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e paper presents new conditions suitable in design of a stabilizing output controller for a class of continuous-time nonlinear
systems, represented by Takagi-Sugeno models. Taking into account the affine properties of the TS model structure and applying
the fuzzy control scheme relating to the parallel distributed output compensators, the sufficient design conditions are outlined in
terms of linear matrix inequalities. e proposed procedure decouples the Lyapunov matrix and the system parameter matrices
in the LMIs and guarantees global stability of the system. Simulation result illustrates the design procedure and demonstrates the
performances of the proposed design method.

1. Introduction

Contrarily to the linear framework, nonlinear systems are
too complex to be represented by uni�ed mathematical
resources, and so a generic method has not been developed
yet to design a controller valid for all types of nonlinear
systems. An alternative to nonlinear systemmodels is Takagi-
Sugeno (TS) fuzzy approach [1], which bene�ts from the
advantages of suitable linear approximation. Using the TS
fuzzy model, each rule utilizes the local system dynamics by
a linear model and the nonlinear system is represented by
a collection of fuzzy rules. Recently, TS model based fuzzy
control approaches are being fast and successfully used in
nonlinear control frameworks. As a result, a range of stability
analysis conditions [2–5], as well as control design methods
[6–11], have been developed for TS fuzzy systems, relying
mostly on the feasibility of an associated set of linear matrix
inequalities (LMI) [12]. An important fact is that the design
problem is a standard feasibility problem with several LMIs,
potentially reformulated such that the feedback gains can
be solved numerically. In consequence, the state feedback
control based on fuzzy TS systems model is mostly realized
in such structures which can be designed using a technique
based on LMIs.

e TS fuzzy model-based state control is based on
an implicit assumption that all states are available for
measurement. If it is impossible, TS fuzzy observers are

used to estimate the unmeasurable states variables, and the
state controller exploits the system state variable estimate
values [13–15]. e nonlinear output feedback design is so
formulated as the two LMI set problems, and treated by the
two-stage procedure, that is, dealing with a set of LMIs for
the observer parameters at �rst and then solving another set
of LMIs for the controller parameters [16]. Since the fuzzy
control design problem is preferred to be formulated as a one
LMI set problem, such formulation for the output feedback
control design is proposed in [17, 18].

e main contribution of the paper is the presentation
of the original design condition of the fuzzy output feedback
control for the continuous-time nonlinear MIMO systems
approximated by a TS model. e central idea of the TS
fuzzy model-based control design, that is, to derive control
rules so as to compensate each rule of a fuzzy system and
construct the control strategy based on the parallel dis-
tributed compensators, is re�ected in the approach of output
control, taking into account the fact that the desired output
variables are measurable. Motivated by the above-mentioned
observations, the proposed design method combines the
principles given in [15, 17], respecting the results presented
in [19], and is constructed on an enhanced form of quadratic
Lyapunov function [20]. Comparing with the approaches
based on a quadratic Lyapunov matrix [15, 17, 21], which
are particularly in the case of a large number of rules very
conservative as a common symmetric positive de�nitematrix
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is used to verify all Lyapunov inequalities, presented principle
naturally extends the affine TS model properties using slack
matrix variables to decouple Lyapunovmatrix and the system
matrices in LMIs, does not use iterative algorithms based on
LMIs or matrix norm bounds, and gives substantial reducing
of conservativeness. Potentially, extra constraints can be
imposed to the slack matrices, but such additive constraints
can potentially increase the conservativeness of the proposed
design conditions.

e remainder of this paper is organized as follows. In
Section 2 the structure of TS model for considered class of
nonlinear systems is brie�y described, and some of its proper-
ties are outlined.e output feedback control design problem
for systems with measurable premise variables is given in
Section 3, where the design conditions that guarantee global
quadratic stability are formulated and proven. e method
is reformulated in Section 4 in a newly de�ned enhanced
criterion for fuzzy output feedback control design. Section
5 gives the numerical example to illustrate the effectiveness
of the proposed approach and to con�rm the validity of the
control scheme.e last section draws conclusions and some
future directions.

roughout the paper, the following notations are used:
𝐱𝐱𝑇𝑇, 𝐗𝐗𝑇𝑇 denote the transpose of the vector 𝐱𝐱 and matrix 𝐗𝐗,
respectively, diag[⋅] denotes a block diagonal matrix, for a
square matrix 𝐗𝐗 𝐗 𝐗𝐗𝑇𝑇 > 0 (resp., 𝐗𝐗 𝐗 𝐗𝐗𝑇𝑇 < 0) means that
𝐗𝐗 is a symmetric positive de�nite matrix (resp., negative
de�nite matrix), the symbol 𝐈𝐈𝑛𝑛 represents the 𝑛𝑛th order unit
matrix, ℝ denotes the set of real numbers, and ℝ𝑛𝑛𝑛𝑛𝑛 denotes
the set of all 𝑛𝑛 𝑛 𝑛𝑛 real matrices.

2. Takagi-Sugeno FuzzyModels

e systems under consideration are from one class of
multiinput and multioutput nonlinear (MIMO) dynamic
systems, represented in state-space form as

�̇�𝐪 (𝑡𝑡) 𝐗 𝐚𝐚 (𝐪𝐪 (𝑡𝑡)) + 𝐛𝐛 (𝐪𝐪 (𝑡𝑡)) 𝐮𝐮 (𝑡𝑡) , (1)

𝐲𝐲 (𝑡𝑡) 𝐗 𝐂𝐂𝐪𝐪 (𝑡𝑡) , (2)

where 𝐪𝐪(𝑡𝑡) 𝐪 ℝ𝑛𝑛, 𝐮𝐮(𝑡𝑡) 𝐪 ℝ𝑛𝑛, and 𝐲𝐲(𝑡𝑡) 𝐪 ℝ𝑚𝑚 are vectors of
the state, input, and output variables,𝐂𝐂 𝐪 ℝ𝑚𝑚𝑛𝑛𝑛 is a real �nite
values matrix, and𝑚𝑚 𝑚 𝑛𝑛, 𝑛𝑛 𝑚 𝑛𝑛, respectively.

Considering that the number of the nonlinear terms in
𝐚𝐚(𝐪𝐪(𝑡𝑡)) is 𝑝𝑝, there exists a set of nonlinear sector functions as
follows:

𝑚𝑚𝑙𝑙𝑙𝑙 󶀢󶀢𝜃𝜃𝑙𝑙 (𝑡𝑡)󶀲󶀲 , 𝑙𝑙 𝐗 𝑗, 𝑗,𝑗 , 𝑗𝑗, 𝑙𝑙 𝐗 𝑗, 𝑗,𝑗 , 𝑝𝑝,

𝑚𝑚𝑙𝑙𝑗 󶀢󶀢𝜃𝜃𝑙𝑙 (𝑡𝑡)󶀲󶀲 𝐗 𝑗 −
𝑗𝑗
󵠈󵠈
𝑙𝑙𝐗𝑗
𝑚𝑚 𝑙𝑙𝑙𝑙 󶀢󶀢𝜃𝜃𝑙𝑙 (𝑡𝑡)󶀲󶀲 ,

(3)

where 𝑗𝑗 is the number of sectors, and

𝜽𝜽 (𝑡𝑡) 𝐗 󶁢󶁢𝜃𝜃𝑗 (𝑡𝑡) 𝜃𝜃𝑗 (𝑡𝑡) ⋯ 𝜃𝜃𝑞𝑞 (𝑡𝑡)󶁲󶁲 (4)

is the vector of premise variables. It is assumed that the
premise variable is a system state variable, or a measurable

external variable, and none of the premise variables does not
depend on the inputs 𝐮𝐮(𝑡𝑡).

