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We introduce the notion of (i-v) semiprime (irreducible) fuzzy ideals of semigroups and investigate its different algebraic properties.
We study the interrelation among (i-v) prime fuzzy ideals, (i-v) semiprime fuzzy ideals, and (i-v) irreducible fuzzy ideals and
characterize regular semigroups by using these (i-v) fuzzy ideals.

1. Introduction

Zadeh [1] first introduced the concept of fuzzy sets in 1965.
After that it has become an important research tool in
mathematics aswell as in other fields. It hasmany applications
in many areas like artificial intelligence, coding theory,
computer science, control engineering, logic, information
sciences, operations research, robotics, and others. Likewise,
an idea of connecting the fuzzy sets and algebraic structures
came first in Rosenfeld’s mind. He first introduced the notion
of fuzzy subgroup [2] in 1971 and studiedmany results related
to groups. After that fuzzification of any algebraic structures
has become a new area of research for the researchers. Some
of fuzzy algebraic structures are mentioned in [3–9].

During the progress of the research on fuzzy sets, sev-
eral types of extensions of fuzzy subsets were introduced.
Interval-valued (in short, (i-v)) fuzzy subset is one of such
extensions. In 1975, the concept of interval-valued fuzzy
subset was introduced by Zadeh [10]. In this concept, the
degree of membership of each element is a closed subinterval
in [0,1]. Using such concept, it is possible to describe an object
in a more precise way. There are many applications of (i-v)
fuzzy subsets in different areas: Davvaz [11] on near rings,
Hedayati [12] on semirings, Gorzałczany [13] on approximate
reasoning, Turksen [14] on multivalued logic, Mendel [15] on
intelligent control, Roy and Biswas [16] onmedical diagnosis,
and so on.

Similar to fuzzy set theory, (i-v) fuzzy set theory grad-
ually developed on different algebraic structures. Biswas

[17] defined the (i-v) fuzzy subgroups of Rosenfeld’s nature
and investigated some elementary properties. Narayanan
and Manikantan [18] introduced the notions of (i-v) fuzzy
subsemigroup and various (i-v) fuzzy ideals in semigroups.
In [19], Kar et al. introduced the concept of (i-v) prime
(completely prime) fuzzy ideal of semigroups and studied
their properties. Khan et al. [20] introduced the concept of a
quotient semigroup by an interval-valued fuzzy congruence
relation on a semigroup. In [21], Thillaigovindan and Chin-
nadurai introduced the notion of (i-v) fuzzy interior (quasi,
bi) ideals of semigroup and studied their properties.However,
the concept of (i-v) semiprime (irreducible) fuzzy ideals of
semigroups has not been considered so far in the best of our
knowledge.

In this paper our main goal is to study the semiprime
(completely semiprime) ideal of a semigroup by using (i-v)
fuzzy concept and discuss their properties. Also, we prove by
an example that every (i-v) semiprime fuzzy ideal may not be
(i-v) prime fuzzy ideal, although the converse is true. Finally,
we define (i-v) irreducible fuzzy ideal of a semigroup and
discuss different relations among (i-v) prime fuzzy ideal, (i-v)
semiprime fuzzy ideal, and (i-v) irreducible fuzzy ideal.

2. Preliminaries

In this section we give some basic definitions and results of
fuzzy algebra which will be used in this paper.
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An interval number 𝑎 = [𝑎

−

, 𝑎

+

] on [0, 1] is defined as
a closed subinterval of [0, 1] satisfying 0 ≤ 𝑎

−

≤ 𝑎

+

≤ 1.
Denote𝐷[0, 1] as the set of all interval numbers on [0, 1] and
̃

0 = [0, 0], ̃1 = [1, 1]. Let 𝑎 = [𝑎

−

, 𝑎

+

], ̃𝑏 = [𝑏

−

, 𝑏

+

] ∈ 𝐷[0, 1].
Then (i) 𝑎 ≤

̃

𝑏 if and only if 𝑎− ≤ 𝑏

− and 𝑎

+

≤ 𝑏

+. (ii) 𝑎 =

̃

𝑏

if and only if 𝑎− = 𝑏

− and 𝑎

+

= 𝑏

+. (iii) 𝑎 <

̃

𝑏 if and only if
𝑎 ̸=

̃

𝑏 and 𝑎 ≤

̃

𝑏. (iv) Min𝑖(𝑎, ̃𝑏) = [min(𝑎−, 𝑏−),min(𝑎+, 𝑏+)].
(v) Max𝑖(𝑎, ̃𝑏) = [max(𝑎−, 𝑏−),max(𝑎+, 𝑏+)]. If ̃𝑏 ≤ 𝑎, then
the difference 𝑎 −

̃

𝑏 is defined by 𝑎 −

̃

𝑏 = [𝑎

−

− 𝑏

−

, 𝑎

+

− 𝑏

+

],
whenever, 𝑎− − 𝑏

−

≤ 𝑎

+

− 𝑏

+; = [𝑎

+

− 𝑏

+

, 𝑎

−

− 𝑏

−

], whenever,
𝑎

−

− 𝑏

−

> 𝑎

+

− 𝑏

+. If {𝑎
𝑖

: 𝑖 ∈ Λ} is a family of interval
numbers, where 𝑎

𝑖

= [𝑎

−

𝑖

, 𝑎

+

𝑖

] ∈ 𝐷[0, 1], then sup
𝑖∈Λ

{𝑎

𝑖

} =

[sup
𝑖∈Λ

𝑎

−

𝑖

, sup
𝑖∈Λ

𝑎

+

𝑖

] and inf
𝑖∈Λ

{𝑎

𝑖

} = [inf
𝑖∈Λ

𝑎

−

𝑖

, inf
𝑖∈Λ

𝑎

+

𝑖

].
In this paper, we assume that any two interval numbers in
𝐷[0, 1] are comparable; that is, for any two interval numbers
𝑎,

̃

𝑏 ∈ 𝐷[0, 1], we have either 𝑎 ≤

̃

𝑏 or 𝑎 >

̃

𝑏.
An (i-v) fuzzy subset of a nonempty set 𝑆 is a mapping

𝜇 : 𝑆 → 𝐷[0, 1], where 𝐷[0, 1] is the set of all closed
subintervals of [0, 1]. An (i-v) characteristic function 𝜒

𝐴

of
𝐴(⊆ 𝑆) is an (i-v) fuzzy subset of a nonempty set 𝑆, defined
by 𝜒

𝐴

(𝑥) =

̃

1 if 𝑥 ∈ 𝐴; =

̃

0 if 𝑥 ∈ 𝑆 \ 𝐴. If 𝜇 is an (i-v) fuzzy
subset of a set 𝑆( ̸= 0) and [𝑎, 𝑏] ∈ 𝐷[0, 1], then a level subset
of 𝜇, denoted by ̃

𝑈(𝜇, [𝑎, 𝑏]), is defined by ̃

𝑈(𝜇, [𝑎, 𝑏]) = {𝑥 ∈

𝑆 : 𝜇(𝑥) ≥ [𝑎, 𝑏]}. It would be noted that for every (i-v)
fuzzy subset 𝜇 of a nonempty set 𝑆, there correspond two
fuzzy subsets 𝜇

−

: 𝑆 → [0, 1] and 𝜇

+

: 𝑆 → [0, 1] of 𝑆
such that 𝜇(𝑥) = [𝜇

−

(𝑥), 𝜇

+

(𝑥)] for every 𝑥 ∈ 𝑆 and vice
versa. If 𝜇

1

and 𝜇

2

are two (i-v) fuzzy subsets of a set 𝑆( ̸= 0),
then 𝜇

1

is said to be subset of 𝜇
2

, denoted by 𝜇

1

⊆ 𝜇

2

, if
𝜇

1

(𝑥) ≤ 𝜇

2

(𝑥) for all 𝑥 ∈ 𝑆. For given two (i-v) fuzzy subsets
𝜇

1

and 𝜇

2

of 𝑆( ̸= 0), (𝜇
1

∪ 𝜇

2

)(𝑥) = Max𝑖(𝜇
1

(𝑥), 𝜇

2

(𝑥)) and
(𝜇

1

∩ 𝜇

2

)(𝑥) = Min𝑖(𝜇
1

(𝑥), 𝜇

2

(𝑥)) for all 𝑥 ∈ 𝑆. If 𝜇 is an
(i-v) fuzzy subset of a nonempty set 𝑆, then complement of
𝜇, denoted by 𝜇

𝑐, is defined by 𝜇

𝑐

(𝑥) =

̃

1 − 𝜇(𝑥) = [1 −

𝜇

+

(𝑥), 1 − 𝜇

−

(𝑥)], where 𝜇(𝑥) = [𝜇

−

(𝑥), 𝜇

+

(𝑥)] and 𝑥 ∈ 𝑆.
If 𝜇
1

and 𝜇

2

are two (i-v) fuzzy subsets of a semigroup 𝑆, then
the product of 𝜇

1

and 𝜇

2

is an (i-v) fuzzy subset of 𝑆, defined
by (𝜇

1

∘ 𝜇

2

)(𝑥) = sup
𝑥=𝑝𝑞

{Min𝑖(𝜇
1

(𝑝), 𝜇

2

(𝑞))}, whenever 𝑥 =

𝑝𝑞 for some 𝑝, 𝑞 ∈ 𝑆; =

̃

0, otherwise. If 𝐴 and 𝐵 are two
nonempty subsets of a semigroup 𝑆, then (i) 𝐴 ⊆ 𝐵 if and
only if 𝜒

𝐴

⊆ 𝜒

𝐵

, (ii) 𝜒
𝐴

∩𝜒

𝐵

= 𝜒

𝐴∩𝐵

, and (iii) 𝜒
𝐴

∘𝜒

𝐵

= 𝜒

𝐴𝐵

. A
nonempty (i-v) fuzzy subset 𝜇 is said to be an (i-v) fuzzy left
(right, two-sided, interior, bi-) ideal of a semigroup 𝑆 if for
any 𝑥, 𝑦, 𝑧 ∈ 𝑆, 𝜇(𝑥𝑦) ≥ 𝜇(𝑦) (resp., 𝜇(𝑥𝑦) ≥ 𝜇(𝑥), 𝜇(𝑥𝑦) ≥

𝜇(𝑦) and 𝜇(𝑥𝑦) ≥ 𝜇(𝑥), 𝜇(𝑥𝑦) ≥ Min𝑖(𝜇(𝑥), 𝜇(𝑦)) and
𝜇(𝑥𝑦𝑧) ≥ 𝜇(𝑦), 𝜇(𝑥𝑦) ≥ Min𝑖(𝜇(𝑥), 𝜇(𝑦)) and 𝜇(𝑥𝑦𝑧) ≥

Min𝑖(𝜇(𝑥), 𝜇(𝑧)). A nonempty subset 𝐴 of a semigroup 𝑆 is
a left (right, two-sided) ideal of 𝑆 if and only if 𝜒

𝐴

is an (i-
v) fuzzy left (resp., right, two-sided) ideal of 𝑆. A nonempty
(i-v) fuzzy subset 𝜇 of a semigroup 𝑆 is an (i-v) fuzzy left
(right, two-sided) ideal of 𝑆 if and only if 𝜒

𝑆

∘ 𝜇 ⊆ 𝜇 (resp.,
𝜇∘𝜒

𝑆

⊆ 𝜇, 𝜒

𝑆

∘𝜇 ⊆ 𝜇 and 𝜇∘𝜒

𝑆

⊆ 𝜇). An (i-v) fuzzy point𝑥
𝑎

of
a set 𝑆( ̸= 0) is an (i-v) fuzzy subset of 𝑆, defined by 𝑥

𝑎

(𝑦) = 𝑎

if 𝑦 = 𝑥; =

̃

0 if 𝑦 ̸= 𝑥; for fixed 𝑥 ∈ 𝑆 and 𝑎 ∈ 𝐷[0, 1] \ {

̃

0},
where 𝑦 ∈ 𝑆. An (i-v) fuzzy point 𝑥

𝑎

of 𝑆( ̸= 0) is said to be
contained in or to belong to a nonempty (i-v) fuzzy subset 𝜇,
denoted by 𝑥

𝑎

∈ 𝜇, if 𝜇(𝑥) ≥ 𝑎. We denote IFP(𝑆) as the set

of all (i-v) fuzzy points of a semigroup 𝑆. If 𝑥
𝑎

, 𝑦
̃

𝑏

∈ IFP(𝑆),
then 𝑥

𝑎

∘ 𝑦
̃

𝑏

= (𝑥𝑦)Min𝑖(𝑎,̃𝑏). If 𝑥𝑎 ∈ IFP(𝑆), then (i-v) fuzzy
left (right, two-sided) ideal generated by the fuzzy point 𝑥

𝑎

is ⟨𝑥

𝑎

⟩

𝐿

= 𝑥

𝑎

∪ (𝜒

𝑆

∘ 𝑥

𝑎

) (resp., ⟨𝑥
𝑎

⟩

𝑅

= 𝑥

𝑎

∪ (𝑥

𝑎

∘ 𝜒

𝑆

),
⟨𝑥

𝑎

⟩ = 𝑥

𝑎

∪ (𝜒

𝑆

∘ 𝑥

𝑎

) ∪ (𝜒

𝑆

∘ 𝑥

𝑎

∘ 𝜒

𝑆

) ∪ (𝑥

𝑎

∘ 𝜒

𝑆

)).

