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Dissolved gas analysis (DGA) of transformer oil has been one of the most reliable techniques to detect the incipient faults. Many
conventional DGA methods have been developed to interpret DGA results obtained from gas chromatography. Although these
methods are widely used in the world, they sometimes fail to diagnose, especially when DGA results fall outside conventional
methods codes or when more than one fault exist in the transformer. To overcome these limitations, the fuzzy inference system
(FIS) is proposed. Twohundred different cases are used to test the accuracy of variousDGAmethods in interpreting the transformer
condition.

1. Introduction

The power transformer is a vital equipment of the electrical
power system. A transformer may function well externally
with monitors, while some incipient deteriorations may
occur internally to cause fatal problems in later development.
Nearly 80% of faults result from incipient deteriorations.
Therefore, faults should be identified and avoided at the
earliest possible stage by some predictive maintenance tech-
nique.Dissolved gas analysis (DGA) is a reliable technique for
detection of incipient faults in oil-filled power transformer.
It is similar to a blood test or a scanner examination of
the human body; it can warn about an impending problem,
give an early diagnosis, and increase the chances of finding
the appropriate cure. The working principle [1–4] is based
on the dielectric breakdown of some of the oil molecules
or cellulose molecules of the insulation due to incipient
faults. When there is any kind of fault, such as overheating
or discharge inside the transformer, it will produce corre-
sponding characteristic amount of gases in the transformer
oil. These gases are detected at the per part million (ppm)
level by gas chromatography [5–10] It is a technique of
separation, identification, and quantification of mixtures
of gases. The commonly collected and analyzed gases are
hydrogen (H

2
), methane (CH

4
), acetylene (C

2
H
2
), ethylene

(C
2
H
4
), ethane (C

2
H
6
), carbon monoxide (CO), and carbon

dioxide (CO
2
). Through the analysis of the concentrations of

dissolved gases, their gassing rates, and the ratios of certain
gases, the DGA methods can determine the fault type of
the transformer. Even under normal transformer operational
conditions, some of these gases may be formed inside.

Therefore, it is necessary to build concentration norms
from a sufficiently large sampling to assess the statistics.

2. DGA Interpretation

If an incipient fault is present in the transformer, concen-
tration of gases dissolved in the oil significantly increases. A
given gas volume may be generated over a long time period
by a relatively insignificant fault or in a very short time period
by a more severe fault. Once a suspicious gas’s presence is
detected, it is important to be certain whether the fault that
generated the gas is active by calculating the total dissolved
combustible gases (TDCG) and rate of TDCG (10) which is
given by

𝑅 =
(𝑆
𝑇
− 𝑆
0
) ⋅ 𝑉 ⋅ 10

−6

𝑇
, (1)
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Table 1: Coding rule for IEC method [11].

Codes Range of gas ratios
𝑅1 𝑅2 𝑅3

0 <0.1 0.1–1 <1
1 0.1–3 <0.1 1–3
2 >3 >1 >3

Table 2: Classification of faults by IEC method [11].

Fault
type Characteristic fault 𝑅1 𝑅2 𝑅3

1 Normal ageing (N) 0 0 0
2 Partial discharge (PD) of low energy density 0 1 0
3 PD of high energy density 1 1 0
4 Discharges of low energy (D1) 1-2 0 1-2
5 Discharge of high energy (D2) 1 0 2
6 Thermal fault of low temperature (TL) < 150∘C 0 0 1
7 TL between 150∘C and 300∘C 0 2 0
8 TL between 300∘C and 700∘C 0 2 1
9 Thermal fault of high temperature (TH) > 700∘C 0 2 2

where𝑅 is the rate (liters/day), So is the TDCG of first sample
in ppm, 𝑆

𝑇
is the TDCG of second sample in ppm, 𝑉 is tank

oil volume in liters, and 𝑇 is the time (days).
The rate of generation of TDCGgreater than 2.8 liters/day

indicates that the transformer has an active internal fault and
requires additional inspection by DGA methods.

Many interpretative methods employ an array of ratios
of certain key combustible gases as the fault type indicators.
These five ratios are

𝑅1 = C
2
H
2
/C
2
H
4
,

𝑅2 = CH
4
/H
2
,

𝑅3 = C
2
H
4
/C
2
H
6
,

𝑅4 = C
2
H
6
/C
2
H
2
,

𝑅5 = C
2
H
2
/CH
4
.