Using a TS model, the conclusion part of a single rule
consists no longer of a fuzzy set [3], but determines a function
with state variables as arguments, and the corresponding
function is a local function for the fuzzy region that is
described by the premise part of the rule. us, using linear
functions, a system state is described locally (in fuzzy regions)
by linear models, and at the boundaries between regions
an interpolation is used between the corresponding local
models.

us, constructing the set of membership functions
{𝑤𝑤𝑖𝑖(𝜽𝜽(𝑡𝑡)) 𝐗 𝜽𝑠𝑠

𝑙𝑙𝐗𝑗𝑚𝑚 𝑙𝑙𝑙𝑙(𝜃𝜃𝑙𝑙(𝑡𝑡)), 𝑖𝑖 𝐗 𝑗, 𝑗,𝑗 𝑠𝑠, 𝑠𝑠 𝐗 𝑗𝑗𝑗} from all
combinations of sector functions, the �nal states of the
systems are inferred as follows:

�̇�𝐪 (𝑡𝑡) 𝐗
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐗𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) 󶀡󶀡𝐀𝐀𝑖𝑖𝐪𝐪 (𝑡𝑡) + 𝐁𝐁𝑖𝑖𝐮𝐮 (𝑡𝑡)󶀱󶀱 (5)

with the output given by the relation

𝐲𝐲 (𝑡𝑡) 𝐗 𝐂𝐂𝐪𝐪 (𝑡𝑡) , (6)

where

ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) 𝐗
𝑤𝑤𝑖𝑖 (𝜽𝜽 (𝑡𝑡))

∑𝑠𝑠
𝑖𝑖𝐗𝑗 𝑤𝑤𝑖𝑖 (𝜽𝜽 (𝑡𝑡))

(7)

is the average weight for the 𝑖𝑖th rule, representing the
normalized grade ofmembership (membership function). By
de�nition, the membership functions satisfy the following
convex sum properties:

0 𝑚 ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) 𝑚 𝑗,
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐗𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) 𝐗 𝑗 ∀𝑖𝑖 𝐪 ⟨𝑗,𝑗 , 𝑠𝑠⟩ . (8)

Assuming that 𝐚𝐚(𝐪𝐪(𝑡𝑡)) and𝐛𝐛(𝐪𝐪(𝑡𝑡)) are bounded in sectors,
that is, in the fuzzy regionswithin the systemwill operate, and
𝐚𝐚(𝐪𝐪(𝑡𝑡)) takes the value 𝐚𝐚(𝐚𝐚) 𝐗 𝐚𝐚, the fuzzy approximation of
(1) leads to (6). us, 𝐀𝐀𝑖𝑖 𝐪 ℝ

𝑛𝑛𝑛𝑛𝑛 is the matrix of 𝐚𝐚(𝐚𝐚(𝑡𝑡)), 𝐁𝐁𝑖𝑖 𝐪
ℝ𝑛𝑛𝑛𝑛𝑛 is the matrix of 𝐛𝐛(𝐚𝐚(𝑡𝑡)), respectively, both for 𝐚𝐚(𝑡𝑡) 𝐗 𝐚𝐚𝑖𝑖,
where 𝐚𝐚𝑖𝑖 is the 𝑖𝑖th combination of the bounds of the sector
functions with respect to the center of the 𝑖𝑖th fuzzy region,
dedicated by (3). It is evident that a general fuzzy model is
achieved by fuzzy amalgamation of the linear systemsmodels.

Note, the model (5) and (6) is mostly considered for
analysis, control, and state estimation of nonlinear systems.

Assumption 1. Each triplet (𝐀𝐀𝑖𝑖, 𝐁𝐁𝑖𝑖, 𝐂𝐂) is locally controllable
and observable, the matrix𝐂𝐂 is the same for all local models,
and the number of input variables is equal to the number of
output variables.

It is supposed in the following considerations that the
aforementioned model does not include parameter uncer-
tainties or external disturbances, and the premise variables
are measured.
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3. Fuzzy Output Control Design

In the next, the fuzzy output controller is designed using
the concept of parallel distributed compensation, in which
the fuzzy controller shares the same sets of normalized
membership functions like the TS fuzzy system model.

�e�nition �. Considering (5) and (6), and using the same
set of normalized membership function (8), the fuzzy static
output controller is de�ned as

𝐮𝐮 (𝑡𝑡) = −
𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡))𝐊𝐊𝑗𝑗𝐲𝐲 (𝑡𝑡) = −

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡))𝐊𝐊𝑗𝑗𝐂𝐂𝐂𝐂 (𝑡𝑡) . (9)

Note that the fuzzy controller (9) is in general nonlinear.

eorem 2. e equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9), is global asymptotically
stable if there e�ist a positive de�nite symmetric matri� W ∈
ℝ𝑛𝑛𝑛𝑛𝑛 and matrices 𝐍𝐍𝑗𝑗, 𝐘𝐘𝑖𝑖𝑗𝑗 ∈ ℝ

𝑟𝑟𝑛𝑛𝑛 such that

W = W𝑇𝑇 > 0, 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐘𝐘𝑗𝑗 𝐘𝐘𝑗2 ⋯ 𝐘𝐘𝑗𝑠𝑠
𝐘𝐘𝑗2 𝐘𝐘22 ⋯ 𝐘𝐘2𝑠𝑠
⋮ ⋮ ⋱ ⋮
𝐘𝐘𝑗𝑠𝑠 𝐘𝐘2𝑠𝑠 ⋯ 𝐘𝐘𝑠𝑠𝑠𝑠

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

> 0, (10)

𝐀𝐀𝑖𝑖W +W𝐀𝐀𝑇𝑇
𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂 − 𝐂𝐂𝑇𝑇𝐍𝐍𝑇𝑇

𝑗𝑗 𝐁𝐁
𝑇𝑇
𝑖𝑖 + 𝐘𝐘𝑖𝑖𝑗𝑗 < 0 (11)

for ℎ𝑖𝑖(𝜽𝜽(𝑡𝑡))ℎ𝑗𝑗(𝜽𝜽(𝑡𝑡)) 𝜽 0, 𝑖𝑖, 𝑗𝑗 = 𝑗, 2,𝑖 , 𝑠𝑠.
If the above conditions hold, the set of control law gain

matrices is given as

𝐊𝐊𝑗𝑗 = 𝐍𝐍𝑗𝑗𝐌𝐌
−𝑗, 𝑗𝑗 = 𝑗, 2,𝑖 , 𝑠𝑠, (12)

where

𝐌𝐌 = 𝐂𝐂W𝐂𝐂⊖𝑗, 𝐂𝐂⊖𝑗 = 𝐂𝐂𝑇𝑇󶀢󶀢𝐂𝐂𝐂𝐂𝑇𝑇󶀲󶀲
−𝑗
. (13)

𝐂𝐂⊖𝑗 is Moore-Penrose pseudo-inverse of 𝐂𝐂.

Proof . Considering themodel (6) and (2) and the control law
(9), then it yields

�̇�𝐂 (𝑡𝑡) =
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑗

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 𝐂𝐂 (𝑡𝑡) . (14)

In order to analyze the convergence of the system state,
the quadratic positive Lyapunov function is considered as
follows:

𝑣𝑣 (𝐂𝐂 (𝑡𝑡)) = 𝐂𝐂𝑇𝑇 (𝑡𝑡) 𝐏𝐏𝐂𝐂 (𝑡𝑡) > 0, (15)

where𝐏𝐏 ∈ ℝ𝑛𝑛𝑛𝑛𝑛 is a positive de�nite symmetricmatrix.�en,
the time derivative of 𝑣𝑣(𝐂𝐂(𝑡𝑡)) along the system trajectory is

̇𝑣𝑣 (𝐂𝐂 (𝑡𝑡)) = �̇�𝐂𝑇𝑇 (𝑡𝑡) 𝐏𝐏𝐂𝐂 (𝑡𝑡) + 𝐂𝐂𝑇𝑇 (𝑡𝑡) 𝐏𝐏�̇�𝐂 (𝑡𝑡) < 0. (16)

Substituting (14) in (16), and introducing the term as follows:

𝑣𝑣𝑣𝑣 (𝜽𝜽 (𝑡𝑡)) = 𝐂𝐂
𝑇𝑇 (𝑡𝑡) 𝐙𝐙 (𝜽𝜽 (𝑡𝑡)) 𝐂𝐂 (𝑡𝑡) , (17)

where

𝐙𝐙 (𝜽𝜽 (𝑡𝑡)) =
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑗

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 𝐗𝐗𝑖𝑖𝑗𝑗 > 0 (18)

and {𝐗𝐗𝑖𝑖𝑗𝑗 = 𝐗𝐗
𝑇𝑇
𝑗𝑗𝑖𝑖 ∈ ℝ

𝑛𝑛𝑛𝑛𝑛, 𝑖𝑖, 𝑗𝑗 = 𝑗, 2,𝑖 , 𝑠𝑠𝑖 is the set of matrices.
In the sense of Krasovskii theorem (see, e.g., [22]) it can be
set up as follows:

̇𝑣𝑣 (𝐂𝐂 (𝑡𝑡))

