1 ûik

. (10)

In (9), β defines the extent of the distribution [7]. Equation
(9) is formally normalized as

ûik = 1
eαk+βdik + 1

/
c∑

j=1

1
eαk+βdjk + 1

. (11)

2.3. Tsallis Entropy Maximization of FCM. Let ṽi and ũik
be the centers of clusters and the membership functions,
respectively.

The Tsallis entropy is defined as

S̃ = − 1
q − 1

⎛
⎝

n∑

k=1

c∑

i=1

ũ
q
ik − 1

⎞
⎠, (12)

where q ∈ R is any real number. The objective function is
rewritten as

Ũ =
n∑

k=1

c∑

i=1

ũ
q
ikd̃ik, (13)

where d̃ik = ‖xk − ṽi‖2.
Accordingly, the Tsallis entropy functional is given by

δS̃−
n∑

k=1

αkδ

⎛
⎝

c∑

i=1

ũik − 1

⎞
⎠− β

n∑

k=1

c∑

i=1

δ
(
ũ
q
ikd̃ik

)
. (14)

The stationary condition for (14) yields the following mem-
bership function:

ũik =
{

1− β
(
1− q

)
d̃ik
}1/(1−q)

Z̃
, (15)

where

Z̃ =
c∑

j=1

{
1− β

(
1− q

)
d̃ jk

}1/(1−q)
. (16)

In this case, the cluster centers are given by

ṽi =
∑n

k=1 ũ
q
ikxk∑n

k=1 ũ
q
ik

. (17)

In the limit of q → 1, the Tsallis entropy recovers the
Shannon entropy [8] and ũik approaches uik in (5).
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Figure 1: The plots of the entropy functions S, S and S̃ at (a) high and (b) low temperature (n = 1, c = 2, q = 1.5, αk = −2).
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Figure 2: The plots of the membership functions uik , uik and ũik at (a) high and (b) low temperature (n = 1, c = 2, q = 1.5, αk = −2).

3. Statistical Mechanical Interpretation of
Entropy-Based FCM

3.1. Shannon-Entropy-Based FCM Statistics. In the Shannon-
entropy-based FCM, the sum of the states (the partition
function) for the grand canonical ensemble of fuzzy cluster-
ing can be written as

Z =
n∏

k=1

c∑

i=1

e−βdik . (18)

By substituting (18) for F = −(1/β)(logZ) [15], the free
energy becomes

F = −1
β

n∑

k=1

log

⎧
⎨
⎩

c∑

i=1

e−βdik

⎫
⎬
⎭. (19)

Stable thermal equilibrium requires a minimization of the
free energy. By formulating deterministic annealing as a
minimization of the free energy, ∂F/∂vi = 0 yields

vi =
∑n

k=1 uikxk∑n
k=1 uik

. (20)

This cluster center is the same as that in (6).
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Figure 3: The plots of the cooling functions of (a) proportional to an exponential (r = 0.1, 1, 10) and (b) very fast annealing methods
(m = 1.0, 2.0, 3.0).
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Figure 4: The numerical data.

3.2. Fuzzy-Entropy-Based FCM Statistics. In the fuzzy-
entropy based FCM, by analogy with statistical mechanics,
the grand partition function for the grand canonical ensem-
ble of fuzzy clustering can be written as

Ξ̂ =
n∏

k=1

c∏

i=1

(
1 + e−αk−βdik

)
, (21)

because data can belong to any cluster. By substituting (21)
for F̂ = −(1/β)(log Ξ̂ − αk∂ log Ξ̂/∂αk) [15], the free energy
becomes

F̂ = −1
β

n∑

k=1

⎧
⎨
⎩

c∑

i=1

log
(

1 + e−αk−βdik
)

+ αk

⎫
⎬
⎭. (22)

It should be noted that Jm=1−TŜ, the Legendre transform of
the fuzzy entropy, gives the same form for the free energy.
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Figure 5: The inversely exponential cooling schedule of DA.
The temperature decreases from Thigh. (Inverse of temperature β
increases from 1.0×10−5 or 1.0×10−6 to 1.0×10−3) The curves are
parameterized by the temperature reduction rate r.