Rogers’ method [13–15] utilizes three ratios 𝑅1, 𝑅2, and 𝑅3.
The method gives fault for the specific combination of these
gas ratios. Dornenburg [13–15] utilizes four ratios 𝑅1, 𝑅2, 𝑅4,
and 𝑅5. This procedure requires significant levels of gases to
be present for the diagnosis to be valid.Themethod gives fault
after comparing these ratios to the limiting values.

Amongst ratio methods, IEC Standard 60599 [11] is most
widely used. It also utilizes three ratios 𝑅1, 𝑅2, and 𝑅3. The
coding rule and classification of faults by the IECmethod are
given in Tables 1 and 2.

Incipient faults can be reliably identified by visual inspec-
tion [16] of the equipment after the fault has occurred in
service as follows:

(a) PD–possible X wax formation and sparking inducing
small carbonized punctures in the paper.

(b) D1–larger punctures in the paper, tracking, or carbon
particles in oil.

(c) D2–extensive carbonization, metal fusion, and possi-
ble tripping of the equipment.

(d) TL–for TL < 300∘C, the paper turns brown, for TL >
300∘C, the paper carbonizes.

(e) TH–oil carbonization, metal coloration, or fusion.

TheDuval Triangle [17–19] method utilizes three % ratios
of certain gases for DGA interpretation of transformers filled
withmineral oil.The triangular coordinates corresponding to
DGA results in ppm can be calculated by (2) as follows:

%C
2
H
2
=
100 ⋅ 𝑥

(𝑥 + 𝑦 + 𝑧)
,

%C
2
H
4
=
100 ⋅ 𝑦

(𝑥 + 𝑦 + 𝑧)
,

%CH
4
=
100 ⋅ 𝑧

(𝑥 + 𝑦 + 𝑧)
,

(2)

where 𝑥, 𝑦, and 𝑧 are concentrations of C
2
H
2
, C
2
H
4
, and

CH
4
in ppm, respectively. Along with three % ratios given by

Duval Triangle method, fourth % ratio [12] is also used for
fault diagnosis which is given by

%H
2
=

100 ⋅H
2

(H
2
+ C
2
H
6
+ CO + CO

2
)
. (3)

All these techniques are computationally straightforward.
However, these methods in some cases provide erroneous
diagnoses as well as no conclusion for the fault type.

To overcome these limitations, FIS is proposed.

3. Diagnostic Procedure

Flow chart of proposed system diagnosis is shown in Figure 1.
The input data include concentration of dissolved gases
C
2
H
2
, C
2
H
4
, C
2
H
6
, CH
4
, H
2
, CO, and CO

2
of the sample.

Information such as tank oil volume, date of sampling,
and date of installation of transformer is asked for further
inference.

In the first step, the system calculates TDCG and com-
pares with the standard permissible limits (IEEE standard,
2008). For normal level of TDCG (<720 ppm), permissible
limits for individual gases are checked. The normal level
of TDCG and individual gases indicates the satisfactory
operation of a transformer. Once an abnormal level of TDCG
or individual gas has been detected, the next step is to
determine the rate of generation of TDCG (1) by analysis of
the successive sample. For the normal rate of TDCG (less than
2.8 liters/day), further diagnosis is bypassed. For an abnormal
rate of TDCG, the proposed FIS is adopted to diagnose the
probable faults. In the last step, severity degrees are assigned
to the diagnosed faults. On the basis of severity of faults,
appropriate maintenance actions are suggested.

4. Fuzzy Inference System (FIS)

Intelligent algorithms, for example, expert system [20], FIS
[21, 22], artificial neural networks [23–25], probabilistic
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Figure 1: Flow chart of proposed system diagnosis.

neural networks [26], evolving neural networks [27], artificial
neural FIS [28–31], wavelet networks [32], and combined
neural networks and expert system [33] have been used
to interpret DGA results. These algorithms are not entirely
satisfactory. These methods are mostly suitable for trans-
formers with single fault. In case of multiple faults, only
dominant fault is indicated by these methods.Thesemethods
are based on specific set of codes defined for certain gas ratios.
Further, no quantitative indication for severity of fault and
maintenance suggestions is given by these methods.