3. (i-v) Semiprime Fuzzy Ideal of Semigroups

In this section we define (i-v) semiprime fuzzy ideals as a
generalization of semiprime ideals of a semigroup anddiscuss
its different algebraic properties.

Definition 1. A proper ideal 𝐼 of a semigroup 𝑆 is said to be
semiprime if for any ideal 𝐴 of 𝑆 𝐴𝐴 ⊆ 𝐼 implies 𝐴 ⊆ 𝐼.

Proposition 2. In a semigroup 𝑆, an ideal 𝐼 of 𝑆 is a semiprime
ideal of 𝑆 if and only if 𝑎𝑆𝑎 ⊆ 𝐼 implies 𝑎 ∈ 𝐼.

Definition 3. Anonconstant (i-v) fuzzy ideal𝜇 of a semigroup
𝑆 is called an (i-v) semiprime fuzzy ideal of 𝑆 if for any (i-v)
fuzzy ideal 𝜇

1

of 𝑆 𝜇

1

∘ 𝜇

1

⊆ 𝜇 implies 𝜇
1

⊆ 𝜇.

Theorem 4. Let 𝐼 be a nonempty proper subset of a semigroup
𝑆. Then 𝐼 is a semiprime ideal of 𝑆 if and only if the (i-v)
characteristic function 𝜒

𝐼

of 𝐼 is an (i-v) semiprime fuzzy ideal
of 𝑆.

Proof. Let 𝐼 be a semiprime ideal of 𝑆. Then it is easy to check
that 𝜒

𝐼

is a nonconstant (i-v) fuzzy ideal of 𝑆. Consider 𝜇
1

to
be an (i-v) fuzzy ideal of 𝑆 such that𝜇

1

∘𝜇

1

⊆ 𝜒

𝐼

. Let us assume
that 𝜇

1

̸⊆ 𝜒

𝐼

.Then there exists 𝑥 ∈ 𝑆 such that 𝜇
1

(𝑥)  𝜒

𝐼

(𝑥).
Since any two interval numbers in 𝐷[0, 1] are comparable,
𝜇

1

(𝑥) > 𝜒

𝐼

(𝑥). This implies 𝜒
𝐼

(𝑥) =

̃

0 ⇒ 𝑥 ∉ 𝐼. Since 𝐼 is a
semiprime ideal of 𝑆, by Proposition 2 it follows that 𝑥𝑦𝑥 ∉ 𝐼

for some 𝑦 ∈ 𝑆; that is, 𝜒
𝐼

(𝑥𝑦𝑥) =

̃

0.
Again,

(𝜇

1

∘ 𝜇

1

) (𝑥𝑦𝑥) = sup
𝑥𝑦𝑥=𝑝𝑞

{Min𝑖 (𝜇
1

(𝑝) , 𝜇

1

(𝑞))}

≥ Min𝑖 (𝜇
1

(𝑥) , 𝜇

1

(𝑦𝑥))

≥ Min𝑖 (𝜇
1

(𝑥) , 𝜇

1

(𝑥))

(since 𝜇

1

is an (i-v) fuzzy ideal of 𝑆)

= 𝜇

1

(𝑥) > 𝜒

𝐼

(𝑥) =

̃

0 = 𝜒

𝐼

(𝑥𝑦𝑥)

(1)

which contradict the fact that 𝜇
1

∘ 𝜇

1

⊆ 𝜒

𝐼

. Therefore, 𝜇
1

⊆ 𝜒

𝐼

and, hence, it follows that 𝜒
𝐼

is an (i-v) semiprime fuzzy ideal
of 𝑆.

Conversely, let 𝜒
𝐼

be an (i-v) semiprime fuzzy ideal of 𝑆.
Then 𝜒

𝐼

is a nonconstant (i-v) fuzzy ideal of 𝑆 and hence 𝐼 is
a proper ideal of 𝑆. Let 𝐴 be an ideal of 𝑆 such that 𝐴𝐴 ⊆ 𝐼.
Then 𝜒

𝐴

is an (i-v) fuzzy ideal of 𝑆 and 𝜒

𝐴

∘ 𝜒

𝐴

= 𝜒

𝐴𝐴

⊆ 𝜒

𝐼

.
Therefore, by our hypothesis, 𝜒

𝐴

⊆ 𝜒

𝐼

; that is, 𝐴 ⊆ 𝐼. Thus,
𝐼 is a semiprime ideal of 𝑆.
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Proposition 5. A nonconstant (i-v) fuzzy ideal 𝜇 of a semi-
group 𝑆 is an (i-v) semiprime fuzzy ideal of 𝑆 if and only if a
level ideal ̃𝑈(𝜇, 𝑎) is a semiprime ideal of 𝑆 for every 𝑎 ∈ Im 𝜇.

Lemma 6. Let 𝐼 be a semiprime ideal of a semigroup 𝑆 and 𝜇

an (i-v) fuzzy subset of 𝑆 defined by

𝜇 (𝑝) = {

̃

1, when 𝑝 ∈ 𝐼;

[𝛼, 𝛽] , otherwise,
(2)

where [𝛼, 𝛽] ∈ 𝐷[0, 1] \ {

̃

1}. Then 𝜇 is an (i-v) semiprime fuzzy
ideal of 𝑆.

Proof. Since 𝐼 is a proper ideal of 𝑆, it is easy to verify that 𝜇 is
an (i-v) fuzzy ideal of 𝑆. Let 𝜇

1

∘𝜇

1

⊆ 𝜇 for any (i-v) fuzzy ideal
𝜇

1

of 𝑆. If possible, let 𝜇
1

̸⊆ 𝜇. Then 𝜇

1

(𝑥)  𝜇(𝑥) for some
𝑥 ∈ 𝑆. Due to comparability condition of interval numbers,
we can write 𝜇

1

(𝑥) > 𝜇(𝑥). Therefore, 𝜇(𝑥) ̸=

̃

1 which implies
𝜇(𝑥) = [𝛼, 𝛽] implies 𝑥 ∉ 𝐼. Since 𝐼 is a semiprime ideal of 𝑆,
𝑥𝑦𝑥 ∉ 𝐼 for some 𝑦 ∈ 𝑆; that is, 𝜇(𝑥𝑦𝑥) = [𝛼, 𝛽].

Now,

(𝜇

1

∘ 𝜇

1

) (𝑥𝑦𝑥) = sup
𝑥𝑦𝑥=𝑝𝑞

{Min𝑖 (𝜇
1

(𝑝) , 𝜇

1

(𝑞))}

≥ Min𝑖 (𝜇
1

(𝑥) , 𝜇

1

(𝑦𝑥))

≥ Min𝑖 (𝜇
1

(𝑥) , 𝜇

1

(𝑥))

= 𝜇

1

(𝑥) > 𝜇 (𝑥) = [𝛼, 𝛽] = 𝜇 (𝑥𝑦𝑥) ,

(3)

a contradiction.Thus, it follows that 𝜇
1

⊆ 𝜇 and hence 𝜇 is an
(i-v) semiprime fuzzy ideal of 𝑆.

Note. Lemma 6 is an example of an (i-v) semiprime fuzzy
ideal of a semigroup. Now, in the following we give an
example of an (i-v) semiprime fuzzy ideal which is not an (i-
v) prime fuzzy ideal, although every (i-v) prime fuzzy ideal is
an (i-v) semiprime fuzzy ideal.

Example 7. Let 𝑆 = Z+
0

, set of nonnegative integers. Then,
𝑆 forms a semigroup with respect to usual multiplication.
Define an (i-v) fuzzy subset 𝜇 of 𝑆 by

𝜇 (𝑥)

=

{

{

{

{

{

[𝛼, 𝛽] , when 𝑥 = 0;

[𝛾, 𝛿] , when 𝑥 is nonzero even positive integer;
[𝜉, 𝜂] , otherwise,

(4)

where ̃

1 > [𝛼, 𝛽] > [𝛾, 𝛿] > [𝜉, 𝜂] ≥

̃

0. Then 𝜇 is an (i-v)
semiprime fuzzy ideal of 𝑆. But, 𝜇 is not an (i-v) prime fuzzy
ideal of 𝑆, because |Im 𝜇| ̸= 2 (see [19, Theorem 3.8]).

In the following theorem we try to extend Proposition 2
and characterize an (i-v) semiprime fuzzy ideal.

Theorem 8. If 𝜇 is a nonconstant (i-v) fuzzy ideal of a
semigroup 𝑆, then the following conditions are equivalent.

(i) 𝜇 is an (i-v) semiprime fuzzy ideal of 𝑆.
(ii) For any (i-v) fuzzy point 𝑥

𝑎

of 𝑆, 𝑥
𝑎

∘𝜒

𝑆

∘𝑥

𝑎

⊆ 𝜇 implies
𝑥

𝑎

∈ 𝜇.
(iii) For any (i-v) fuzzy point 𝑥

𝑎

of 𝑆, ⟨𝑥
𝑎

⟩∘⟨𝑥

𝑎

⟩ ⊆ 𝜇 implies
𝑥

𝑎

∈ 𝜇.