= 𝐂𝐂𝑇𝑇 (𝑡𝑡)
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑗

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 𝐏𝐏 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 𝐂𝐂 (𝑡𝑡)

+ 𝐂𝐂𝑇𝑇 (𝑡𝑡)
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑗

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡))

𝑛 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲
𝑇𝑇
𝐏𝐏𝐂𝐂 (𝑡𝑡)

< −𝐂𝐂𝑇𝑇 (𝑡𝑡)
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑗

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 𝐗𝐗𝑖𝑖𝑗𝑗𝐂𝐂 (𝑡𝑡)

= −𝐂𝐂𝑇𝑇 (𝑡𝑡) 𝐙𝐙 (𝜽𝜽 (𝑡𝑡)) 𝐂𝐂 (𝑡𝑡) < 0,
(19)

̇𝑣𝑣 (𝐂𝐂 (𝑡𝑡)) =
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑗

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑗
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 𝐂𝐂

𝑇𝑇 (𝑡𝑡) 𝐏𝐏𝑖𝑖𝑗𝑗𝐂𝐂 (𝑡𝑡) < 0, (20)

respectively, which implies

𝐏𝐏𝑖𝑖𝑗𝑗 = 𝐏𝐏 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 + 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲
𝑇𝑇
𝐏𝐏 + 𝐗𝐗𝑖𝑖𝑗𝑗 < 0. (21)

It is evident that 𝐏𝐏𝑖𝑖𝑗𝑗 has to be negative de�nite.
Since 𝑟𝑟 = 𝑟𝑟, it is possible to set

𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂 = 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐌𝐌𝐌𝐌−𝑗𝐂𝐂 = 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂𝐏𝐏, (22)

where

𝐊𝐊𝑗𝑗𝐌𝐌 = 𝐍𝐍𝑗𝑗, 𝐌𝐌−𝑗𝐂𝐂 = 𝐂𝐂𝐏𝐏 (23)

and𝐌𝐌 ∈ ℝ𝑟𝑟𝑛𝑟𝑟 is a regular square matrix. Substituting (22)
into (21) results in

𝐏𝐏 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂𝐏𝐏󶀲󶀲 + 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂𝐏𝐏󶀲󶀲
𝑇𝑇
𝐏𝐏 + 𝐗𝐗𝑖𝑖𝑗𝑗 < 0. (24)

Premultiplying the le side and the right side of (24) by 𝐏𝐏−𝑗
leads to

𝐀𝐀𝑖𝑖𝐏𝐏
−𝑗 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂 + 𝐏𝐏−𝑗𝐀𝐀𝑇𝑇

𝑖𝑖 − 𝐂𝐂
𝑇𝑇𝐍𝐍𝑇𝑇

𝑗𝑗 𝐁𝐁
𝑇𝑇
𝑖𝑖 + 𝐏𝐏

−𝑗𝐗𝐗𝑖𝑖𝑗𝑗𝐏𝐏
−𝑗 < 0

(25)

and using the notations

W = 𝐏𝐏−𝑗, 𝐘𝐘𝑖𝑖𝑗𝑗 = W𝐗𝐗𝑖𝑖𝑗𝑗W (26)

then (25) implies (11). Since (25) also implies

󵰑󵰑𝐏𝐏𝑖𝑖𝑗𝑗 = 𝐀𝐀𝑖𝑖W +W𝐀𝐀𝑇𝑇
𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂 − 𝐂𝐂𝑇𝑇𝐍𝐍𝑇𝑇

𝑗𝑗 𝐁𝐁
𝑇𝑇
𝑖𝑖 + 𝐘𝐘𝑖𝑖𝑗𝑗 < 0. (27)
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Using the membership functions property (8) and de�ning
𝐪𝐪⋄(𝑡𝑡𝑡 𝑡 W−1𝐪𝐪(𝑡𝑡𝑡, it can be written as follows:

�̇�𝑣𝑣𝑣 (𝐪𝐪 (𝑡𝑡𝑡𝑡

𝑡
𝑠𝑠
󵠈󵠈
𝑖𝑖𝑡1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝑡1
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡𝑡𝑡 ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝐪𝐪

𝑇𝑇 (𝑡𝑡𝑡W−1W𝐗𝐗𝑖𝑖𝑗𝑗WW−1𝐪𝐪 (𝑡𝑡𝑡

𝑡
𝑠𝑠
󵠈󵠈
𝑖𝑖𝑡1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝑡1
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡𝑡𝑡 ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝐪𝐪

⋄𝑇𝑇 (𝑡𝑡𝑡 𝐘𝐘𝑖𝑖𝑗𝑗𝐪𝐪
⋄ (𝑡𝑡𝑡

𝑡 𝐪𝐪⋄𝑇𝑇 (𝑡𝑡𝑡W𝐙𝐙 (𝜽𝜽 (𝑡𝑡𝑡𝑡W𝐪𝐪⋄ (𝑡𝑡𝑡 > 0.
(28)

Writing 𝐙𝐙(𝜽𝜽(𝑡𝑡𝑡𝑡 as follows:

𝐙𝐙 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝑡 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

ℎ1 󶀡󶀡𝜽𝜽 (𝑡𝑡𝑡𝑡𝐪𝐪
⋄ (𝑡𝑡𝑡

ℎ2 󶀡󶀡𝜽𝜽 (𝑡𝑡𝑡𝑡𝐪𝐪
⋄ (𝑡𝑡𝑡

⋮
ℎ𝑠𝑠 󶀡󶀡𝜽𝜽 (𝑡𝑡𝑡𝑡𝐪𝐪

⋄ (𝑡𝑡𝑡

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

𝑇𝑇

󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐘𝐘11 𝐘𝐘12 ⋯ 𝐘𝐘1𝑠𝑠
𝐘𝐘21 𝐘𝐘22 ⋯ 𝐘𝐘2𝑠𝑠
⋮ ⋮ ⋱ ⋮
𝐘𝐘𝑠𝑠1 𝐘𝐘𝑠𝑠2 ⋯ 𝐘𝐘𝑠𝑠𝑠𝑠

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

× 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

ℎ1 󶀡󶀡𝜽𝜽 (𝑡𝑡𝑡𝑡𝐪𝐪
⋄ (𝑡𝑡𝑡

ℎ2 󶀡󶀡𝜽𝜽 (𝑡𝑡𝑡𝑡𝐪𝐪
⋄ (𝑡𝑡𝑡

⋮
ℎ𝑠𝑠 󶀡󶀡𝜽𝜽 (𝑡𝑡𝑡𝑡𝐪𝐪

⋄ (𝑡𝑡𝑡

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

> 0

(29)

then (29) implies (10). In addition, (23) gives

𝐌𝐌𝐌𝐌 𝑡 𝐌𝐌𝐌𝐌−1 𝑡 𝐌𝐌W. (30)

Premultiplying the right side of (30) by 𝐌𝐌𝑇𝑇 gives

𝐌𝐌W𝐌𝐌𝑇𝑇 𝑡 𝐌𝐌𝐌𝐌𝐌𝐌𝑇𝑇 (31)

and so it is

𝐌𝐌 𝑡 𝐌𝐌W𝐌𝐌𝑇𝑇󶀢󶀢𝐌𝐌𝐌𝐌𝑇𝑇󶀲󶀲
−1
𝑡 𝐌𝐌W𝐌𝐌⊖1. (32)

us, (23) and (32) imply (12)–(13), respectively. is con-
cludes the proof.

Note, the derived results are linked to some existing �nd-
ing when the design problem involves additive performance
requirements and the relaxed quadratic stability conditions
of fuzzy control systems (see, e.g., [13, 23]) are equivalently
steered.