The proposed fuzzy diagnostic method is prepared using
theMATLABFuzzy Logic Toolbox [34]. Sugeno type FIS [35–
37] is used as a fuzzy inference method.

The rule for the zero-order Sugeno model is given below;
If input 1 = 𝑥 and input 2 = 𝑦, then output 𝑧 = constant.

The output level 𝑧 of each rule is weighted by firing
strength 𝑤

𝑖
of the rule. For an AND rule, firing strength is

given as

𝑤
𝑖
= AND method [𝐹1 (𝑥) , 𝐹2 (𝑦)] , (4)

where 𝐹1(𝑥) and 𝐹2(𝑦) are the membership functions for
input 1 and input 2.The final output of the system is weighted
average of all the rules output which is given by

𝑌 =
∑
𝑁

𝑖=1
𝑤
𝑖
𝑧
𝑖

∑
𝑁

𝑖=1
𝑤
𝑖

, (5)

where 𝑌 is final output and𝑁 is the number of rules.
The FIS consists of 3 ratios 𝑅1, 𝑅2, and 𝑅3 as inputs.

The coding rule for ratios is kept the same as IEC Method
(Table 1). One of the major drawbacks of IEC method is
that when gas ratio changes across coding boundary, the
code changes sharply between 0, 1, and 2. In fact the gas
ratio boundary should be fuzzy. Depending on the relative
values of ratios, IEC codes 0, 1, and 2 are replaced by fuzzy
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Figure 2: Membership function for ratio 𝑅3.

codes Low, Medium (Med), and High. Due to uncertainty in
measurements of gas concentrations by gas analyzers, the gas
ratios would have a relative uncertainty of plus or minus 10%
[38]. Membership function for code 0 of ratio 𝑅1 is given by
the linear declining function:

𝜇Low (𝑅1) =

{{{

{{{

{

1 󳨀→ 𝑅1 ≤ 0.09

(0.11 − 𝑅1)

(0.11 − 0.09)
0.09 ≤ 𝑅1 ≤ 0.11

0 𝑅1 ≥ 0.11.

(6)

Membership function for code 1 of ratio 𝑅1 is given by trap-
ezoidal function

𝜇Med (𝑅1) =

{{{{{{{{{{

{{{{{{{{{{

{

0 󳨀→ 𝑅1 ≤ 0.09

(𝑅1 − 0.09)

(0.11 − 0.09)
󳨀→ 0.09 ≤ 𝑅1 ≤ 0.11

1 0.11 ≤ 𝑅1 ≤ 2.7

(3.3 − 𝑅1)

(3.3 − 2.7)
2.7 ≤ 𝑅1 ≤ 3.3

0 𝑅1 ≥ 3.3.

(7)

Membership function for code 2 of ratio 𝑅1 is given by linear
increasing function:

𝜇High (𝑅1) =

{{{

{{{

{

0 󳨀→ 𝑅1 ≤ 2.7

(𝑅1 − 2.7)

(3.3 − 2.7)
󳨀→ 2.7 ≤ 𝑅1 ≤ 3.3

1 𝑅1 ≥ 3.3.

(8)

The codes of the ratios 𝑅2 and 𝑅3 are also fuzzified as Low,
Med, and High variable depending on the range of ratios for
these codes. Membership function for ratio 𝑅3 is shown in
Figure 2.

The FIS comprises of single output which has 5 fault types
as membership functions. Weight in the range of 0 to 1 is
assigned to each fault type on the basis of severity of the fault.
The five types of faults used in FIS are TL ⟨0.2⟩, PD ⟨0.4⟩, D1
⟨0.6⟩, TH ⟨0.8⟩, and D2 ⟨1.0⟩.

The major drawback of the IEC method is that 16 IEC
code combinations out the possible 27 do not indicate any
fault. Only 11 inference rules are suggested by the IEC
(Table 2) out of the 27 (3 × 3 × 3) possible rules. To overcome
this limitation, existing 11 rules are modified in terms of
fuzzy variables and additional 16 new rules are obtained as a
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Table 3: Comparison of accuracy of different methods.