Proof. (i)⇒(ii). Let 𝜇 be an (i-v) semiprime fuzzy ideal of 𝑆
and 𝑥

𝑎

∘ 𝜒

𝑆

∘ 𝑥

𝑎

⊆ 𝜇 for an (i-v) fuzzy point 𝑥
𝑎

of 𝑆. Then
(𝜒

𝑆

∘ 𝑥

𝑎

∘ 𝜒

𝑆

) is an (i-v) fuzzy ideal of 𝑆 and (𝜒

𝑆

∘ 𝑥

𝑎

∘ 𝜒

𝑆

) ∘ (𝜒

𝑆

∘

𝑥

𝑎

∘𝜒

𝑆

) ⊆ 𝜒

𝑆

∘ (𝑥

𝑎

∘𝜒

𝑆

∘𝑥

𝑎

) ∘𝜒

𝑆

⊆ 𝜒

𝑆

∘𝜇 ∘𝜒

𝑆

⊆ 𝜇. Therefore, by
our assumption, 𝜒

𝑆

∘ 𝑥

𝑎

∘ 𝜒

𝑆

⊆ 𝜇. Again, ⟨𝑥
𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩ ⊆

𝜒

𝑆

∘ 𝑥

𝑎

∘ 𝜒

𝑆

⊆ 𝜇, which implies ⟨𝑥
𝑎

⟩ ⊆ 𝜇 ⇒ 𝑥

𝑎

∈ 𝜇.
(ii)⇒(iii). Let (ii) hold and ⟨𝑥

𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩ ⊆ 𝜇. Then 𝑥

𝑎

∘ 𝜒

𝑆

∘

𝑥

𝑎

⊆ ⟨𝑥

𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩ ⊆ 𝜇. Therefore, by (ii), it follows that 𝑥
𝑎

∈ 𝜇.
(iii)⇒(i). Let (iii) hold and 𝜇

1

∘ 𝜇

1

⊆ 𝜇 for an (i-v) fuzzy
ideal 𝜇

1

of 𝑆. Let us assume that 𝜇
1

̸⊆ 𝜇. Then 𝜇

1

(𝑥)  𝜇(𝑥)

for some 𝑥 ∈ 𝑆 implies 𝜇

1

(𝑥) > 𝜇(𝑥). Now, we can choose
an interval number 𝑎 ∈ 𝐷[0, 1] \ {

̃

0,

̃

1} such that 𝜇
1

(𝑥) ≥

𝑎 > 𝜇(𝑥). This implies 𝑥

𝑎

∈ 𝜇

1

. Again, ⟨𝑥
𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩ ⊆ 𝜇

1

∘

𝜇

1

⊆ 𝜇. By (iii), it follows that 𝑥
𝑎

∈ 𝜇, that is, 𝜇 (𝑥) ≥ 𝑎,
a contradiction. Consequently, it shows that our assumption,
that is, 𝜇

1

̸⊆ 𝜇, is not true. Therefore, 𝜇
1

⊆ 𝜇 and hence 𝜇 is
an (i-v) semiprime fuzzy ideal of 𝑆.

Now, we investigate the nature of image and preimage
of an (i-v) semiprime fuzzy ideal of a semigroup under
homomorphism. For this reason, we first give the following
definition of image andpreimage of an (i-v) fuzzy set and then
prove Proposition 10.

Definition 9 (see [2]). Let𝐴 and 𝐵 be two nonempty sets and
𝑓 : 𝐴 → 𝐵 a function. Let 𝜇 and �̃� be the (i-v) fuzzy subsets
of 𝐴 and 𝐵, respectively. Then image 𝑓(𝜇) of 𝜇 under the
function 𝑓 is an (i-v) fuzzy subset of 𝐵 defined by

𝑓 (𝜇) (𝑦) =

{

{

{

sup
𝑧∈𝑓

−1
(
𝑦

)

𝜇 (𝑧) , when 𝑓

−1

(𝑦) ̸= 0;

̃

0, otherwise,
(5)

where 𝑦 ∈ 𝐵 and 𝑓

−1

(𝑦) = {𝑥 ∈ 𝐴 : 𝑓(𝑥) = 𝑦}.
Preimage 𝑓

−1

(�̃�) of �̃� under the function 𝑓 is an (i-v)
fuzzy subset of 𝐴 defined by 𝑓

−1

(�̃�)(𝑥) = �̃�(𝑓(𝑥)) for any
𝑥 ∈ 𝐴.

Proposition 10. Let 𝑆

1

and 𝑆

2

be two semigroups and 𝑓 :

𝑆

1

→ 𝑆

2

an epimorphism. If 𝜇 is an (i-v) fuzzy ideal of 𝑆
1

and �̃� an (i-v) fuzzy ideal of 𝑆
2

, then

(i) 𝑓−1(�̃�) is an (i-v) fuzzy ideal of 𝑆
1

;
(ii) 𝑓(𝜇) is an (i-v) fuzzy ideal of 𝑆

2

.

Proof. (i) Since �̃� is nonempty, there exists an element𝑦∗ ∈ 𝑆

2

such that �̃�(𝑦∗) ̸=

̃

0. Again, since 𝑓 is surjective, 𝑓−1(𝑦∗) ̸= 0;
say, 𝑥∗ ∈ 𝑓

−1

(𝑦

∗

) ⊆ 𝑆

1

. Therefore, �̃�(𝑓(𝑥

∗

)) = �̃�(𝑦

∗

) ̸=

̃

0;
that is, 𝑓−1(�̃�)(𝑥∗) ̸=

̃

0. Hence, 𝑓−1(�̃�) is nonempty. Let 𝑥, 𝑦 ∈

𝑆

1

. Then 𝑓

−1

(�̃�)(𝑥𝑦) = �̃�(𝑓(𝑥𝑦)) = �̃�(𝑓(𝑥)𝑓(𝑦)) (since 𝑓 is
homomorphism) ≥ �̃�(𝑓(𝑥)) (by assumption) = 𝑓

−1

(�̃�)(𝑥).
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Similarly, we find that 𝑓−1(�̃�)(𝑥𝑦) ≥ 𝑓

−1

(�̃�)(𝑦). Therefore,
𝑓

−1

(�̃�) is an (i-v) fuzzy ideal of 𝑆
1

.
(ii) Since 𝜇 is nonempty, there exists an element 𝑥

0

∈ 𝑆

1

such that 𝜇(𝑥
0

) ̸=

̃

0. Let 𝑓(𝑥

0

) = 𝑦

0

∈ 𝑆

2

. Then 𝑥

0

∈ 𝑓

−1

(𝑦

0

)

and 𝑓(𝜇)(𝑦

0

) = sup
𝑧∈𝑓

−1
(𝑦0)

𝜇(𝑧) ≥ 𝜇(𝑥

0

) >

̃

0. Hence,
𝑓(𝜇) is nonempty. Let 𝑦

1

, 𝑦

2

∈ 𝑆

2

. Since 𝑓 is surjective,
there exist 𝑥

1

, 𝑥

2

∈ 𝑆

1

such that 𝑓(𝑥

1

) = 𝑦

1

and 𝑓(𝑥

2

) =

𝑦

2

. Therefore, 𝑦
1

𝑦

2

= 𝑓(𝑥

1

)𝑓(𝑥

2

) = 𝑓(𝑥

1

𝑥

2

) and hence
𝑥

1

𝑥

2

∈ 𝑓

−1

(𝑦

1

𝑦

2

). Now, 𝑓(𝜇)(𝑦

1

𝑦

2

) = sup
𝑧∈𝑓

−1
(𝑦1𝑦2)

𝜇(𝑧) =
sup
𝑓(𝑥1)=𝑦1 ,𝑓(𝑥2)=𝑦2

𝜇(𝑥

1

𝑥

2

) ≥ sup
𝑥1∈𝑓
−1
(𝑦1)

𝜇(𝑥

1

) (since 𝜇 is
an (i-v) fuzzy ideal of 𝑆

1

) = 𝑓(𝜇)(𝑦

1

). Similarly, we get
𝑓(𝜇)(𝑦

1

𝑦

2

) ≥ 𝑓(𝜇)(𝑦

2

). Hence, it follows that 𝑓(𝜇) is an (i-
v) fuzzy ideal of 𝑆

2

.

Theorem 11. Let 𝑓 : 𝑆

1

→ 𝑆

2

be an epimorphism from a
semigroup 𝑆

1

to another semigroup 𝑆
2

. If𝜇 is an (i-v) semiprime
fuzzy ideal of 𝑆

2

, then homomorphic preimage 𝑓−1(𝜇) is an (i-
v) semiprime fuzzy ideal of 𝑆

1

.

Proof. Since 𝜇 is a nonconstant (i-v) fuzzy ideal of 𝑆

2

, by
Proposition 10, 𝑓−1(𝜇) is an (i-v) fuzzy ideal of 𝑆

1

and there
are two elements 𝑦, 𝑦 ∈ 𝑆

2

such that 𝜇(𝑦) ̸= 𝜇(𝑦



). Since
𝑓 is surjective, there exist 𝑥



, 𝑥



∈ 𝑆

1

such that 𝑓(𝑥



) =

𝑦

 and 𝑓(𝑥



) = 𝑦

. Therefore, 𝜇(𝑓(𝑥



)) ̸= 𝜇(𝑓(𝑥



)) ⇒

𝑓

−1

(𝜇)(𝑥



) ̸= 𝑓

−1

(𝜇)(𝑥



). Thus, 𝑓−1(𝜇) is nonconstant. Now
consider an (i-v) fuzzy point 𝑥

𝑎

of 𝑆
1

such that 𝑥
𝑎

∘ 𝜒

𝑆1
∘ 𝑥

𝑎

⊆

𝑓

−1

(𝜇). Let us assume that 𝑥
𝑎

∉ 𝑓

−1

(𝜇). Then 𝑓

−1

(𝜇)(𝑥) ̸≥ 𝑎;
that is, 𝜇(𝑓(𝑥)) ̸≥ 𝑎. This implies that 𝜇(𝑓(𝑥)) < 𝑎. Again,
since 𝑥

𝑎

∘ 𝜒

𝑆1
∘ 𝑥

𝑎

⊆ 𝑓

−1

(𝜇), for any (i-v) fuzzy point 𝑧
̃

𝑏

of
𝑆

1

, 𝑥
𝑎

∘ 𝑧
̃

𝑏

∘ 𝑥

𝑎

∈ 𝑓

−1

(𝜇) ⇒ (𝑥𝑧𝑥)Min𝑖(𝑎,̃𝑏) ∈ 𝑓

−1

(𝜇) ⇒

𝑓

−1

(𝜇)(𝑥𝑧𝑥) ≥ Min𝑖(𝑎, ̃𝑏) ⇒ 𝜇(𝑓(𝑥𝑧𝑥)) ≥ Min𝑖(𝑎, ̃𝑏) ⇒

𝜇(𝑓(𝑥)𝑓(𝑧)𝑓(𝑥)) ≥ Min𝑖(𝑎, ̃𝑏) (since 𝑓 is homomorphism)
⇒ (𝑓(𝑥)𝑓(𝑧)𝑓(𝑥))Min𝑖(𝑎,̃𝑏) ∈ 𝜇 ⇒ (𝑓(𝑥))

𝑎

∘(𝑓(𝑧))
̃

𝑏

∘(𝑓(𝑥))

𝑎

∈

𝜇. Since 𝑧 ∈ 𝑆

1

is arbitrary, 𝑓(𝑧) is also arbitrary in 𝑆

2

(since
𝑓 is surjective). Therefore, (𝑓(𝑧))

̃

𝑏

is an arbitrary (i-v) fuzzy
point in 𝑆

2

. Thus, (𝑓(𝑥))

𝑎

∘ 𝜒

𝑆2
∘ (𝑓(𝑥))

𝑎

⊆ 𝜇. Since 𝜇 is an (i-
v) semiprime fuzzy ideal of 𝑆

2

, by Theorem 8 it follows that
(𝑓(𝑥))

𝑎

∈ 𝜇, that is, 𝜇(𝑓(𝑥)) ≥ 𝑎, which is an inconsistent
result. Therefore, 𝑥

𝑎

∈ 𝑓

−1

(𝜇) and hence 𝑓

−1

(𝜇) is an (i-v)
semiprime fuzzy ideal of 𝑆

1

.

Theorem 12. Let 𝑓 : 𝑆

1

→ 𝑆

2

be an epimorphism from a
semigroup 𝑆

1

to another semigroup 𝑆
2

. If𝜇 is an (i-v) semiprime
fuzzy ideal of 𝑆

1

and also 𝑓-invariant (i.e., 𝑓(𝑎) = 𝑓(𝑏) ⇒

𝜇(𝑎) = 𝜇(𝑏) for any 𝑎, 𝑏 ∈ 𝑆

1

), then homomorphic image 𝑓(𝜇)

of 𝜇 is an (i-v) semiprime fuzzy ideal of 𝑆
2

.