Trying to minimize the number of LMIs owing to the
limitation of solvers, eorem 2 can be presented in the
equivalent structure in which the number of stabilization
conditions, used in fuzzy controller design, is equal to 𝑁𝑁 𝑡
(𝑠𝑠2+𝑠𝑠𝑡𝑠2+1. Evidently, the number of stabilization conditions
is substantially reduced if 𝑠𝑠 is large.

eorem 3. e equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9), is global asymptotically

stable if there e�ist a positive de�nite symmetric matri� W ∈
ℝ𝑛𝑛×𝑛𝑛 and matrices 𝐍𝐍𝑗𝑗, 𝐘𝐘𝑖𝑖𝑗𝑗 ∈ ℝ

𝑟𝑟×𝑛𝑛 such that

W 𝑡 W𝑇𝑇 > 0, 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐘𝐘11 𝐘𝐘12 ⋯ 𝐘𝐘1𝑠𝑠
𝐘𝐘21 𝐘𝐘22 ⋯ 𝐘𝐘2𝑠𝑠
⋮ ⋮ ⋱ ⋮
𝐘𝐘𝑠𝑠1 𝐘𝐘𝑠𝑠2 ⋯ 𝐘𝐘𝑠𝑠𝑠𝑠

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

> 0 (33)

𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇
𝑇𝑇
𝑖𝑖𝑖𝑖 + 𝐘𝐘𝑖𝑖𝑖𝑖 < 0,

𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖

2
+
𝐇𝐇𝑇𝑇
𝑖𝑖𝑗𝑗 + 𝐇𝐇

𝑇𝑇
𝑗𝑗𝑖𝑖

2
+
𝐘𝐘𝑖𝑖𝑗𝑗 + 𝐘𝐘𝑗𝑗𝑖𝑖

2
< 0

(34)

for all 𝑖𝑖 ∈ 𝑖1, 2,𝑖 , 𝑠𝑠𝑖, 𝑖𝑖 < 𝑗𝑗 𝑖 𝑠𝑠, 𝑖𝑖, 𝑗𝑗 ∈ 𝑖1, 2,𝑖 , 𝑠𝑠𝑖,
respectively, and ℎ𝑖𝑖(𝜽𝜽(𝑡𝑡𝑡𝑡ℎ𝑗𝑗(𝜽𝜽(𝑡𝑡𝑡𝑡 𝜽 0. Here it is

𝐇𝐇𝑖𝑖𝑗𝑗 𝑡 𝐀𝐀𝑖𝑖W − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐌𝐌 (35)

and if the above conditions hold, the set of control law gain
matrices is given as in (12) and (13).

Proof. Now (28) can be written as

̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡𝑡𝑡 𝑡
𝑠𝑠
󵠈󵠈
𝑖𝑖𝑡1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝑡1
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡𝑡𝑡 ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝐪𝐪

𝑇𝑇 (𝑡𝑡𝑡

× 󶀢󶀢𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇
𝑇𝑇
𝑖𝑖𝑗𝑗 + 𝐘𝐘𝑖𝑖𝑗𝑗󶀲󶀲 𝐪𝐪 (𝑡𝑡𝑡 ,

(36)

where𝐇𝐇𝑖𝑖𝑗𝑗 is given in (35). Permuting the subscripts 𝑖𝑖 and 𝑗𝑗 in
(36) gives

̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡𝑡𝑡 𝑡
𝑠𝑠
󵠈󵠈
𝑖𝑖𝑡1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝑡1
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡𝑡𝑡 ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝐪𝐪

𝑇𝑇 (𝑡𝑡𝑡

× 󶀢󶀢𝐇𝐇𝑗𝑗𝑖𝑖 + 𝐇𝐇
𝑇𝑇
𝑗𝑗𝑖𝑖 + 𝐘𝐘𝑗𝑗𝑖𝑖󶀲󶀲 𝐪𝐪 (𝑡𝑡𝑡

(37)

and adding (36) and (37) results in

2 ̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡𝑡𝑡

𝑡
𝑠𝑠
󵠈󵠈
𝑖𝑖𝑡1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝑡1
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡𝑡𝑡 ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝐪𝐪

𝑇𝑇 (𝑡𝑡𝑡

× 󶀣󶀣𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖 + 󶀢󶀢𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖󶀲󶀲
𝑇𝑇
+ 󶀢󶀢𝐘𝐘𝑖𝑖𝑗𝑗 + 𝐘𝐘𝑗𝑗𝑖𝑖󶀲󶀲󶀲󶀲 𝐪𝐪 (𝑡𝑡𝑡 .

(38)

Rearranging the computation, (38) takes the following form:

̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡𝑡𝑡 𝑡
𝑠𝑠
󵠈󵠈
𝑖𝑖𝑡1
ℎ2𝑖𝑖 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝐪𝐪

𝑇𝑇 (𝑡𝑡𝑡 󶀢󶀢𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇
𝑇𝑇
𝑖𝑖𝑖𝑖 − 𝐘𝐘𝑖𝑖𝑖𝑖󶀲󶀲 𝐪𝐪 (𝑡𝑡𝑡

+ 2
𝑠𝑠−1
󵠈󵠈
𝑖𝑖𝑡1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝑡𝑖𝑖+1

ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡𝑡𝑡 ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡𝑡𝑡 𝐪𝐪
𝑇𝑇 (𝑡𝑡𝑡

× 󶀨󶀨
𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖

2
+
𝐇𝐇𝑇𝑇
𝑖𝑖𝑗𝑗 + 𝐇𝐇

𝑇𝑇
𝑗𝑗𝑖𝑖

2
+
𝐘𝐘𝑖𝑖𝑗𝑗 + 𝐘𝐘𝑗𝑗𝑖𝑖

2
󶀸󶀸𝐪𝐪 (𝑡𝑡𝑡

(39)

and, evidently, (39) implies (34). is concludes the proof.
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4. Enhanced Criterion for Output
Control Design

eorem 4. e equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9) is global asymptotically
stable if there exist positive de�nite symmetric matrices 𝐔𝐔𝐔𝐔𝐔 𝐔
ℝ𝑛𝑛𝑛𝑛𝑛, a matrix 𝐓𝐓 𝐔 ℝ𝑛𝑛𝑛𝑛𝑛, and matrices 𝐍𝐍𝑗𝑗𝐔 𝐘𝐘𝑖𝑖𝑗𝑗 𝐔 ℝ𝑟𝑟𝑛𝑛𝑛 such
that

𝐔𝐔 𝐔 𝐔𝐔𝑇𝑇 > 0𝐔 𝐔𝐔 𝐔 𝐔𝐔𝑇𝑇 > 0𝐔

󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐘𝐘11 𝐘𝐘12 ⋯ 𝐘𝐘1𝑠𝑠
𝐘𝐘12 𝐘𝐘22 ⋯ 𝐘𝐘2𝑠𝑠
⋮ ⋮ ⋱ ⋮
𝐘𝐘1𝑠𝑠 𝐘𝐘2𝑠𝑠 ⋯ 𝐘𝐘𝑠𝑠𝑠𝑠

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

> 0𝐔
(40)

𝐏𝐏•𝑖𝑖𝑗𝑗 𝐔 󶁦󶁦
𝐀𝐀𝑖𝑖𝐔𝐔 𝐕 𝐔𝐔𝐀𝐀𝑇𝑇

𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂 − 𝐂𝐂𝑇𝑇𝐍𝐍𝑇𝑇
𝑗𝑗 𝐁𝐁

𝑇𝑇
𝑖𝑖 𝐕 𝐘𝐘𝑖𝑖𝑗𝑗 ∗

𝐓𝐓 − 𝐔𝐔 𝐕 𝐀𝐀𝑖𝑖𝐔𝐔 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂 −2𝐔𝐔󶁶󶁶 < 0

(41)

for ℎ𝑖𝑖(𝜽𝜽(𝜽𝜽𝜽𝜽ℎ𝑗𝑗(𝜽𝜽(𝜽𝜽𝜽𝜽 𝜽 0, 𝑖𝑖𝐔 𝑗𝑗 𝐔 1𝐔 2𝐔𝑖 𝐔 𝑠𝑠.
If the above conditions hold, the set of control law gain

matrices is given as

𝐊𝐊𝑗𝑗 𝐔 𝐍𝐍𝑗𝑗𝐌𝐌
−1𝐔 𝑗𝑗 𝐔 1𝐔 2𝐔𝑖 𝐔 𝑠𝑠𝐔 (42)

where

𝐌𝐌 𝐔 𝐂𝐂𝐔𝐔𝐂𝐂⊖1𝐔 𝐂𝐂⊖1 𝐔 𝐂𝐂𝑇𝑇󶀢󶀢𝐂𝐂𝐂𝐂𝑇𝑇󶀲󶀲
−1
𝐔 (43)

𝐂𝐂⊖1 is Moore-Penrose pseudo-inverse of 𝐂𝐂.
Here, and hereaer, ∗ denotes the symmetric item in a

symmetric matrix.