𝑇
𝑅

𝑇
𝑃

𝐴
𝑃

𝐴
𝐶

Doernenburg 77 111 69.37 38.50
Roger 89 145 61.38 44.50
IEC 142 170 83.53 71.00
Duval Triangle 172 200 86.00 86.00
Li et al. [12] 181 200 90.50 90.50
Proposed method 187 200 93.50 93.50

result of extensive consultations with utility experts, existing
literature, and approximately 1500 DGA case histories. Each
rule consists of two components which are the antecedent
(IF part) and the consequent (THEN part). The rules having
a similar output are clubbed together and kept in order of
increasing value of the severity of fault. The fuzzy rules are
given below.

Rule 1. if 𝑅1 = Low, 𝑅2 = Low, 𝑅3 = Med, then fault = TL.

Rule 2. if 𝑅1 = Low, 𝑅2 = Med, 𝑅3 = Low, then fault = TL.

Rule 3. if 𝑅1 = Low, 𝑅2 = Med, 𝑅3 = Med, then fault = TL.
FIS derives output from judging all the fuzzy rules by

finding the weighted average of all 27 fuzzy rules output.

5. Case Studies, Results and Discussions

FIS is developed based on the proposed interpretative rules
and diagnostic procedure of an overall system. To demon-
strate the feasibility of the system in diagnostic, 200 DGA gas
records supplied by themajor power companies in India have
been tested.

Accuracy is calculated in two different ways as follows.

(a) When considering only the number of predictions,
percentage accuracy is given by

𝐴
𝑃
=
100 ⋅ 𝑇

𝑅

𝑇
𝑃

, (9)

where 𝑇
𝑅
is the number of correct predictions and 𝑇

𝑃

is the total number of the predictions.
(b) When considering the total number of cases, percent-

age accuracy is given in by

𝐴
𝐶
=
100 ⋅ 𝑇

𝑅

𝑇
𝐶

, (10)

where 𝑇
𝐶
is the total number of cases.

Accuracy values of different methods for total 200 cases
are compared and summarized in Table 3. Results from three
case studies are presented here.

5.1. Case Study-I. A 10MVA, 132KV/11 KV transformer is in
service for 11 years. Tank oil volume is 12000 liters. On load
tap changer inside main tank had intermittent sparking on
some of the contacts. One nail was found on the shield of

bottom tank, and few burnswere observed on the nail and the
bolt. DGA data obtained in ppm after the fault on 13/02/2009
is as follows: C

2
H
2
-4; C
2
H
4
-54; CH

4
-09; H

2
-78; C

2
H
6
-67;

CO-670; CO
2
-1243.

Step 1. TDCG in ppm = 882. TDCG is above normal
(>720 ppm).

Step 2. The transformer is sampled again on 20/02/2009 to
determine rate of TDCG. Concentrations of dissolved gases
in ppm are as follows: C

2
H
2
-6; C
2
H
4
-73; CH

4
-14; H

2
-158;

C
2
H
6
-75; CO-831; CO

2
-1430.

TDCG in ppm = 1157; rate of TDCG = 4.71 lit/day, which
is greater than the normal level (2.8 lit/day).

Step 3. FIS is applied for fault diagnosis. The output of FIS is
given by rule viewer which is shown in Figure 3. Rule viewer
shows 𝑅1 = 0.082 (Low), 𝑅2 = 0.088 (Low), and 𝑅3 = 0.973
which lies on the boundary of the fuzzy ratios Low and Med.
Dark dots in the first and eighth rows of the fault column
show that rules 1 and 8 are satisfied which indicates possible
faults TL and PD, respectively. This result matches the actual
fault of the transformer. Weighted average of both rules is
given as 0.327. Weight of both faults can be calculated as
follows:

weight of TL = (0.4 − 0.327)
(0.4 − 0.2)

= 0.365,

weight of PD = 1 − 0.365 = 0.635.
(11)

The weights point towards the strong possibility of fault PD
and the relatively less possibility of fault TL. The key feature
of the proposedmethod is that it can diagnose multiple faults
unlike conventional DGA methods.

Step 4. Severity of faults is Medium. Maintenance actions
suggested are as follows.

(1) Observe caution,
(2) Retest oil monthly,
(3) Determine load dependence.

5.2. Case Study-II. A 40MVA, 220KV/11 KV transformer
is in service for 23 years. Tank oil volume is 28000 liters.
This transformer had overheated off circuit tapping switching
contacts. DGA data obtained in ppm after the fault on
11/06/2010 is as follows: C

2
H
2
-31; C
2
H
4
-53; CH

4
-304; H

2
-163;

C
2
H
6
-15; CO-524; CO

2
-786.