Proof. Since 𝜇 is nonconstant, there are two elements 𝑥, 𝑥 ∈
𝑆

1

such that 𝜇(𝑥



) ̸= 𝜇(𝑥



). Again, from Proposition 10, it
follows that 𝑓(𝜇) is an (i-v) fuzzy ideal of 𝑆

2

. Let 𝑓(𝑥



) = 𝑦



and 𝑓(𝑥



) = 𝑦

 where 𝑦



, 𝑦



∈ 𝑆

2

. Therefore, 𝑥 ∈ 𝑓

−1

(𝑦



)

and 𝑥



∈ 𝑓

−1

(𝑦



). Again, since 𝜇 is 𝑓-invariant, 𝑓(𝑥



) =

𝑦



= 𝑓(𝑧

1

) for every 𝑧

1

∈ 𝑓

−1

(𝑦



) implies that 𝜇(𝑥



) =

𝜇(𝑧

1

). Also, 𝑓(𝑥



) = 𝑦



= 𝑓(𝑧

2

) for every 𝑧

2

∈ 𝑓

−1

(𝑦



)

implies 𝜇(𝑥) = 𝜇(𝑧

2

). But 𝑓(𝜇)(𝑦



) = sup
𝑧1∈𝑓
−1
(𝑦


)

𝜇(𝑧

1

) =

𝜇(𝑥



) ̸= 𝜇(𝑥



) = sup
𝑧2∈𝑓
−1
(𝑦


)

𝜇(𝑧

2

) = 𝑓(𝜇)(𝑦



). It shows that

𝑓(𝜇) is nonconstant. Now, consider an (i-v) fuzzy point 𝑦
𝑎

of
𝑆

2

such that 𝑦
𝑎

∘ 𝜒

𝑆2
∘ 𝑦

𝑎

⊆ 𝑓(𝜇). Then for any (i-v) fuzzy
point 𝑤

̃

𝑏

of 𝑆

2

, 𝑦
𝑎

∘ 𝑤
̃

𝑏

∘ 𝑦

𝑎

∈ 𝑓(𝜇) ⇒ (𝑦𝑤𝑦)Min𝑖(𝑎,̃𝑏) ∈

𝑓(𝜇) ⇒ 𝑓(𝜇)(𝑦𝑤𝑦) ≥ Min𝑖(𝑎, ̃𝑏) ⇒ sup
𝑧∈𝑓

−1
(𝑦𝑤𝑦)

𝜇(𝑧) ≥

Min𝑖(𝑎, ̃𝑏)—(i). Since 𝑓 is surjective, there exist elements
𝑢, V ∈ 𝑆

1

such that 𝑓(𝑢) = 𝑦 and 𝑓(V) = 𝑤. Therefore, for
any 𝑧 ∈ 𝑓

−1

(𝑦𝑤𝑦), 𝑓(𝑧) = 𝑦𝑤𝑦 = 𝑓(𝑢)𝑓(V)𝑓(𝑢) = 𝑓(𝑢V𝑢)
(𝑓 is homomorphism). Since 𝜇 is𝑓-invariant, 𝜇(𝑧) = 𝜇(𝑢V𝑢).
Thus, from (i), it implies that sup

𝑓(𝑢)=𝑦,𝑓(V)=𝑤 𝜇(𝑢V𝑢) ≥

Min𝑖(𝑎, ̃𝑏) ⇒ 𝜇(𝑢V𝑢) ≥ Min𝑖(𝑎, ̃𝑏) ⇒ (𝑢V𝑢)Min𝑖(𝑎,̃𝑏) ∈

𝜇 ⇒ 𝑢

𝑎

∘ V
̃

𝑏

∘ 𝑢

𝑎

∈ 𝜇 for any (i-v) fuzzy point V
̃

𝑏

of 𝑆
1

.
Therefore, 𝑢

𝑎

∘ 𝜒

𝑆1
∘ 𝑢

𝑎

⊆ 𝜇. Since 𝜇 is an (i-v) semiprime
fuzzy ideal of 𝑆

1

, by Theorem 8, 𝑢
𝑎

∈ 𝜇, that is, 𝜇(𝑢) ≥ 𝑎, and
𝑓(𝜇)(𝑦) = sup

𝑧∈𝑓

−1
(𝑦)

𝜇(𝑧) = 𝜇(𝑢) (since𝜇 is𝑓-invariant)≥ 𝑎.
This implies that 𝑦

𝑎

∈ 𝑓(𝜇) and hence, byTheorem 8, 𝑓(𝜇) is
an (i-v) semiprime fuzzy ideal of 𝑆

2

.

Theorem 13. Let 𝑆
1

and 𝑆

2

be two semigroups and 𝑓 : 𝑆

1

→

𝑆

2

an epimorphism.Then there is a one-to-one correspondence
between the 𝑓-invariant (i-v) semiprime fuzzy ideals of 𝑆

1

and
(i-v) semiprime fuzzy ideals of 𝑆

2

.

Proof. Let T
𝑓

(𝑆

1

) = set of all 𝑓-invariant (i-v) semiprime
fuzzy ideals of 𝑆

1

andT(𝑆

2

) = set of all (i-v) semiprime fuzzy
ideals of 𝑆

2

.
Define a mapping 𝜑 : T

𝑓

(𝑆

1

) → T(𝑆

2

) by 𝜑(𝜇) = 𝑓(𝜇),
where 𝜇 ∈ T

𝑓

(𝑆

1

). Let 𝜇
1

, 𝜇

2

∈ T
𝑓

(𝑆

1

) such that 𝜇
1

= 𝜇

2

.
Since 𝑓 is surjective, 𝑓−1(𝑦) ̸= 0 for any 𝑦 ∈ 𝑆

2

. Therefore,
𝑓(𝜇

1

)(𝑦) = sup
𝑧∈𝑓

−1
(𝑦)

𝜇

1

(𝑧) = sup
𝑧∈𝑓

−1
(𝑦)

𝜇

2

(𝑧) = 𝑓(𝜇

2

)(𝑦).
This implies that 𝑓(𝜇

1

) = 𝑓(𝜇

2

) ⇒ 𝜑(𝜇

1

) = 𝜑(𝜇

2

). Hence, 𝜑
is well defined.

Let 𝜑(𝜇
1

) = 𝜑(𝜇

2

) for any two 𝜇

1

, 𝜇

2

∈ T
𝑓

(𝑆

1

). Then
𝑓(𝜇

1

) = 𝑓(𝜇

2

) ⇒ 𝑓(𝜇

1

)(𝑦) = 𝑓(𝜇

2

)(𝑦) for any 𝑦 ∈ 𝑆

2

⇒

sup
𝑧∈𝑓

−1
(𝑦)

𝜇

1

(𝑧) = sup
𝑧∈𝑓

−1
(𝑦)

𝜇

2

(𝑧)—(i). Since𝑓−1(𝑦) ̸= 0 and
𝜇

1

, 𝜇

2

are both 𝑓-invariant, for any 𝑧

1

, 𝑧

2

∈ 𝑓

−1

(𝑦), 𝑓(𝑧

1

) =

𝑦 = 𝑓(𝑧

2

) implies 𝜇

1

(𝑧

1

) = 𝜇

1

(𝑧

2

) and 𝜇

2

(𝑧

1

) = 𝜇

2

(𝑧

2

).
Hence, it follows from (i) that 𝜇

1

(𝑥) = 𝜇

2

(𝑥) for every 𝑥 ∈

𝑓

−1

(𝑦) ⊆ 𝑆

1

. Since 𝑦 ∈ 𝑆

2

is arbitrary and 𝑓 is surjective,
𝑥 ∈ 𝑆

1

is arbitrary. It implies that 𝜇
1

(𝑢) = 𝜇

2

(𝑢) for all 𝑢 ∈ 𝑆

1

;
that is, 𝜇

1

= 𝜇

2

. Hence, 𝜑 is one-one.
Consider �̃� ∈ T(𝑆

2

) and 𝑦 ∈ 𝑆

2

. Since 𝑓

−1

(𝑦) ̸= 0,
𝑓(𝑓

−1

(�̃�))(𝑦) = sup
𝑧∈𝑓

−1
(𝑦)

𝑓

−1

(�̃�)(𝑧) = sup
𝑧∈𝑓

−1
(𝑦)

�̃�(𝑓(𝑧)) =

�̃�(𝑦). This implies that 𝜑(𝑓

−1

(�̃�)) = �̃� where, 𝑓−1(�̃�) ∈

T
𝑓

(𝑆

1

). This implies that 𝜑 is onto. Therefore, 𝜑 is bijective
and the result follows.

In the following we try to give the definition of (i-v) fuzzy
𝑝-system and characterize (i-v) semiprime fuzzy ideal using
it.

Definition 14. Anonempty subset𝑃 of a semigroup 𝑆 is called
a 𝑝-system of 𝑆 if for every 𝑥 ∈ 𝑃 there exists 𝑦 ∈ 𝑆 such that
𝑥𝑦𝑥 ∈ 𝑃.

Definition 15. Anonempty (i-v) fuzzy subset𝜇 of a semigroup
𝑆 is called an (i-v) fuzzy 𝑝-system of 𝑆 if for any 𝑥 ∈ 𝑆
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and 𝑎 ∈ 𝐷[0, 1] \ {

̃

1} 𝜇(𝑥) > 𝑎 implies 𝜇(𝑥𝑦𝑥) > 𝑎 for some
𝑦 ∈ 𝑆.

Theorem 16. A nonempty subset 𝑃 of a semigroup 𝑆 is a p-
system of 𝑆 if and only if the characteristic function 𝜒

𝑃

is an
(i-v) fuzzy p-system of 𝑆.

Proof. Let 𝑃 be a 𝑝-system of 𝑆. Then 𝜒

𝑃

is nonempty. Let 𝑥 ∈

𝑆 and 𝑎 ∈ 𝐷[0, 1] \ {

̃

1} such that 𝜒
𝑃

(𝑥) > 𝑎. This implies that
𝜒

𝑃

(𝑥) =

̃

1 implies𝑥 ∈ 𝑃.Therefore, by our assumption,𝑥𝑦𝑥 ∈

𝑃 for some 𝑦 ∈ 𝑆; that is, 𝜒

𝑃

(𝑥𝑦𝑥) =

̃

1 > 𝑎. Consequently, it
follows that 𝜒

𝑃

is an (i-v) fuzzy 𝑝-system of 𝑆.
Conversely, let 𝜒

𝑃

be an (i-v) fuzzy 𝑝-system of 𝑆. Then
for any 𝑥 ∈ 𝑃, 𝜒

𝑃

(𝑥) =

̃

1. Therefore, for any 𝑎 ∈ 𝐷[0, 1] \

{

̃

1}, 𝜒
𝑃

(𝑥) > 𝑎. Now, by our hypothesis,𝜒
𝑃

(𝑥𝑦𝑥) > 𝑎 for some
𝑦 ∈ 𝑆. This implies that 𝜒

𝑃

(𝑥𝑦𝑥) =

̃

1; that is, 𝑥𝑦𝑥 ∈ 𝑃. Thus,
it follows that 𝑃 is a 𝑝-system of 𝑆.

Theorem 17. A nonconstant (i-v) fuzzy ideal 𝜇 of a semigroup
𝑆 is an (i-v) semiprime fuzzy ideal of 𝑆 if and only if 𝜇𝑐 is an
(i-v) fuzzy p-system of 𝑆.