Proof . Writing (14) in the following form:

�̇�𝐪 (𝜽𝜽𝜽 −
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐔1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝐔1
ℎ𝑖𝑖 (𝜽𝜽 (𝜽𝜽𝜽𝜽 ℎ𝑗𝑗 (𝜽𝜽 (𝜽𝜽𝜽𝜽 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 𝐪𝐪 (𝜽𝜽𝜽 𝐔 0

(44)

then with arbitrary symmetric regular matrices 𝐒𝐒1𝐔 𝐒𝐒2 𝐔 ℝ
𝑛𝑛𝑛𝑛𝑛

it yields

− 󶀢󶀢𝐪𝐪𝑇𝑇 (𝜽𝜽𝜽 𝐒𝐒1 𝐕 �̇�𝐪
𝑇𝑇 (𝜽𝜽𝜽 𝐒𝐒2󶀲󶀲

𝑛󶀨󶀨�̇�𝐪 (𝜽𝜽𝜽−
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐔1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝐔1
ℎ𝑖𝑖 (𝜽𝜽 (𝜽𝜽𝜽𝜽 ℎ𝑗𝑗 (𝜽𝜽 (𝜽𝜽𝜽𝜽 󶀢󶀢𝐀𝐀𝑖𝑖−𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 𝐪𝐪 (𝜽𝜽𝜽󶀸󶀸𝐔0.

(45)

us, adding (45) as well as the transposition of (45) to (19),
it yields

̇𝑣𝑣 (𝐪𝐪 (𝜽𝜽𝜽𝜽 𝐔 �̇�𝐪𝑇𝑇 (𝜽𝜽𝜽 𝐏𝐏𝐪𝐪 (𝜽𝜽𝜽 𝐕 𝐪𝐪𝑇𝑇 (𝜽𝜽𝜽 𝐏𝐏�̇�𝐪 (𝜽𝜽𝜽

− 󶀢󶀢𝐪𝐪𝑇𝑇 (𝜽𝜽𝜽 𝐒𝐒1 𝐕 �̇�𝐪
𝑇𝑇 (𝜽𝜽𝜽 𝐒𝐒2󶀲󶀲

𝑛 󶀨󶀨�̇�𝐪 (𝜽𝜽𝜽 −
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐔1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝐔1
ℎ𝑖𝑖 (𝜽𝜽 (𝜽𝜽𝜽𝜽 ℎ𝑗𝑗 (𝜽𝜽 (𝜽𝜽𝜽𝜽

𝑛 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 𝐪𝐪 (𝜽𝜽𝜽󶀸󶀸

− 󶀨󶀨�̇�𝐪𝑇𝑇 (𝜽𝜽𝜽 − 𝐪𝐪𝑇𝑇 (𝜽𝜽𝜽
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐔1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝐔1
ℎ𝑖𝑖 (𝜽𝜽 (𝜽𝜽𝜽𝜽 ℎ𝑗𝑗 (𝜽𝜽 (𝜽𝜽𝜽𝜽

𝑛 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲
𝑇𝑇
󶀸󶀸 󶀸󶀸𝐒𝐒1𝐪𝐪 (𝜽𝜽𝜽 𝐕 𝐒𝐒2�̇�𝐪 (𝜽𝜽𝜽󶀱󶀱

< − 𝐪𝐪𝑇𝑇 (𝜽𝜽𝜽
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐔1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝐔1
ℎ𝑖𝑖 (𝜽𝜽 (𝜽𝜽𝜽𝜽 ℎ𝑗𝑗 (𝜽𝜽 (𝜽𝜽𝜽𝜽 𝐗𝐗𝑖𝑖𝑗𝑗𝐪𝐪 (𝜽𝜽𝜽

𝐔 − 𝐪𝐪𝑇𝑇 (𝜽𝜽𝜽 𝐙𝐙 (𝜽𝜽 (𝜽𝜽𝜽𝜽 𝐪𝐪 (𝜽𝜽𝜽 < 0.

(46)

Using the notation

𝐪𝐪∘𝑇𝑇 (𝜽𝜽𝜽 𝐔 󶁢󶁢𝐪𝐪𝑇𝑇 (𝜽𝜽𝜽 �̇�𝐪𝑇𝑇 (𝜽𝜽𝜽󶁲󶁲 (47)

the inequality (46) can be set and written as

̇𝑣𝑣 (𝐪𝐪 (𝜽𝜽𝜽𝜽 𝐔
𝑠𝑠
󵠈󵠈
𝑖𝑖𝐔1

𝑠𝑠
󵠈󵠈
𝑗𝑗𝐔1
ℎ𝑖𝑖 (𝜽𝜽 (𝜽𝜽𝜽𝜽 ℎ𝑗𝑗 (𝜽𝜽 (𝜽𝜽𝜽𝜽 𝐪𝐪

∘𝑇𝑇 (𝜽𝜽𝜽 𝐏𝐏∘𝑖𝑖𝑗𝑗𝐪𝐪
∘ (𝜽𝜽𝜽 < 0𝐔

(48)

where

𝐏𝐏∘𝑖𝑖𝑗𝑗 𝐔 󶁧󶁧𝐒𝐒1 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 𝐕 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲
𝑇𝑇
𝐒𝐒1 𝐕 𝐗𝐗𝑖𝑖𝑗𝑗 ∗

𝐏𝐏 − 𝐒𝐒1 𝐕 𝐒𝐒2 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂󶀲󶀲 −2𝐒𝐒2
󶁷󶁷

< 0
(49)

𝐙𝐙∘ (𝜽𝜽 (𝜽𝜽𝜽𝜽 𝐔 diag 󶁡󶁡𝐙𝐙 (𝜽𝜽 (𝜽𝜽𝜽𝜽 𝟎𝟎󶁱󶁱 ≥ 0. (50)

Since 𝑟𝑟 𝐔 𝑟𝑟, it is now possible to set

𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐂𝐂 𝐔 𝐁𝐁𝑖𝑖𝐊𝐊𝑗𝑗𝐌𝐌𝐌𝐌−1𝐂𝐂 𝐔 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂𝐒𝐒1𝐔 (51)

where

𝐊𝐊𝑗𝑗𝐌𝐌 𝐔 𝐍𝐍𝑗𝑗𝐔 𝐌𝐌−1𝐂𝐂 𝐔 𝐂𝐂𝐒𝐒1𝐔 (52)

and𝐌𝐌 𝐔 ℝ𝑟𝑟𝑛𝑟𝑟 is a regular square matrix. Substituting (51)
into (49) results in

𝐏𝐏∘𝑖𝑖𝑗𝑗 𝐔 󶁦󶁦
𝚽𝚽𝑖𝑖𝑗𝑗 ∗

𝐏𝐏 − 𝐒𝐒1 𝐕 𝐒𝐒2 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑗𝑗𝐂𝐂𝐒𝐒1󶀲󶀲 −2𝐒𝐒2
󶁶󶁶 𝐔 (53)
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where

𝚽𝚽𝑖𝑖𝑖𝑖 = 𝐗𝐗𝑖𝑖𝑖𝑖 + 𝐒𝐒1 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂𝐒𝐒1󶀲󶀲 + 󶀢󶀢𝐀𝐀𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂𝐒𝐒1󶀲󶀲
𝑇𝑇
𝐒𝐒1.
(54)

�e�ning the congruence transform matrix 𝐓𝐓𝑐𝑐 as follows:

𝐓𝐓𝑐𝑐 = 󶁢󶁢𝐒𝐒
−1
1 𝐒𝐒−12 󶁲󶁲 . (55)

Premultiplying the le and the right side of (53) and (50) by
𝐓𝐓𝑐𝑐 gives

󶁦󶁦
𝚷𝚷𝑖𝑖𝑖𝑖 ∗

𝐒𝐒−12 𝐏𝐏𝐒𝐒
−1
1 − 𝐒𝐒−12 + 󶀢󶀢𝐀𝐀𝑖𝑖𝐒𝐒

−1
1 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂󶀲󶀲 −2𝐒𝐒−12

󶁶󶁶 < 0 (56)

diag 󶁢󶁢𝐒𝐒−11 𝐙𝐙 (𝜽𝜽 (𝑡𝑡)) 𝐒𝐒
−1
1 𝟎𝟎󶁲󶁲 ≥ 0, (57)

where

𝚷𝚷𝑖𝑖𝑖𝑖 = 𝐒𝐒
−1
1 𝚽𝚽𝑖𝑖𝑖𝑖𝐒𝐒

−1
1 = 𝐒𝐒−11 𝐗𝐗𝑖𝑖𝑖𝑖𝐒𝐒

−1
1

+ 󶀢󶀢𝐀𝐀𝑖𝑖𝐒𝐒
−1
1 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂󶀲󶀲 + 󶀢󶀢𝐀𝐀𝑖𝑖𝐒𝐒

−1
1 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂󶀲󶀲

𝑇𝑇
.