3.3. The Tsallis-Entropy-Based FCM Statistics. On the other
hand, Ũ and S̃ satisfy

S̃− βŨ =
n∑

k=1

Z̃1−q − 1
1− q

, (23)

which leads to

∂S̃

∂Ũ
= β. (24)

Equation (24) makes it possible to regard β−1 as an artificial
system temperature T [15]. Then, the free energy can be
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defined as

F̃ = Ũ − TS̃ = −1
β

n∑

k=1

Z̃1−q − 1
1− q

. (25)

Ũ can be derived from F̃ as

Ũ = − ∂

∂β

n∑

k=1

Z̃1−q − 1
1− q

. (26)

∂F̃/∂ṽi = 0 also gives

ṽi =
∑n

k=1 ũ
q
ikxk∑n

k=1 ũ
q
ik

. (27)

4. Effects of Annealing Temperature

4.1. Dependency of Shapes of Membership Functions on
Temperature. By reducing the temperature according to the
annealing schedule, the deterministic annealing method
achieves thermal equilibrium which minimizes the free
energy. At absolute zero, the particle system settles down
to the ground state, that is, the state of minimum energy.
Figure 1 shows the forms of the entropy functions S, Ŝ, and
S̃. Figure 2 shows the forms of the membership functions uik,
ûik, and ũik.

In the deterministic annealing method, cluster distri-
bution which minimizes the free energy is searched at the
given temperature. At high temperature, the membership
functions are widely distributed and clusters to which a data
belongs are fuzzy. In case of ũik with q = 2, the width of the
distribution is roughly proportional to β−0.5. At the limit of
low temperature, on the other hand, fuzzy clustering reaches
hard clustering. The relationship F = U − TS suggests that

the higher temperature causes the larger entropy state, that
is, chaotic state. This increase of the entropy is the result of
the extent of the membership function.

In Figure 2, it can be seen that ûik has a flat peak, though
both uik and ũik have Gaussian forms. Also, it can be found
that ũik has a more gentle base slope than uik.

4.2. Cooling Schedule

4.2.1. Representative Annealing Methods. In SA, the tem-
perature decreases according to a cooling schedule. The
representative cooling schedules [16] for SA are

(i) proportional to an exponential function

T = Thighr
t, (28)

where Thigh is a sufficiently high initial temperature, r
is a parameter which defines a temperature reduction
speed, and t is the number of iterations,

(ii) inversely linear function

T = Thigh

t
, (29)

(iii) inversely proportional to a logarithmic function

T = Thigh

ln(t)
, (30)

(iv) inversely proportional to exponential function

T = Thigh

er−1t
. (31)

4.2.2. Very Fast Annealing. Rosen proposed another inversely
proportional to exponential function known as very fast
annealing (VFA).

In VFA, T is given by

T = Thighe−mt(1/D)
, (32)

where m is a temperature reduction parameter and D is a
dimension of a state space. Equations (31) and (32) are com-
pared in Figure 3. It is observed that VFA initially decreases a
temperature extremely.

In Section 6, we apply VFA as a cooling schedule of
entropy based FCM clustering using DA.

5. Fuzzy C-Means as Clustering
Algorithm Using Very Fast Annealing DA

The very fast deterministic annealing algorithm for the
Tsallis-entropy-based FCM is given as follows.

(1) Set the number of clusters c, the highest temperature
Thigh, the temperature reduction rate m, and the
threshold of convergence test δ1 and δ2;

(2) generate initial clusters at random positions and
assign each data point to the nearest cluster. Set
current temperature T to Thigh;
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Figure 7: The shifts of cluster centers of Shannon entropy based clustering with decreasing the temperature by VFA (m = 1.0, 2.0, 3.0).

(3) calculate ũik by (15);

(4) calculate cluster centers by (17);

(5) compare the difference between the current centers
and those obtained at the previous iteration v̂i. If the
convergence condition If max1≤i≤c‖vi − v̂i‖ < δ1 is
satisfied, then go to (6), otherwise go back to (3);

(6) if max1≤i≤c‖vi − v̂i‖ < δ2 is satisfied, then stop.
Otherwise decrease the temperature with (32) and go
back to (3).

In case of Shannon-entropy-based FCM, (15) is replaced
by (5) and (17) is replaced by (6), respectively.

6. Experiments

6.1. Experiment 1. In experiment 1, we generated five ran-
domly placed clusters composed of 2,000 data points shown
in Figure 4. We set c to be 10, δ1 to be 50, and δ2 to be 2
(measured by the scale of Figure 4). We also set Thigh =
1.0×106(β = 1.0×10−6) or Thigh = 1.0×105(β = 1.0×10−5).

First, we have applied the inversely exponential schedul-
ing method to the Tsallis-entropy-based FCM clustering. The
cooling schedule is illustrated in Figure 5. The changes of β

are parameterized by the temperature reduction rate r: from
1 to 1000.

At the higher levels of T (Figure 5 (A)), clusters are
created near the center of gravity of data because β is
comparatively small and the membership function extends
over the whole data area and is extremely uniform. As
T is lowered from Figure 5 (B) to (C), the width of the
membership functions becomes narrower; that is, the Tsallis
entropy decreases, and the associations become less fuzzy.
And finally, the desired result is obtained.