Proof. Let 𝜇 be an (i-v) semiprime fuzzy ideal of 𝑆. Since 𝜇

is nonconstant, there exists 𝑥

∗

∈ 𝑆 such that 𝜇(𝑥∗) ̸=

̃

1 and
hence 𝜇

𝑐

(𝑥

∗

) =

̃

1 − 𝜇(𝑥

∗

) ̸=

̃

0. Therefore, 𝜇 𝑐 is nonempty.
Consider an interval number 𝑎 = [𝑎

−

, 𝑎

+

] ∈ 𝐷[0, 1] \ {

̃

1}

and 𝑥 ∈ 𝑆 such that 𝜇 𝑐(𝑥) > 𝑎; that is, ̃1 − 𝜇(𝑥) > 𝑎. Then
𝜇(𝑥) <

̃

1−𝑎 implies𝑥
̃

1−𝑎

∉ 𝜇. Now, usingTheorem 8 it implies
that 𝑥

̃

1−𝑎

∘ 𝑧

𝑐

∘ 𝑥
̃

1−𝑎

∉ 𝜇 for some (i-v) fuzzy point 𝑧
𝑐

, which
implies (𝑥𝑧𝑥)Min𝑖(̃1−𝑎,𝑐) ∉ 𝜇 ⇒ 𝜇(𝑥𝑧𝑥)  Min𝑖(̃1 − 𝑎, 𝑐) ⇒

𝜇(𝑥𝑧𝑥) < Min𝑖(̃1−𝑎, 𝑐) ⇒ 𝜇(𝑥𝑧𝑥) <

̃

1−𝑎 ⇒

̃

1−𝜇(𝑥𝑧𝑥) > 𝑎;
that is, 𝜇𝑐(𝑥𝑧𝑥) > 𝑎. Consequently, it follows that 𝜇 𝑐 is an
(i-v) fuzzy 𝑝-system of 𝑆.

Conversely, let𝜇𝑐 be an (i-v) fuzzy𝑝-systemof 𝑆 and𝜇

1

an
(i-v) fuzzy ideal of 𝑆 such that 𝜇

1

∘ 𝜇

1

⊆ 𝜇. Let us choose 𝜇
1

̸⊆

𝜇. Then 𝜇

1

(𝑥)  𝜇(𝑥) for some 𝑥 ∈ 𝑆; that is, 𝜇
1

(𝑥) > 𝜇(𝑥).
Now, we can choose an interval number 𝑎 ∈ 𝐷[0, 1] \ {

̃

0,

̃

1}

such that 𝜇
1

(𝑥) >

̃

1−𝑎 > 𝜇(𝑥). This implies that 𝑎 <

̃

1−𝜇(𝑥);
that is, 𝑎 < 𝜇

𝑐

(𝑥). Therefore, by our hypothesis, 𝜇𝑐(𝑥𝑧𝑥) > 𝑎

for some 𝑧



∈ 𝑆; that is, ̃1 − 𝜇(𝑥𝑧



𝑥) > 𝑎 ⇒ 𝜇(𝑥𝑧



𝑥) <

̃

1 − 𝑎.
Further, 𝜇(𝑥𝑧𝑥) ≥ (𝜇

1

∘ 𝜇

1

)(𝑥𝑧



𝑥) ≥ Min𝑖(𝜇
1

(𝑥), 𝜇

1

(𝑧



𝑥)) ≥

Min𝑖(𝜇
1

(𝑥), 𝜇

1

(𝑥)) = 𝜇

1

(𝑥) >

̃

1 − 𝑎, a meaningless result due
to wrong assumption. Thus, it follows that 𝜇

1

⊆ 𝜇; that is, 𝜇
is an (i-v) semiprime fuzzy ideal of 𝑆.

The concept of completely semiprime ideal (see
Definition 18) is defined in [22], in which it is known as
semiprime ideal. Now, we try to generalize this concept using
(i-v) fuzzy points and define (i-v) completely semiprime
fuzzy ideal. Also, we investigate its various properties.

Definition 18. A proper ideal 𝐼 of a semigroup 𝑆 is said to be
completely semiprime if for any 𝑎 ∈ 𝑆 𝑎

2

∈ 𝐼 implies 𝑎 ∈ 𝐼.

Definition 19. A nonconstant (i-v) fuzzy ideal 𝜇 of a semi-
group 𝑆 is called an (i-v) completely semiprime fuzzy ideal
of 𝑆 if for any (i-v) fuzzy point 𝑥

𝑎

of 𝑆 𝑥

𝑎

∘ 𝑥

𝑎

∈ 𝜇 implies
𝑥

𝑎

∈ 𝜇.

Proposition 20. A proper subset 𝐼 of a semigroup 𝑆 is a
completely semiprime ideal of 𝑆 if and only if 𝜒

𝐼

is an (i-v)
completely semiprime fuzzy ideal of 𝑆.

Proof. Let 𝐼 be a completely semiprime ideal of 𝑆. Then 𝐼 is
a proper ideal of 𝑆 and hence 𝜒

𝐼

is a nonconstant (i-v) fuzzy
ideal of 𝑆. Consider an (i-v) fuzzy point 𝑥

𝑎

of 𝑆 such that 𝑥
𝑎

∘

𝑥

𝑎

∈ 𝜒

𝐼

. This implies that (𝑥2)
𝑎

∈ 𝜒

𝐼

⇒ 𝜒

𝐼

(𝑥

2

) ≥ 𝑎 ⇒

𝜒

𝐼

(𝑥

2

) =

̃

1 ⇒ 𝑥

2

∈ 𝐼. Therefore, by our assumption, 𝑥 ∈ 𝐼

implies 𝜒
𝐼

(𝑥) =

̃

1 ≥ 𝑎 implies 𝑥
𝑎

∈ 𝜒

𝐼

. Thus, it follows that 𝜒
𝐼

is an (i-v) completely semiprime fuzzy ideal of 𝑆.
Conversely, let 𝜒

𝐼

be an (i-v) completely semiprime fuzzy
ideal of 𝑆. Then 𝜒

𝐼

is a nonconstant (i-v) fuzzy ideal of 𝑆 and
hence 𝐼 is a proper ideal of 𝑆. Let 𝑥2 ∈ 𝐼 for any 𝑥 ∈ 𝑆. Then
𝜒

𝐼

(𝑥

2

) =

̃

1 ≥ 𝑎 for any interval number 𝑎 ∈ 𝐷[0, 1] \ {

̃

0}.
Therefore, (𝑥2)

𝑎

∈ 𝜒

𝐼

⇒ 𝑥

𝑎

∘ 𝑥

𝑎

∈ 𝜒

𝐼

. Hence, by our
assumption, 𝑥

𝑎

∈ 𝜒

𝐼

. This implies that 𝜒
𝐼

(𝑥) ≥ 𝑎 ⇒ 𝜒

𝐼

(𝑥) =

̃

1 ⇒ 𝑥 ∈ 𝐼. This shows that 𝐼 is a completely semiprime ideal
of 𝑆.

Proposition 21. A nonconstant (i-v) fuzzy ideal 𝜇 of a
semigroup 𝑆 is an (i-v) completely semiprime fuzzy ideal of 𝑆
if and only if a level ideal ̃𝑈(𝜇, 𝑎) is completely semiprime ideal
of 𝑆 for every 𝑎 ∈ Im 𝜇.

Proposition 22. A nonconstant (i-v) fuzzy ideal 𝜇 of a
semigroup 𝑆 is an (i-v) completely semiprime fuzzy ideal of 𝑆
if and only if 𝜇(𝑥) = 𝜇(𝑥

2

) for every 𝑥 ∈ 𝑆.

Proof. Let 𝜇 be an (i-v) completely semiprime fuzzy ideal of
𝑆 and 𝑥 ∈ 𝑆. If 𝜇(𝑥2) = 𝑎 for some 𝑎 ∈ 𝐷[0, 1], then (𝑥

2

)

𝑎

∈ 𝜇

implies 𝑥
𝑎

∘ 𝑥

𝑎

∈ 𝜇. Hence, by our assumption, 𝑥
𝑎

∈ 𝜇. This
implies that 𝜇(𝑥) ≥ 𝑎 = 𝜇(𝑥

2

) ≥ 𝜇(𝑥) (since 𝜇 is an (i-v) fuzzy
ideal of 𝑆). Thus, 𝜇(𝑥) = 𝜇(𝑥

2

).
Conversely, let 𝜇(𝑥) = 𝜇(𝑥

2

) for all 𝑥 ∈ 𝑆 and consider
an (i-v) fuzzy point 𝑥

𝑎

of 𝑆 such that 𝑥
𝑎

∘ 𝑥

𝑎

∈ 𝜇. Therefore,
(𝑥

2

)

𝑎

∈ 𝜇 ⇒ 𝜇(𝑥

2

) ≥ 𝑎 ⇒ 𝜇(𝑥) ≥ 𝑎 ⇒ 𝑥

𝑎

∈ 𝜇. This shows
that 𝜇 is an (i-v) completely semiprime fuzzy ideal of 𝑆.

Proposition 23. Let 𝑓 : 𝑆

1

→ 𝑆

2

be a semigroup
epimorphism. Then the following statements are true.

(i) If 𝜇 is an (i-v) completely semiprime fuzzy ideal of
𝑆

2

, then homomorphic preimage 𝑓

−1

(𝜇) is an (i-v)
completely semiprime fuzzy ideal of 𝑆

1

.

(ii) If ̃𝜃 is an f-invariant (i-v) completely semiprime fuzzy
ideal of 𝑆

1

, then homomorphic image 𝑓(

̃

𝜃) is an (i-v)
completely semiprime fuzzy ideal of 𝑆

2

.

Proof. (i) It is clear that 𝑓−1(𝜇) is an (i-v) fuzzy ideal of 𝑆
1

.
Now, for any 𝑥 ∈ 𝑆

1

, 𝑓−1(𝜇)(𝑥2) = 𝜇(𝑓(𝑥

2

)) = 𝜇((𝑓(𝑥))

2

)

(𝑓 is a homomorphism) = 𝜇(𝑓(𝑥)) (by our assumption) =

𝑓

−1

(𝜇)(𝑥). Thus, Proposition 22 implies that 𝑓−1(𝜇) is an (i-
v) completely semiprime fuzzy ideal of 𝑆

1

.
(ii) From Proposition 10, it follows that 𝑓(

̃

𝜃) is an (i-v)
fuzzy ideal of 𝑆

2

. Let 𝑦 ∈ 𝑆

2

. Since 𝑓 is onto, 𝑓−1(𝑦) ̸= 0.
Let 𝑥 ∈ 𝑓

−1

(𝑦). Therefore, 𝑦2 = (𝑓(𝑥))

2

= 𝑓(𝑥

2

) (since
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𝑓 is homomorphism), which implies 𝑥

2

∈ 𝑓

−1

(𝑦

2

). Now,
𝑓(

̃

𝜃)(𝑦

2

) = sup
𝑧∈𝑓

−1
(𝑦

2
)

̃

𝜃(𝑧) =

̃

𝜃(𝑥

2

) (since ̃

𝜃 is 𝑓-invariant)
=

̃

𝜃(𝑥) (using Proposition 22) = sup
𝑧∈𝑓

−1
(𝑦)

̃

𝜃(𝑧) = 𝑓(

̃

𝜃)(𝑦).
Hence, it follows that 𝑓(

̃

𝜃) is an (i-v) completely semiprime
fuzzy ideal of 𝑆

2

.

Proposition 24. Every (i-v) completely semiprime fuzzy ideal
of a semigroup 𝑆 is an (i-v) semiprime fuzzy ideal of 𝑆.