(58)

us, using the notations

𝐕𝐕 = 𝐒𝐒−11 , 𝐔𝐔 = 𝐒𝐒−12 , 𝐓𝐓 = 𝐔𝐔𝐏𝐏𝐕𝐕, 𝐓𝐓𝑖𝑖𝑖𝑖 = 𝐕𝐕𝐗𝐗𝑖𝑖𝑖𝑖𝐕𝐕
(59)

then (56), (58) implies (41).
Since now, 𝐕𝐕𝐙𝐙(𝜽𝜽(𝑡𝑡))𝐕𝐕 in (57) and W𝐙𝐙(𝜽𝜽(𝑡𝑡))W in (28),

both have the same structure if 𝐕𝐕 = W, (57) implies (40).
In addition, (52) gives

𝐌𝐌𝐂𝐂 = 𝐂𝐂𝐒𝐒−11 = 𝐂𝐂𝐕𝐕 (60)

and since (60) and (30) both have the same structure if 𝐕𝐕 =
W, then (60) implies (42). is concludes the proof.

is principle naturally exploits the affineTSmodel prop-
erties. Introducing the slack matrix variables 𝐔𝐔, 𝐕𝐕 into the
LMIs, the systemmatrices are decoupled from the equivalent
Lyapunov matrix 𝐓𝐓. Note, the above-presented inequalities
are linear matrix inequalities, but the equivalent Lyapunov
matrix 𝐓𝐓 is not a symmetric matrix. Introducing a scalar
design parameter 𝛿𝛿 𝛿 0, 𝛿𝛿 𝛿 𝛿, eorem 4 can be modi�ed
in the next form.
Corollary 5. If, instead of the notations (56), there are used in
(59) the next substitutions

𝐔𝐔 = 𝛿𝛿𝐕𝐕, 𝐓𝐓 = 𝛿𝛿𝐕𝐕𝐏𝐏𝐕𝐕, 𝛿𝛿 𝛿 0, 𝛿𝛿 𝛿 𝛿. (61)

It is evident that (53) and (54) with (61) imply

𝐓𝐓 = 𝐓𝐓𝑇𝑇 𝛿 0, 𝐕𝐕 = 𝐕𝐕𝑇𝑇 𝛿 0,

󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐓𝐓11 𝐓𝐓12 ⋯ 𝐓𝐓1𝑠𝑠
𝐓𝐓12 𝐓𝐓22 ⋯ 𝐓𝐓2𝑠𝑠
⋮ ⋮ ⋱ ⋮
𝐓𝐓1𝑠𝑠 𝐓𝐓2𝑠𝑠 ⋯ 𝐓𝐓𝑠𝑠𝑠𝑠

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

𝛿 0,
(62)

󶁦󶁦𝐀𝐀𝑖𝑖𝐕𝐕 + 𝐕𝐕𝐀𝐀𝑇𝑇
𝑖𝑖 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂 − 𝐂𝐂𝑇𝑇𝐍𝐍𝑇𝑇

𝑖𝑖 𝐁𝐁
𝑇𝑇
𝑖𝑖 + 𝐓𝐓𝑖𝑖𝑖𝑖 ∗

𝐓𝐓 − 𝛿𝛿𝐕𝐕 + 𝐀𝐀𝑖𝑖𝐕𝐕 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂 −2𝛿𝛿𝐕𝐕󶁶󶁶 < 0,

(63)

for ℎ𝑖𝑖(𝜽𝜽(𝑡𝑡))ℎ𝑖𝑖(𝜽𝜽(𝑡𝑡)) 𝜽 0, 𝑖𝑖, 𝑖𝑖 = 1, 2,𝑖 , 𝑠𝑠.

us, the equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9), is global asymptotically
stable if for given positive scalar 𝛿𝛿 𝛿 0, 𝛿𝛿 𝛿 𝛿 there exist
positive de�nite symmetric matrices𝐓𝐓,𝐕𝐕 𝛿 𝛿𝑛𝑛𝑛𝑛𝑛, andmatrices
𝐍𝐍𝑖𝑖, 𝐓𝐓𝑖𝑖𝑖𝑖 𝛿 𝛿

𝑟𝑟𝑛𝑛𝑛 such that (62)–(63) hold. Subsequently, the set
of control law gain matrices is given by (42)–(43).

Note, (63) represents the set of LMIs only if 𝛿𝛿 is a pre-
scribed constant (𝛿𝛿 can be considered as a tuning parameter).
Considering 𝛿𝛿 as a LMI variable, (63) represents the set of
bilinear matrix inequalities (BMI).

eorem 6. e equilibrium of the fuzzy system (5) and (6),
controlled by the fuzzy controller (9) is global asymptotically
stable if there exist positive de�nite symmetric matrices 𝐔𝐔,𝐕𝐕 𝛿
𝛿𝑛𝑛𝑛𝑛𝑛, a matrix 𝐓𝐓 𝛿 𝛿𝑛𝑛𝑛𝑛𝑛, and matrices 𝐍𝐍𝑖𝑖, 𝐓𝐓𝑖𝑖𝑖𝑖 𝛿 𝛿𝑟𝑟𝑛𝑛𝑛 such
that

𝐔𝐔 = 𝐔𝐔𝑇𝑇 𝛿 0, 𝐕𝐕 = 𝐕𝐕𝑇𝑇 𝛿 0,

󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐓𝐓11 𝐓𝐓12 ⋯ 𝐓𝐓1𝑠𝑠
𝐓𝐓12 𝐓𝐓22 ⋯ 𝐓𝐓2𝑠𝑠
⋮ ⋮ ⋱ ⋮
𝐓𝐓1𝑠𝑠 𝐓𝐓2𝑠𝑠 ⋯ 𝐓𝐓𝑠𝑠𝑠𝑠

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

𝛿 0,
(64)

󶁥󶁥𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇
𝑇𝑇
𝑖𝑖𝑖𝑖 + 𝐓𝐓𝑖𝑖𝑖𝑖 ∗

𝐓𝐓 − 𝐔𝐔 + 𝐇𝐇𝑖𝑖𝑖𝑖 −2𝐔𝐔󶁵󶁵 < 0, (65)

󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇𝑖𝑖𝑖𝑖

2
+
󶀢󶀢𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇𝑖𝑖𝑖𝑖󶀲󶀲

𝑇𝑇

2
+
𝐓𝐓𝑖𝑖𝑖𝑖 + 𝐓𝐓𝑖𝑖𝑖𝑖

2
∗

𝐓𝐓 − 𝐔𝐔 +
𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇𝑖𝑖𝑖𝑖

2
−2𝐔𝐔

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

< 0 (66)

for all 𝑖𝑖 𝛿 𝑖1, 2,𝑖 𝑠𝑠𝑖, 𝑖𝑖 < 𝑖𝑖 𝑖 𝑠𝑠, 𝑖𝑖, 𝑖𝑖 𝛿 𝑖1, 2,𝑖 𝑠𝑠𝑖, respectively,
and ℎ𝑖𝑖(𝜽𝜽(𝑡𝑡))ℎ𝑖𝑖(𝜽𝜽(𝑡𝑡)) 𝜽 0. Here it is

𝐇𝐇𝑖𝑖𝑖𝑖 = 𝐀𝐀𝑖𝑖𝐕𝐕 − 𝐁𝐁𝑖𝑖𝐍𝐍𝑖𝑖𝐂𝐂 (67)

and if the above conditions hold, the set of control law gain
matrices is given as in (42)–(43).