In case of r = 10 or r = 1 (Figure 5 (E) or (F)), it
is observed that ũik and ṽi converge more rapidly. In case
of Thigh = 1.0 × 106(β = 1.0 × 10−6), however, the initial
distribution of ũik becomes too wide and the algorithm is
not converged with r = 100 and r = 10 (indicated by “not
converged” in Figure 5). Thus, it is important to set Thigh and
r values properly.

To examine the effectiveness of VFA as a cooling schedule
of DA, we made numerical experiments of the Shannon- and
Tsallis-entropy-based FCM clustering.

The shifts of cluster centers with decreasing temperature
are illustrated in Figures 7 and 8.

Initially, clusters are located randomly. At the higher
levels of T , clusters move to near the center of gravity of
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Figure 8: The shifts of cluster centers of Tsallis entropy based clustering with decreasing the temperature by VFA (m = 1.0, 2.0, 3.0, q = 1.5).

data because β is comparatively small and the membership
function extends over the whole data area and is extremely
uniform.

As T is lowered, the width of the membership functions
becomes narrower and the associations of data become less
fuzzy. In this process, in the Shannon-entropy-based FCM
clustering, the clusters move to their nearest local data
distribution centers. However, in the Tsallis-entropy-based
FCM clustering, clusters can move a long distance to optimal
positions because of their gentle base slopes.

Figures 9 and 10 illustrate the three-dimensional plots of
uik and ũik in the progress of very fast DA clustering.

At the higher temperature, roughness of ũik is smaller
than that of uik. After that, the shapes of both membership
functions do not change greatly, because VFA reduces the
temperature extremely only at the early annealing stage.

Consequently, because the Tsallis-entropy-based FCM
has gentle slope in the region far from the origin, clusters
can move long distance to optimal positions stably and the
temperature can be reduced rapidly. This feature makes it
possible to use VFA as a cooling schedule of DA for the
Tsallis-entropy-based FCM. On the other hand, final cluster
positions obtained by the Shannon-entropy-based FCM tend
to depend on their initial positions.

Table 1: Comparison of minimum, maximum, and average values
of misclassified iris data (100 trials).

Tsallis-entropy-based FCM Shannon-entropy-based FCM

m Min. Max. Ave. m Min. Max. Ave.

1.0 14 14 14.00 1.0 15 16 15.01

2.0 14 15 14.01 2.0 11 13 12.97

3.0 14 15 14.68 3.0 11 14 13.59

6.2. Experiment 2. In experiment 2, the iris data set [13]
consisting of 150 four-dimensional vectors of iris flowers
are used. Three clusters of flowers detected are Versicolor,
Virginia, and Setosa. Each cluster consists of 50 vectors.

The Shannon- and Tsallis-entropy-based FCM with DA
are examined. VFA is used as a cooling schedule of DA. We
set the parameters as follows: c = 3, Thigh = 2, δ1 = 0.1,
δ2 = 0.01, and q = 1.5.

The minimum, maximum, and average values of mis-
classified data of 100 trials are summarized in Table 1. The
Shannon-entropy-based FCM gives slightly better results
than the Tsallis-entropy-based FCM. However, it is found
that the Tsallis-entropy-based FCM gives the best results
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Figure 9: The changes of the landscape of uik with decreasing the temperature.
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when the temperature reduction rate m = 1.0 or 2.0, though
the best results for the Shannon-entropy-based FCM are
obtained only when m = 2.0. Furthermore, variances of
the Tsallis-entropy-based FCM are smaller than those of the
Shannon-entropy-based FCM. These features indicate that
a wide range of m values are applicable to Tsallis-entropy-
based FCM.

Figure 6 shows the reduction of the objective values of the
Tsallis- and Shannon-entropy-based FCM with decreasing
the temperature by VFA. The Shannon-entropy-based FCM
does not converge properly when T = 0.023 for m = 2.0 and
T = 0.029 for m = 3.0. That is, with larger m values, the
Shannon-entropy-based FCM becomes unstable.

7. Conclusion

By maximizing the Tsallis-entropy, the membership function
of the Tsallis-entropy-based FCM is formulated. It has a more
gentle base slope in the region far from the origin than that of
the Shannon- and fuzzy-entropy-based FCMs. This feature
allows clusters to move long distance and the temperature
can be reduced rapidly in the Tsallis-entropy-based FCM.

Next, the deterministic annealing (DA) method using
very fast annealing (VFA) as its cooling schedule is applied
to the Tsallis-entropy-based FCM. VFA initially decreases
a temperature extremely, and experimental results showed
that the Tsallis-entropy-based FCM was suitable for DA
combined with VFA.

Our future works include convergence and computa-
tional time test under various conditions (temperatures and
parameters, especially q-value) of the Tsallis-entropy-based
FCM using very fast deterministic annealing. They also
include experiments and examinations of its applications.
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