Proof. Let 𝜇 be an (i-v) completely semiprime fuzzy ideal of
𝑆 and consider 𝜇

1

∘ 𝜇

1

⊆ 𝜇 for an (i-v) fuzzy ideal 𝜇
1

of 𝑆.
Let us choose 𝜇

1

̸⊆ 𝜇. Then 𝜇

1

(𝑥)  𝜇(𝑥) for some 𝑥 ∈ 𝑆;
that is, 𝜇

1

(𝑥) > 𝜇(𝑥). Now, we take an interval number 𝑎 ∈

𝐷[0, 1] \ {

̃

0,

̃

1} such that 𝜇
1

(𝑥) ≥ 𝑎 > 𝜇(𝑥). This implies that
𝑥

𝑎

∈ 𝜇

1

and hence 𝑥

𝑎

∘ 𝑥

𝑎

∈ 𝜇

1

∘ 𝜇

1

⊆ 𝜇; that is, 𝑥
𝑎

∘ 𝑥

𝑎

∈ 𝜇.
Hence, by our assumption, 𝑥

𝑎

∈ 𝜇 which implies 𝜇(𝑥) ≥ 𝑎,
an absurd result. Consequently, it follows that 𝜇

1

⊆ 𝜇 and so
𝜇 is an (i-v) semiprime fuzzy ideal of 𝑆.

Note. But the converse of Proposition 24 is not always true;
that is, every (i-v) semiprime fuzzy ideal of a semigroup 𝑆may
not be an (i-v) completely semiprime fuzzy ideal of 𝑆.

Example 25. Consider 𝑆 = {(

𝑥 𝑦

0 𝑧

) : 𝑥, 𝑦, 𝑧 ∈ Z}. Then 𝑆 is
a semigroup with respect to matrix multiplication. Define an
(i-v) fuzzy subset 𝜇 of 𝑆 by

𝜇 (𝐼) = {

𝑎, when 𝐼 is a null matrix;
̃

𝑏, otherwise,
(6)

where 𝑎, ̃𝑏 ∈ 𝐷[0, 1] such that ̃0 ≤

̃

𝑏 < 𝑎 ≤

̃

1. Then it is easily
shown that 𝜇 is an (i-v) semiprime fuzzy ideal of 𝑆. But, if we
take a matrix 𝐼

1

= (

0 𝑎

0 0

) ∈ 𝑆 such that 𝑎 ̸= 0, then we see
that 𝐼2
1

= (

0 𝑎

0 0

) (

0 𝑎

0 0

) = (

0 0

0 0

), a null matrix in 𝑆. Therefore,
𝜇(𝐼

2

1

) = 𝑎 ̸=

̃

𝑏 = 𝜇(𝐼

1

). Thus, from Proposition 22, it follows
that 𝜇 is not an (i-v) completely semiprime fuzzy ideal of 𝑆.

Proposition 26. In a commutative semigroup 𝑆, every (i-v)
semiprime fuzzy ideal is an (i-v) completely semiprime fuzzy
ideal of 𝑆.

Proof. Let 𝜇 be an (i-v) semiprime fuzzy ideal of 𝑆 and 𝑥

𝑎

an
(i-v) fuzzy point of 𝑆 such that 𝑥

𝑎

∘ 𝑥

𝑎

∈ 𝜇. Then (𝑥

2

)

𝑎

∈ 𝜇

implies 𝜇(𝑥2) ≥ 𝑎. Now, for any 𝑝 ∈ 𝑆, we have

(⟨𝑥

𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩) (𝑝) = {

𝑎, when 𝑝 ∈ ⟨𝑥⟩⟨𝑥⟩;

̃

0, otherwise.
(7)

If 𝑝 ∉ ⟨𝑥⟩⟨𝑥⟩, then (⟨𝑥

𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩)(𝑝) =

̃

0 ≤ 𝜇(𝑝). Again, if
𝑝 ∈ ⟨𝑥⟩⟨𝑥⟩, then 𝑝 ∈ {𝑥

2

} ∪ 𝑥

2

𝑆 (since 𝑆 is commutative).
Thus, for both cases 𝜇(𝑝) ≥ 𝜇(𝑥

2

) ≥ 𝑎 = (⟨𝑥

𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩)(𝑝).
Thus, it follows from the above that ⟨𝑥

𝑎

⟩ ∘ ⟨𝑥

𝑎

⟩ ⊆ 𝜇, which
implies ⟨𝑥

𝑎

⟩ ⊆ 𝜇 implies 𝑥
𝑎

∈ 𝜇. This shows that 𝜇 is an (i-v)
completely semiprime fuzzy ideal of 𝑆.

Corollary 27. In a commutative semigroup 𝑆, a nonconstant
(i-v) fuzzy ideal 𝜇 of 𝑆 is an (i-v) semiprime fuzzy ideal of 𝑆 if
and only if 𝜇(𝑥) = 𝜇(𝑥

2

) for every 𝑥 ∈ 𝑆.

Theorem 28. A commutative semigroup 𝑆 is regular if and
only if every nonconstant (i-v) fuzzy ideal of 𝑆 is an (i-v)
semiprime fuzzy ideal of 𝑆.

Proof. Let 𝜇 be a nonconstant (i-v) fuzzy ideal of a regular
semigroup 𝑆 and 𝜇

1

∘ 𝜇

1

⊆ 𝜇 for any (i-v) fuzzy ideal 𝜇
1

of
𝑆. Then 𝜇

1

= 𝜇

1

∩ 𝜇

1

= 𝜇

1

∘ 𝜇

1

(since 𝑆 is regular) ⊆ 𝜇. This
implies that 𝜇 is an (i-v) semiprime fuzzy ideal of 𝑆.

Conversely, let every nonconstant (i-v) fuzzy ideal of 𝑆 be
an (i-v) semiprime fuzzy ideal of 𝑆. Let 𝑥 ∈ 𝑆. Since ⟨𝑥

2

⟩ is a
principal ideal of 𝑆 generated by𝑥2,𝜒

⟨𝑥

2
⟩

is an (i-v) fuzzy ideal
of 𝑆 and hence, by our assumption, 𝜒

⟨𝑥

2
⟩

is an (i-v) semiprime
fuzzy ideal of 𝑆. Therefore, by Corollary 27, we can write
𝜒

⟨𝑥

2
⟩

(𝑥) = 𝜒

⟨𝑥

2
⟩

(𝑥

2

) =

̃

1. This implies 𝑥 ∈ ⟨𝑥

2

⟩ = {𝑥

2

} ∪ 𝑥𝑆𝑥

(since 𝑆 is commutative). Thus, for both cases there always
exists 𝑦 ∈ 𝑆 such that 𝑥 = 𝑥𝑦𝑥 and hence 𝑆 is regular.

Proposition 29. If 𝜇 is an (i-v) completely semiprime fuzzy
ideal of a semigroup 𝑆, then 𝜇(𝑎𝑏) = 𝜇(𝑏𝑎) for all 𝑎, 𝑏 ∈ 𝑆.

Proof. Since 𝜇 is an (i-v) completely semiprime fuzzy ideal
of 𝑆, for any 𝑎, 𝑏 ∈ 𝑆, 𝜇(𝑎𝑏) = 𝜇((𝑎𝑏)

2

) = 𝜇((𝑎𝑏)(𝑎𝑏)) =

𝜇(𝑎(𝑏𝑎)𝑏) ≥ 𝜇(𝑏𝑎) (since 𝜇 is an (i-v) fuzzy ideal of 𝑆) =

𝜇((𝑏𝑎)

2

) = 𝜇((𝑏𝑎)(𝑏𝑎)) = 𝜇(𝑏(𝑎𝑏)𝑎) ≥ 𝜇(𝑎𝑏). This implies
that 𝜇(𝑎𝑏) = 𝜇(𝑏𝑎) and hence the result follows.

Definition 30 (see [19]). A nonconstant (i-v) fuzzy ideal 𝜇 of
a semigroup 𝑆 is called an (i-v) completely prime fuzzy ideal
of 𝑆 if for any two (i-v) fuzzy points 𝑥

𝑎

, 𝑦
̃

𝑏

of 𝑆 𝑥

𝑎

∘ 𝑦
̃

𝑏

∈ 𝜇

implies either 𝑥
𝑎

∈ 𝜇 or 𝑦
̃

𝑏

∈ 𝜇.

Theorem 31 (see [19]). Let 𝜇 be an (i-v) prime fuzzy ideal of
a semigroup 𝑆. Then 𝜇 is an (i-v) completely prime fuzzy ideal
of 𝑆 if and only if for any two (i-v) fuzzy points 𝑥

𝑎

and 𝑦
̃

𝑏

of
𝑆 𝑥

𝑎

∘ 𝑦
̃

𝑏

∈ 𝜇 implies 𝑦
̃

𝑏

∘ 𝑥

𝑎

∈ 𝜇.

Theorem32. Let𝜇 be an (i-v) prime fuzzy ideal of a semigroup
𝑆.Then𝜇 is an (i-v) completely prime fuzzy ideal of 𝑆 if and only
if 𝜇 is an (i-v) completely semiprime fuzzy ideal of 𝑆.

Proof. Let 𝜇 be an (i-v) completely prime fuzzy ideal of 𝑆.
Then it is clear that 𝜇 is an (i-v) completely semiprime fuzzy
ideal of 𝑆.

Conversely, let 𝜇 be an (i-v) completely semiprime fuzzy
ideal of 𝑆 and consider two (i-v) fuzzy points 𝑥

𝑎

and 𝑦
̃

𝑏

of 𝑆 such that 𝑥

𝑎

∘ 𝑦
̃

𝑏

∈ 𝜇. Then (𝑥𝑦)Min𝑖(𝑎,̃𝑏) ∈ 𝜇. This
implies that 𝜇(𝑥𝑦) ≥ Min𝑖(𝑎, ̃𝑏) ⇒ 𝜇(𝑦𝑥) ≥ Min𝑖(̃𝑏, 𝑎) (by
Proposition 29) ⇒ 𝑦

̃

𝑏

∘ 𝑥

𝑎

∈ 𝜇. Hence, by Theorem 31, it
follows that𝜇 is an (i-v) completely prime fuzzy ideal of 𝑆.

Definition 33 (see [22]). A semigroup 𝑆 is called intra-regular
if for each element 𝑥 ∈ 𝑆 there exist elements 𝑦, 𝑧 ∈ 𝑆 such
that 𝑥 = 𝑦𝑥

2

𝑧.

Theorem 34. In a semigroup 𝑆, the following statements are
equivalent.

(i) 𝑆 is intra-regular.
(ii) 𝑆 is a semilattice of simple semigroups.
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(iii) Every ideal of 𝑆 is completely semiprime.
(iv) Every (i-v) fuzzy ideal of 𝑆 is an (i-v) completely

semiprime fuzzy ideal of 𝑆.

Proof. The equivalence conditions (i), (ii), and (iii) follow
from [22, Theorem 4.4].

(i)⇒(iv). Let 𝑆 be intra-regular.Then, for any 𝑥 ∈ 𝑆, there
exist 𝑦, 𝑧 ∈ 𝑆 such that 𝑥 = 𝑦𝑥

2

𝑧. If 𝜇 is an (i-v) fuzzy ideal of
𝑆, 𝜇(𝑥) = 𝜇(𝑦𝑥

2

𝑧) ≥ 𝜇(𝑥

2

) ≥ 𝜇(𝑥). This implies that 𝜇(𝑥) =

𝜇(𝑥

2

) for all 𝑥 ∈ 𝑆. Hence, Proposition 22 implies that 𝜇 is an
(i-v) completely semiprime fuzzy ideal of 𝑆.