Proof. Considering (41) and (67), (48) can be written as

̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡)) =
𝑠𝑠
󵠈󵠈
𝑖𝑖=1

𝑠𝑠
󵠈󵠈
𝑖𝑖=1

ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡))

𝑛 𝐪𝐪∘𝑇𝑇 (𝑡𝑡) 𝐓𝐓−1𝑐𝑐 𝐓𝐓𝑐𝑐𝐏𝐏
∘
𝑖𝑖𝑖𝑖𝐓𝐓𝑐𝑐𝐓𝐓

−1
𝑐𝑐 𝐪𝐪

∘ (𝑡𝑡)

=
𝑠𝑠
󵠈󵠈
𝑖𝑖=1

𝑠𝑠
󵠈󵠈
𝑖𝑖=1
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) 𝐪𝐪

•𝑇𝑇 (𝑡𝑡) 𝐏𝐏•𝑖𝑖𝑖𝑖𝐪𝐪
• (𝑡𝑡) < 0,

(68)

where with 𝐓𝐓𝑐𝑐 de�ned in (55), it is

𝐪𝐪• (𝑡𝑡) = 𝐓𝐓−1𝑐𝑐 𝐪𝐪
∘ (𝑡𝑡) ,

𝐏𝐏•𝑖𝑖𝑖𝑖 = 𝐓𝐓𝑐𝑐𝐏𝐏
∘
𝑖𝑖𝑖𝑖𝐓𝐓𝑐𝑐 = 󶁦󶁦

𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇
𝑇𝑇
𝑖𝑖𝑖𝑖 + 𝐓𝐓𝑖𝑖𝑖𝑖 ∗

𝐓𝐓 − 𝐔𝐔 + 𝐇𝐇𝑖𝑖𝑖𝑖 −2𝐔𝐔󶁶󶁶 < 0.
(69)
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Permuting the subscripts 𝑖𝑖 and 𝑗𝑗 in (68) gives

̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡)) =
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑖

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑖
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 𝐪𝐪

•𝑇𝑇 (𝑡𝑡) 𝐏𝐏•𝑗𝑗𝑖𝑖𝐪𝐪
• (𝑡𝑡) (70)

and adding (68) and (70) results in

2 ̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡)) =
𝑠𝑠
󵠈󵠈
𝑖𝑖=𝑖

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑖
ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 𝐪𝐪

•𝑇𝑇 (𝑡𝑡)󵰔󵰔𝐏𝐏•𝑖𝑖𝑗𝑗𝐪𝐪
• (𝑡𝑡) , (71)

where

󵰔󵰔𝐏𝐏•𝑖𝑖𝑗𝑗 = 󶁦󶁦
𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖 + 𝐇𝐇

𝑇𝑇
𝑖𝑖𝑗𝑗 + 𝐇𝐇

𝑇𝑇
𝑗𝑗𝑖𝑖 + 𝐘𝐘𝑖𝑖𝑗𝑗 + 𝐘𝐘𝑗𝑗𝑖𝑖 ∗

2𝐓𝐓 𝐓 2𝐓𝐓 + 𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖 𝐓4𝐓𝐓 󶁶󶁶 < 0.

(72)

Rearranging the computation, (71) takes the form

̇𝑣𝑣 (𝐪𝐪 (𝑡𝑡)) =
𝑠𝑠
∑
𝑖𝑖=𝑖
ℎ2𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) 𝐪𝐪

𝑇𝑇 (𝑡𝑡)
𝑖
2
󵰔󵰔𝐏𝐏•𝑖𝑖𝑖𝑖𝐪𝐪

• (𝑡𝑡)

+ 2
𝑠𝑠𝐓𝑖
󵠈󵠈
𝑖𝑖=𝑖

𝑠𝑠
󵠈󵠈
𝑗𝑗=𝑖𝑖+𝑖

ℎ𝑖𝑖 (𝜽𝜽 (𝑡𝑡)) ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 𝐪𝐪
•𝑇𝑇 (𝑡𝑡)

𝑖
2
󵰔󵰔𝐏𝐏•𝑖𝑖𝑗𝑗𝐪𝐪

• (𝑡𝑡) ,

(73)

where

𝑖
2
󵰔󵰔𝐏𝐏•𝑖𝑖𝑖𝑖 = 󶁥󶁥

𝐇𝐇𝑖𝑖𝑖𝑖 + 𝐇𝐇
𝑇𝑇
𝑖𝑖𝑖𝑖 + 𝐘𝐘𝑖𝑖𝑖𝑖 ∗

𝐓𝐓 𝐓 𝐓𝐓 + 𝐇𝐇𝑖𝑖𝑖𝑖 𝐓2𝐓𝐓󶁵󶁵 < 0 (74)

𝑖
2
󵰔󵰔𝐏𝐏•𝑖𝑖𝑗𝑗 =

󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖

2
+
󶀢󶀢𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖󶀲󶀲

𝑇𝑇

2
+
𝐘𝐘𝑖𝑖𝑗𝑗 + 𝐘𝐘𝑗𝑗𝑖𝑖

2
∗

𝐓𝐓 𝐓 𝐓𝐓 +
𝐇𝐇𝑖𝑖𝑗𝑗 + 𝐇𝐇𝑗𝑗𝑖𝑖

2
𝐓2𝐓𝐓

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

< 0

(75)

and, evidently, (74), (75) imply (65),(66) respectively. is
concludes the proof.

5. Illustrative Example

e nonlinear dynamics of the hydrostatic transmission was
taken from [24] and this model was used in control design
and simulation.

e hydrostatic transmission dynamics is represented by
a nonlinear fourth-order state-space model as follows.

�̇�𝑞𝑖 (𝑡𝑡) = 𝐓 𝑎𝑎𝑖𝑖𝑞𝑞𝑖 (𝑡𝑡) + 𝑏𝑏𝑖𝑖𝑢𝑢𝑖 (𝑡𝑡) ,

�̇�𝑞2 (𝑡𝑡) = 𝐓 𝑎𝑎22𝑞𝑞2 (𝑡𝑡) + 𝑏𝑏22𝑢𝑢2 (𝑡𝑡) ,

�̇�𝑞3 (𝑡𝑡) = 𝑎𝑎3𝑖𝑞𝑞𝑖 (𝑡𝑡) 𝑝𝑝 (𝑡𝑡) 𝐓 𝑎𝑎33𝑞𝑞3 (𝑡𝑡) 𝐓 𝑎𝑎34𝑞𝑞2 (𝑡𝑡) 𝑞𝑞4 (𝑡𝑡) ,

�̇�𝑞4 (𝑡𝑡) = 𝑎𝑎43𝑞𝑞2 (𝑡𝑡) 𝑞𝑞3 (𝑡𝑡) 𝐓 𝑎𝑎44𝑞𝑞4 (𝑡𝑡) ,

(76)

where 𝑞𝑞𝑖(𝑡𝑡) is the normalized hydraulic pump angle, 𝑞𝑞2(𝑡𝑡) is
the normalized hydraulic motor angle, 𝑞𝑞3(𝑡𝑡) is the pressure
difference (bar), 𝑞𝑞4(𝑡𝑡) is the hydraulic motor speed (rad/s),
𝑝𝑝(𝑡𝑡) is the speed of hydraulic pump (rad/s), 𝑢𝑢𝑖(𝑡𝑡) is the

normalized control signal of the hydraulic pump, and 𝑢𝑢2(𝑡𝑡)
is the normalized control signal of the hydraulic motor. It is
supposed that the external variable 𝑝𝑝(𝑡𝑡), as well as the second
state variable 𝑞𝑞2(𝑡𝑡) aremeasurable. In givenworking point the
parameters are

𝑎𝑎𝑖𝑖 = 7.6923 𝑎𝑎22 = 4.5455 𝑎𝑎33 = 7.6054.𝑖0
𝐓4,

𝑎𝑎3𝑖 = 0.7877 𝑎𝑎34 = 0.9235 𝑏𝑏𝑖𝑖 = 𝑖.8590.𝑖0
3, and

𝑎𝑎43 = 𝑖2.𝑖967 𝑎𝑎44 = 0.4𝑖43 𝑏𝑏22 = 𝑖.2879.𝑖0
3.

(77)

Since the variables 𝑝𝑝(𝑡𝑡) 𝑝 𝑝𝑖05, 300𝑝 and 𝑞𝑞2(𝑡𝑡) 𝑝 𝑝0.000𝑖, 𝑖𝑝
are bounded on the prescribed sectors then vector of the
premise variables can be chosen as follows:

𝜽𝜽 (𝑡𝑡) = 󶁡󶁡𝜃𝜃𝑖 (𝑡𝑡) 𝜃𝜃2 (𝑡𝑡)󶁱󶁱 = 󶁡󶁡𝑞𝑞2 (𝑡𝑡) 𝑝𝑝 (𝑡𝑡)󶁱󶁱 . (78)

us, the set of nonlinear sector functions as follows.