Step 1. TDCG in ppm = 1090. TDCG is above normal
(>720 ppm).

Step 2. The transformer is sampled again on 14/06/2010 to
determine rate of TDCG. Concentrations of dissolved gases
in ppm are as follows: C

2
H
2
-34; C

2
H
4
-69; CH

4
-353; H

2
-197;

C
2
H
6
-22; CO-618; CO

2
-931.

TDCG in ppm= 1292; rate of TDCG= 18.85 lit/day, which
is greater than the normal level (2.8 lit/day).
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Figure 3: Rule viewer for case-I.
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Step 3. FIS is applied for fault diagnosis. The output of FIS
is given by rule viewer which is shown in Figure 4. Rule
viewer shows 𝑅1 = 0.493 (Med), 𝑅2 = 1.79 (High), and 𝑅3
= 3.14 which lies on the boundary of the fuzzy ratios Med
and High. Dark dots in the fault column show that rules 7
and 22 are satisfied which indicates possible faults TL and
TH, respectively. This result matches the actual fault of the

transformer.Weighted average of both rules is given as 0.636.
Weight of both faults can be calculated as follows:

weight of TL = (0.8 − 0.636)
(0.8 − 0.2)

= 0.273,

weight of PD = 1 − 0.273 = 0.727.
(12)

The weights point towards the strong possibility of fault TH
and the relatively less possibility of fault TL.

Step 4. Severity of faults is High. Maintenance actions sug-
gested are as follows.

(1) Observe extreme caution.
(2) Retest oil weekly.
(3) Plan outage.

5.3. Case Study-III. A 25MVA, 220KV/132KV transformer
is in service for 15 years. Tank oil volume is 20000 liters.
This transformer had an X - wax deposition. Traces of
discharges were found on paper of high voltage cable. DGA
data obtained in ppm after the fault on 18/03/2009 is as
follows: C

2
H
2
-15; C

2
H
4
-19; CH

4
-172; H

2
-1903; C

2
H
6
-14; CO-

180; CO
2
-635.

Step 1. TDCG in ppm = 2303. TDCG is above normal
(>720 ppm).

Step 2. The transformer is sampled again on 21/03/2009 to
determine rate of TDCG. Concentrations of dissolved gases
in ppm are as follows: C

2
H
2
-26 C
2
H
4
-23; CH

4
-2221; H

2
-2257;

C
2
H
6
-22; CO-220; CO

2
-821.

TDCG in ppm = 2769; rate of TDCG = 3.10 lit/day, which
is greater than the normal level (2.8 lit/day).

Step 3. FIS is applied for fault diagnosis. The output of FIS
is given by rule viewer which is shown in Figure 5. Rule
viewer shows 𝑅1 = 1.13 (Med), 𝑅2 = 0.0979, which lies on
the boundary of the fuzzy ratios Low andMed, and 𝑅3 = 1.05
which lies on the boundary of the fuzzy ratios Low and Med.
Dark dots in the fault column show that the rules 9, 10, 11,
and 13 are satisfied which indicates possible faults PD andD1.
This result matches with the actual fault of the transformer.
Weighted average of both rules is given as 0.529. Weight of
both faults can be calculated as follows:

weight of PD = (0.6 − 0.529)
(0.6 − 0.4)

= 0.355.

weight of D1 = 1 − 0.355 = 0.645.
(13)

The weights point towards the strong possibility of fault D1
and the relatively less possibility of fault PD.

Step 4. Severity of faults is Medium. Maintenance actions
suggested are as follows.

(1) Observe caution
(2) Retest oil monthly.
(3) Determine load dependence.
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Figure 5: Rule viewer for case-III.

6. Conclusion

The proposed FIS is developed using “MATLAB”. It can
diagnose the incipient faults of the suspected transformers
and suggest proper maintenance actions. The fuzzy three-
ratio method is proposed to diagnose multiple faults and
faults that cannot be diagnosed by the conventional DGA
methods. Proposed FIS provides fault diagnosis for all the
cases. Accuracy of the proposed method is better than that
of other diagnostic methods.
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