(iv)⇒(i). Let (iv) hold and 𝑥 ∈ 𝑆. Since ⟨𝑥2⟩ is a principal
ideal of 𝑆 generated by 𝑥

2, 𝜒
⟨𝑥

2
⟩

is an (i-v) fuzzy ideal of 𝑆
and hence, by our assumption, 𝜒

⟨𝑥

2
⟩

is an (i-v) completely
semiprime fuzzy ideal of 𝑆. Now, using Proposition 22, we can
write 𝜒

⟨𝑥

2
⟩

(𝑥) = 𝜒

⟨𝑥

2
⟩

(𝑥

2

) =

̃

1. This implies that 𝑥 ∈ ⟨𝑥

2

⟩ =

{𝑥

2

} ∪ 𝑥

2

𝑆 ∪ 𝑆𝑥

2

∪ 𝑆𝑥

2

𝑆. Therefore, for any possible form of
𝑥 ∈ 𝑆, it implies that 𝑥 ∈ 𝑆𝑥

2

𝑆. Hence, 𝑆 is intra-regular.

Theorem 35. The following conditions are equivalent in a
semigroup 𝑆.

(i) 𝑆 is intra-regular.
(ii) Every (i-v) fuzzy interior ideal of 𝑆 is an (i-v) completely

semiprime fuzzy ideal of 𝑆.
(iii) For every (i-v) fuzzy interior ideal 𝜇 of 𝑆 and 𝑥 ∈ 𝑆,

𝜇(𝑥) = 𝜇(𝑥

2

).

Proof. Since proof is simple, we omit the proof.

4. (i-v) Irreducible Fuzzy Ideal of Semigroups

In this section we have defined (i-v) irreducible fuzzy ideal of
a semigroup 𝑆 and we study its several properties.

Definition 36. A proper ideal 𝐴 of a semigroup 𝑆 is called an
irreducible ideal of 𝑆 if for any two ideals 𝐵 and𝐶 of 𝑆 𝐵∩𝐶 =

𝐴 implies either 𝐵 = 𝐴 or 𝐶 = 𝐴.

Definition 37. A nonconstant (i-v) fuzzy ideal 𝜇 of a semi-
group 𝑆 is called an (i-v) irreducible fuzzy ideal of 𝑆 if for any
two (i-v) fuzzy ideals 𝜇

1

and 𝜇

2

of 𝑆 𝜇

1

∩𝜇

2

= 𝜇 implies either
𝜇

1

= 𝜇 or 𝜇
2

= 𝜇.

Definition 38. A proper ideal 𝐴 of a semigroup 𝑆 is called a
strongly irreducible ideal of 𝑆 if for any two ideals 𝐵 and 𝐶 of
𝑆 𝐵 ∩ 𝐶 ⊂ 𝐴 implies either 𝐵 ⊂ 𝐴 or 𝐶 ⊂ 𝐴.

Definition 39. A nonconstant (i-v) fuzzy ideal 𝜇 of a semi-
group 𝑆 is called an (i-v) strongly irreducible fuzzy ideal of 𝑆
if for any two (i-v) fuzzy ideals 𝜇

1

, 𝜇
2

of 𝑆 𝜇

1

∩𝜇

2

⊂ 𝜇 implies
either 𝜇

1

⊂ 𝜇 or 𝜇
2

⊂ 𝜇.

Proposition 40. Every (i-v) strongly irreducible fuzzy ideal of
a semigroup 𝑆 is an (i-v) irreducible fuzzy ideal of 𝑆. But the
converse is not true in general.

Proof. For the converse part, we give a counter example.

Consider a semigroup (𝑆, ∗) where 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑} and a
binary operation “∗” on 𝑆 is defined by

∗ 𝑎 𝑏 𝑐 𝑑

𝑎 𝑎 𝑎 𝑎 𝑎

𝑏 𝑎 𝑏 𝑎 𝑎

𝑐 𝑎 𝑏 𝑐 𝑎

𝑑 𝑎 𝑎 𝑎 𝑎

(8)

Then 𝐼

1

= {𝑎}, 𝐼
2

= {𝑎, 𝑏}, 𝐼
3

= {𝑎, 𝑏, 𝑐}, 𝐼
4

= {𝑎, 𝑏, 𝑑}, and 𝑆

are the ideals of 𝑆 in which, 𝐼
3

, 𝐼
4

are the irreducible ideals of
𝑆, but not the strongly irreducible ideals of 𝑆. Define an (i-v)
fuzzy subset 𝜇 of 𝑆 such that

𝜇 (𝑥) = {

̃

1, when 𝑥 ∈ 𝐼, an irreducible ideal of 𝑆;
𝑎, otherwise,

(9)

where 𝑎 ∈ 𝐷[0, 1] \ {

̃

1}. Then 𝜇 is an irreducible fuzzy ideal
of 𝑆, but not an (i-v) strongly irreducible fuzzy ideal of 𝑆.

Proof of Propositions 41–45 is straightforward and so we
omit the proof.

Proposition 41. Let 𝜇 be an (i-v) irreducible fuzzy ideal of a
semigroup 𝑆 and 𝑥 ∈ 𝑆. If 𝜇(𝑥) = [𝜇

−

(𝑥), 𝜇

+

(𝑥)] for some fuzzy
ideals 𝜇− and 𝜇

+ of 𝑆, then 𝜇

− and 𝜇

+ are both irreducible fuzzy
ideals of 𝑆.

Proposition 42. A proper ideal 𝐴 of a semigroup 𝑆 is an
irreducible ideal of 𝑆 if and only if the characteristic function
𝜒

𝐴

is an (i-v) irreducible fuzzy ideal of 𝑆.

Proposition 43. An (i-v) fuzzy ideal 𝜇 of a semigroup 𝑆 is
an (i-v) irreducible fuzzy ideal of 𝑆 if and only if a level ideal
̃

𝑈(𝜇, 𝑎) is an irreducible ideal of 𝑆 for every 𝑎 ∈ Im 𝜇.

Proposition 44. If 𝜇
1

and 𝜇

2

are two (i-v) irreducible fuzzy
ideals of a semigroup 𝑆, then 𝜇

1

∩𝜇

2

is an (i-v) irreducible fuzzy
ideal of 𝑆, provided 𝜇

1

∩ 𝜇

2

is nonempty.

Proposition 45. Let 𝑆 and 𝑇 be two nonempty sets and 𝜙 :

𝑆 → 𝑇 a function. If 𝜇
1

, 𝜇
2

and ̃

𝜃

1

, ̃𝜃
2

are the (i-v) fuzzy ideals
of 𝑆 and 𝑇, respectively, then the following statements are true.

(i) 𝜙(𝜙−1(̃𝜃
1

)) =

̃

𝜃

1

.

(ii) 𝜙−1(𝜙(𝜇
1

)) = 𝜇

1

, provided 𝜇

1

is 𝜙-invariant.

(iii) 𝜙(𝜇
1

∩ 𝜇

2

) = 𝜙(𝜇

1

) ∩ 𝜙(𝜇

2

), provided 𝜇

1

and 𝜇

1

are
𝜙-invariant.

(iv) 𝜙−1(̃𝜃
1

∩

̃

𝜃

2

) = 𝜙

−1

(𝜇

1

) ∩ 𝜙

−1

(𝜇

2

).

In the following theoremwe try to find the homomorphic image
and preimage of an (i-v) irreducible fuzzy ideal of a semigroup.

Theorem 46. Let 𝜙 : 𝑆 → 𝑇 be a semigroup epimorphism
and 𝜇, ̃𝜃 (i-v) irreducible fuzzy ideals of 𝑆 and 𝑇, respectively.
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Then

(i) homomorphic image 𝜙(𝜇) is an (i-v) irreducible fuzzy
ideal of 𝑇, provided 𝜇 is 𝜙-invariant;

(ii) homomorphic preimage 𝜙

−1

(

̃

𝜃) is an (i-v) irreducible
fuzzy ideal of 𝑆, provided every (i-v) fuzzy ideal of 𝑆 is
𝜙-invariant.

Proof. (i) Let 𝜇 be 𝜙-invariant (i-v) irreducible fuzzy ideal
of 𝑆. Since 𝜇 is a nonconstant (i-v) fuzzy ideal of 𝑆, by
Proposition 10, 𝜙(𝜇) is a nonconstant (i-v) fuzzy ideal of
𝑇. Let 𝜇

1

and 𝜇

2

be two (i-v) fuzzy ideals of 𝑇 such that
𝜇

1

∩ 𝜇

2

= 𝜙(𝜇). Since 𝜇 is 𝜙-invariant, by Proposition 45, 𝜇 =

𝜙

−1

(𝜙(𝜇)) = 𝜙

−1

(𝜇

1

∩ 𝜇

2

) = 𝜙

−1

(𝜇

1

) ∩ 𝜙

−1

(𝜇

2

). Since 𝜙

−1

(𝜇

1

)

and 𝜙

−1

(𝜇

2

) are (i-v) fuzzy ideals of 𝑆 (by Proposition 10) and
𝜇 is an (i-v) irreducible fuzzy ideal of 𝑆, either 𝜙−1(𝜇

1

) = 𝜇 or
𝜙

−1

(𝜇

2

) = 𝜇. This follows that either 𝜇
1

= 𝜙(𝜙

−1

(𝜇

1

)) = 𝜙(𝜇)

or 𝜇
2

= 𝜙(𝜙

−1

(𝜇

2

)) = 𝜙(𝜇). Hence, 𝜙(𝜇) is an (i-v) irreducible
fuzzy ideal of 𝑇.

(ii) Let every (i-v) fuzzy ideal of 𝑆 be𝜙-invariant. Since ̃𝜃 is
a nonconstant (i-v) fuzzy ideal of 𝑇, by Proposition 10 𝜙

−1

(

̃

𝜃)

is a nonconstant (i-v) fuzzy ideal of 𝑆. Let ̃

𝜃

1

and ̃

𝜃

2

be two
(i-v) fuzzy ideals of 𝑆 such that ̃

𝜃

1

∩

̃

𝜃

2

= 𝜙

−1

(

̃

𝜃). Then, by
Proposition 45, ̃𝜃 = 𝜙(𝜙

−1

(

̃

𝜃)) = 𝜙(

̃

𝜃

1

∩

̃

𝜃

2

) = 𝜙(

̃

𝜃

1

) ∩ 𝜙(

̃

𝜃

2

).
Since ̃

𝜃 is an (i-v) irreducible fuzzy ideal of 𝑇, either 𝜙(̃𝜃
1

) =

̃

𝜃 or 𝜙(

̃

𝜃

2

) =

̃

𝜃. This follows that either ̃

𝜃

1

= 𝜙

−1

(𝜙(

̃

𝜃

1

)) =

𝜙

−1

(

̃

𝜃) or ̃

𝜃

2

= 𝜙

−1

(𝜙(

̃

𝜃

2

)) = 𝜙

−1

(

̃

𝜃). Hence, 𝜙−1(̃𝜃) is an (i-v)
irreducible fuzzy ideal of 𝑆.

Theorem 47. If 𝜙 : 𝑆 → 𝑇 is a semigroup epimorphism,
then there is a one-to-one correspondence between the set of
𝜙-invariant (i-v) irreducible fuzzy ideals of 𝑆 and the set of all
(i-v) irreducible fuzzy ideals of 𝑇.

Proof. LetIRF
𝜙

be the set of all𝜙-invariant (i-v) irreducible
fuzzy ideals of 𝑆 and IRF the set of all (i-v) irreducible
fuzzy ideals of 𝑇. Now, we define a mapping 𝜓 : IRF

𝜙

→

IRF by 𝜓(𝜇) = 𝜙(𝜇). Then, it is a well-defined map. Let
𝜓(𝜇

1

) = 𝜓(𝜇

2

), where 𝜇

1

, 𝜇

2

∈ IRF
𝜙

. This implies that
𝜙(𝜇

1

) = 𝜙(𝜇

2

) ⇒ sup
𝑧∈𝜙

−1
(𝑦)

𝜇

1

(𝑧) = sup
𝑧∈𝜙

−1
(𝑦)

𝜇

2

(𝑧) for all
𝑦 ∈ 𝑇 ⇒ 𝜇

1

(𝑧

∗

) = 𝜇

2

(𝑧

∗

) for all 𝑧∗ ∈ 𝜙

−1

(𝑦) (since 𝜇
1

and 𝜇

2

are 𝜙-invariant). Since 𝜙 is onto and 𝑦 is arbitrary, 𝑧∗ is also
arbitrary and hence 𝜇

1

= 𝜇

2

. Therefore, it follows that 𝜓 is
one-to-one.