𝑤𝑤𝑖𝑖 󶀡󶀡𝑞𝑞2 (𝑡𝑡)󶀱󶀱 =
𝑏𝑏𝑖 𝐓 𝑞𝑞2 (𝑡𝑡)
𝑏𝑏𝑖 𝐓 𝑏𝑏2

,

𝑤𝑤𝑖2 󶀡󶀡𝑞𝑞2 (𝑡𝑡)󶀱󶀱 =
𝑞𝑞2 (𝑡𝑡) 𝐓 𝑏𝑏2
𝑏𝑏𝑖 𝐓 𝑏𝑏2

= 𝑖 𝐓 𝑤𝑤𝑖𝑖 󶀡󶀡𝑞𝑞2 (𝑡𝑡)󶀱󶀱 ,

𝑏𝑏𝑖 = 0, 𝑏𝑏2 = 𝑖,

𝑤𝑤2𝑖 󶀡󶀡𝑝𝑝 (𝑡𝑡)󶀱󶀱 =
𝑐𝑐𝑖 𝐓 𝑝𝑝 (𝑡𝑡)
𝑐𝑐𝑖 𝐓 𝑐𝑐2

,

𝑤𝑤22 󶀡󶀡𝑝𝑝 (𝑡𝑡)󶀱󶀱 =
𝑝𝑝 (𝑡𝑡) 𝐓 𝑐𝑐2
𝑐𝑐𝑖 𝐓 𝑐𝑐2

= 𝑖 𝐓 𝑤𝑤2𝑖 󶀡󶀡𝑝𝑝 (𝑡𝑡)󶀱󶀱 ,

𝑐𝑐𝑖 = 𝑖05, 𝑐𝑐2 = 300

(79)

implies the next set of normalized membership functions as
follows:

ℎ𝑖 󶀡󶀡𝑞𝑞2 (𝑡𝑡) , 𝑝𝑝 (𝑡𝑡)󶀱󶀱 = 𝑤𝑤𝑖𝑖 󶀡󶀡𝑞𝑞2 (𝑡𝑡)󶀱󶀱 𝑤𝑤2𝑖 󶀡󶀡𝑝𝑝 (𝑡𝑡)󶀱󶀱 ,

ℎ2 󶀡󶀡𝑞𝑞2 (𝑡𝑡) , 𝑝𝑝 (𝑡𝑡)󶀱󶀱 = 𝑤𝑤𝑖2 󶀡󶀡𝑞𝑞2 (𝑡𝑡)󶀱󶀱 𝑤𝑤2𝑖 󶀡󶀡𝑝𝑝 (𝑡𝑡)󶀱󶀱 ,

ℎ3 󶀡󶀡𝑞𝑞2 (𝑡𝑡) , 𝑝𝑝 (𝑡𝑡)󶀱󶀱 = 𝑤𝑤𝑖𝑖 󶀡󶀡𝑞𝑞2 (𝑡𝑡)󶀱󶀱 𝑤𝑤22 󶀡󶀡𝑝𝑝 (𝑡𝑡)󶀱󶀱 ,

ℎ4 󶀡󶀡𝑞𝑞2 (𝑡𝑡) , 𝑝𝑝 (𝑡𝑡)󶀱󶀱 = 𝑤𝑤𝑖2 󶀡󶀡𝑞𝑞2 (𝑡𝑡)󶀱󶀱 𝑤𝑤22 󶀡󶀡𝑝𝑝 (𝑡𝑡)󶀱󶀱 .

(80)

e transformation of nonlinear differential equation systems
into a TS fuzzy system in standard form gives

𝐀𝐀𝑖𝑖 =
󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝐓𝑎𝑎𝑖𝑖 0 0 0
0 𝐓𝑎𝑎22 0 0

𝑎𝑎3𝑖𝑐𝑐𝑘𝑘 0 𝐓𝑎𝑎3𝑖 𝐓𝑎𝑎34𝑏𝑏𝑙𝑙
0 0 𝑎𝑎43𝑏𝑏𝑙𝑙 𝐓𝑎𝑎44

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

, 𝐁𝐁 = 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

𝑎𝑎𝑖𝑖 0
0 𝑏𝑏22
0 0
0 0

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

,

𝐂𝐂𝑇𝑇 = 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

0 0
𝑖 0
0 𝑖
0 0

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝
(81)

with the associations
𝑖𝑖 = 𝑖𝑖 (𝑙𝑙 = 𝑖, 𝑘𝑘 = 𝑖) 𝑖𝑖 = 2𝑖 (𝑙𝑙 = 2, 𝑘𝑘 = 𝑖)

𝑖𝑖 = 3𝑖 (𝑙𝑙 = 𝑖, 𝑘𝑘 = 2) 𝑖𝑖 = 4𝑖 (𝑙𝑙 = 2, 𝑘𝑘 = 2) .
(82)
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F 1: System output response.

us, solving (62), (63) with respect to the LMI matrix
variables 𝐓𝐓, 𝐕𝐕, 𝐍𝐍𝑗𝑗, 𝑗𝑗 𝑗 𝑗, 𝑗, 𝑗, 𝑗, and with 𝛿𝛿 𝑗 𝛿 then,
using Self-Dual-Minimization (SeDuMi) package for Matlab
[25, 26], the feedback gainmatrix design problemwas feasible
with the results

𝐓𝐓 𝑗 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

0.00𝑗7 0.0000 −0.0𝑗𝑗𝑗 0.0006
0.0000 0.𝛿𝑗58 0.0000 0.0000
−0.0𝑗𝑗𝑗 0.0000 0.567𝛿 −0.𝑗𝑗6𝑗
0.0006 0.0000 −0.𝑗𝑗6𝑗 𝑗.768𝑗

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

> 0

𝐕𝐕 𝑗 󶀄󶀄󶀔󶀔󶀔󶀔

󶀜󶀜

0.000𝑗 0.0000 −0.00𝑗7 −0.000𝑗
0.0000 0.0𝑗8𝑗 0.0000 −0.0000
−0.00𝑗7 0.0000 0.0𝑗𝑗0 −0.0𝑗5𝑗
−0.000𝑗 0.0000 −0.0𝑗5𝑗 0.𝑗0𝑗7

󶀅󶀅󶀕󶀕󶀕󶀕

󶀝󶀝

> 0

𝐊𝐊𝑖𝑖 𝑗 󶁥󶁥
0.0000 0.000𝑗
0.00𝑗7 0.0000󶁵󶁵 , 𝑖𝑖 𝑗 𝑗, 𝑗, 𝑗, 𝑗

(83)

which rise up a stable set of closed-loop subsystems. It can
be seen that with an enough precision the used design con-
ditions imply the approximately equal control gain matrices.
Comparing with design methods proposed in [17], the fuzzy
control is so less conservative.

e conditions in simulations were speci�ed for the
system in the forced regime, where

𝐮𝐮 (𝑡𝑡) 𝑗
𝑠𝑠
󵠈󵠈
𝑗𝑗𝑗𝑗
ℎ𝑗𝑗 (𝜽𝜽 (𝑡𝑡)) 󶀢󶀢−𝐊𝐊𝑗𝑗𝐂𝐂𝐂𝐂 (𝑡𝑡) +WW (𝑡𝑡)󶀲󶀲 ,

W 𝑗 󶁥󶁥0.0000 0.000𝑗
0.007𝑗 0.0000󶁵󶁵 , W (𝑡𝑡) 𝑗 󶁥󶁥0.50.𝑗󶁵󶁵 ,

𝐂𝐂 (0) 𝑗 𝟎𝟎, 𝟎𝟎 (𝑡𝑡) 𝑗 𝑗05.

(84)

Figure 1 shows the simulation result for the system with zero
initial state.

6. Concluding Remarks

New approach for output feedback control design, taking into
account the output matrix of the systemmodel and the affine
properties of the TS model structure, is presented in this
paper. Applying the fuzzy output control scheme relating to
the parallel distributed output compensators and introducing
the slack matrices into an enhanced Lyapunov inequality, the
method signi�cantly reduces the conservativeness in the con-
trol design conditions. By the proposed procedure, strictly
decoupling a Lyapunov matrix and the system parameter
matrices in the LMIs, the control problem is parameterized
in such LMI structure which admit more freedom in guaran-
teeing the output feedback control performances.

Sufficient conditions of the controller existence, manip-
ulating the global stability of the system, imply the control
structure which stabilizes the nonlinear system in the sense
of Lyapunov, and the design of controller parameters directly
from these conditions is a solved numerical problem. An
additional bene�t of the method is that controllers use min-
imum feedback information with respect to desired system
output and the approach is �exible enough to allow the inclu-
sion of additional design conditions such as fuzzy Lyapunov
functions. e validity and applicability of the approach is
demonstrated through a numerical design example.
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