Theorem 48. Every (i-v) prime fuzzy ideal of a semigroup 𝑆 is
an (i-v) irreducible fuzzy ideal of 𝑆.

Proof. Let 𝜇 be an (i-v) prime fuzzy ideal of 𝑆. Consider 𝜇

1

and 𝜇

2

to be two (i-v) fuzzy ideals of 𝑆 such that 𝜇
1

∩ 𝜇

2

= 𝜇.
Then 𝜇 ⊆ 𝜇

1

and 𝜇 ⊆ 𝜇

2

. Again, since 𝜇

1

and 𝜇

2

are (i-v)
fuzzy ideals of 𝑆, 𝜇

1

∘ 𝜇

2

⊆ 𝜇

1

∩ 𝜇

2

= 𝜇. Therefore, by our
assumption, either 𝜇

1

⊆ 𝜇 or 𝜇
2

⊆ 𝜇. This implies that either
𝜇

1

= 𝜇 or 𝜇
2

= 𝜇. Hence, 𝜇 is an (i-v) irreducible fuzzy ideal
of 𝑆.

For converse part, we set an example as follows.

Consider a semigroupNwith usual multiplication and an
ideal 4N of N. Then 4N is an irreducible ideal of N, but not a
prime ideal of N. Now, if we define an (i-v) fuzzy subset 𝜇 of
N by

𝜇 (𝑥) = {

̃

1, when 𝑥 ∈ 4N;

̃

𝑏, otherwise,
(10)

where ̃

𝑏 ∈ 𝐷[0, 1] \ {

̃

1}, then it is easily shown that 𝜇 is an
(i-v) irreducible fuzzy ideal ofN, but not an (i-v) prime fuzzy
ideal of N.

Remark 49. But the converse of Theorem 48 is true in a
regular semigroup.

Theorem 50. Every (i-v) irreducible fuzzy ideal of a regular
semigroup 𝑆 is an (i-v) prime fuzzy ideal of 𝑆.

Proof. Let 𝜇 be an (i-v) irreducible fuzzy ideal of 𝑆 and
consider 𝜇

1

and 𝜇

2

to be two (i-v) fuzzy ideals of 𝑆 such that
𝜇

1

∘ 𝜇

2

⊆ 𝜇. Since 𝑆 is regular, for every 𝑥 ∈ 𝑆, there exists
𝑦 ∈ 𝑆 such that 𝑥 = 𝑥𝑦𝑥. Therefore, 𝜇(𝑥) ≥ (𝜇

1

∘ 𝜇

2

)(𝑥) ≥

Min𝑖(𝜇
1

(𝑥), 𝜇

2

(𝑥)) = (𝜇

1

∩ 𝜇

2

)(𝑥) which implies 𝜇
1

∩ 𝜇

2

⊆ 𝜇.
But 𝜇 = 𝜇 ∪ (𝜇

1

∩ 𝜇

2

) = (𝜇 ∪ 𝜇

1

) ∩ (𝜇 ∪ 𝜇

2

). Thus, by our
assumption, either 𝜇 ∪ 𝜇

1

= 𝜇 or 𝜇 ∪ 𝜇

2

= 𝜇. This implies
either 𝜇

1

⊆ 𝜇 or 𝜇
2

⊆ 𝜇. Hence, 𝜇 is an (i-v) prime fuzzy ideal
of 𝑆.

Theorem 51. A nonconstant (i-v) fuzzy ideal 𝜇 of a semigroup
𝑆 is an (i-v) prime fuzzy ideal of 𝑆 if and only if 𝜇 is an (i-v)
irreducible fuzzy ideal as well as an (i-v) semiprime fuzzy ideal
of 𝑆.

Proof. Let 𝜇 be an (i-v) prime fuzzy ideal of 𝑆. Then 𝜇 is an
(i-v) semiprime fuzzy ideal of 𝑆 and, byTheorem 48, 𝜇 is also
an (i-v) irreducible fuzzy ideal of 𝑆.

Conversely, let 𝜇 be an (i-v) irreducible fuzzy ideal as well
as an (i-v) semiprime fuzzy ideal of 𝑆. Consider 𝜇

1

and 𝜇

2

to
be two (i-v) fuzzy ideals of 𝑆 such that 𝜇

1

∘ 𝜇

2

⊆ 𝜇. Then,
(𝜇

1

∩𝜇

2

) ∘ (𝜇

1

∩𝜇

2

) ⊆ 𝜇

1

∘ 𝜇

2

⊆ 𝜇. But 𝜇 is an (i-v) semiprime
fuzzy ideal of 𝑆.Therefore,𝜇

1

∩𝜇

2

⊆ 𝜇. Now,𝜇 = 𝜇∪(𝜇

1

∩𝜇

2

) =

(𝜇∪𝜇

1

)∩(𝜇∪𝜇

2

)which implies either 𝜇∪𝜇

1

= 𝜇 or 𝜇∪𝜇

2

= 𝜇

implies either 𝜇
1

⊆ 𝜇 or 𝜇
2

⊆ 𝜇. Hence, 𝜇 is an (i-v) prime
fuzzy ideal of 𝑆.

Definition 52. A set C of (i-v) fuzzy ideals of a semigroup 𝑆

forms an 𝑖-chain if 𝜇
1

⊆ 𝜇

2

or 𝜇
2

⊆ 𝜇

1

for any two (i-v) fuzzy
ideals 𝜇

1

, 𝜇

2

∈ C. If such a set exists in 𝑆, then we say 𝑆 has an
𝑖-chain.

Definition 53. An (i-v) fuzzy ideal 𝜇 of a semigroup 𝑆 is called
maximal if, for any (i-v) fuzzy ideal ̃𝜃 of 𝑆,𝜇 ⊆

̃

𝜃 implies ̃𝜃 = 𝜇.

Theorem 54 shows the existence of an irreducible ideal
corresponds to an ideal of a semigroup. In Theorem 55, we
try to generalize this result in terms of interval-valued fuzzy
concept.
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Theorem 54. Let 𝐴 be an ideal of a semigroup 𝑆 and 𝑎 ∈ 𝑆

such that 𝑎 ∉ 𝐴. Then, there exists an irreducible ideal 𝐼 of 𝑆
such that 𝐴 ⊆ 𝐼 and 𝑎 ∉ 𝐼.

Theorem55. Let 𝜇 be an (i-v) fuzzy ideal of a semigroup 𝑆 and
𝑥 ∈ 𝑆 such that 𝜇(𝑥) > ̃

0. Then, there exists an (i-v) irreducible
fuzzy ideal ̃𝜃 of 𝑆 such that 𝜇 ⊆

̃

𝜃 and ̃

𝜃(𝑥) = 𝜇(𝑥).

Proof. Let 𝐴 be a set of all (i-v) fuzzy ideals ̃

𝛿 of 𝑆 such that
𝜇 ⊆

̃

𝛿 and ̃

𝛿(𝑥) = 𝜇(𝑥) >

̃

0. Then 𝐴 ̸= 𝜙 and, under inclusion,
𝐴 is a poset. Now, if we consider an 𝑖-chain C = {𝛾 : 𝛾 ∈ 𝐴}

of 𝐴, then it is easy to show that the (i-v) fuzzy ideal ⋃𝛾 of
𝑆 is an upper bound of C. Therefore, from Zorn’s Lemma, we
can say that𝐴 has a maximal element, say, ̃𝜃, which is an (i-v)
fuzzy ideal of 𝑆 containing 𝜇 such that ̃𝜃(𝑥) = 𝜇(𝑥). Let ̃𝜃

1

and
̃

𝜃

2

be two (i-v) fuzzy ideals of 𝑆 such that ̃𝜃 =

̃

𝜃

1

∩

̃

𝜃

2

. Then
either ̃

𝜃 ⊆

̃

𝜃

1

or ̃

𝜃 ⊆

̃

𝜃

2

. Therefore, by maximality condition,
it implies that either ̃

𝜃

1

=

̃

𝜃 or ̃

𝜃

2

=

̃

𝜃. Hence, ̃𝜃 is an (i-v)
irreducible fuzzy ideal of 𝑆.

Theorem 56. The following conditions are equivalent in a
semigroup 𝑆.

(i) 𝑆 is regular.
(ii) Every (i-v) fuzzy ideal 𝜇 of 𝑆 is idempotent.
(iii) Every (i-v) fuzzy ideal of 𝑆 is an (i-v) semiprime fuzzy

ideal of 𝑆.
(iv) Every (i-v) fuzzy ideal of 𝑆 is an intersection of (i-v)

prime fuzzy ideals of 𝑆 containing it.

Proof. (i)⇒(ii). Let 𝑆 be regular and 𝜇 an (i-v) fuzzy ideal of 𝑆.
Then𝜇 = 𝜇∩𝜇 = 𝜇∘𝜇.This shows that𝜇 is an (i-v) idempotent
fuzzy ideal of 𝑆.

(ii)⇒(i). Let (ii) hold and consider 𝜇

1

and 𝜇

2

to be two
(i-v) fuzzy ideals of 𝑆. Then 𝜇

1

∘ 𝜇

2

⊆ 𝜇

1

∩𝜇

2

and 𝜇

1

∩𝜇

2

is an
(i-v) fuzzy ideal of 𝑆. Therefore, by (ii), 𝜇

1

∩ 𝜇

2

= (𝜇

1

∩ 𝜇

2

) ∘

(𝜇

1

∩ 𝜇

2

) ⊆ 𝜇

1

∘ 𝜇

2

. This implies that 𝜇
1

∩ 𝜇

2

= 𝜇

1

∘ 𝜇

2

and
hence 𝑆 is regular.

(ii)⇒(iii). Let every (i-v) fuzzy ideal of 𝑆 be idempotent.
Let 𝜇 be an (i-v) fuzzy ideal of 𝑆 and 𝜇

1

∘ 𝜇

1

⊆ 𝜇 for any (i-v)
fuzzy ideal 𝜇

1

of 𝑆.Then, by our assumption, 𝜇
1

= 𝜇

1

∘𝜇

1

⊆ 𝜇;
that is, 𝜇

1

⊆ 𝜇. Hence, 𝜇 is an (i-v) semiprime fuzzy ideal of
𝑆.

(iii)⇒(iv). Let (iii) hold and consider𝜇 to be an (i-v) fuzzy
ideal of 𝑆. Then, for any 𝑥 ∈ 𝑆, it follows from Theorem 55
that there exists an (i-v) irreducible fuzzy ideal ̃𝜃 of 𝑆 such
that 𝜇 ⊆

̃

𝜃 and 𝜇(𝑥) =

̃

𝜃(𝑥). Now, if we consider the set of all
those (i-v) irreducible fuzzy ideals ̃

𝜃

𝑖

(𝑖 ∈ Λ) of 𝑆 containing
𝜇, then ⋂

𝑖∈Λ

̃

𝜃

𝑖

is the smallest (i-v) irreducible fuzzy ideal of
𝑆 containing 𝜇. Also, (⋂

𝑖∈Λ

̃

𝜃

𝑖

)(𝑥) = inf
𝑖∈Λ

{

̃

𝜃

𝑖

(𝑥)} ≤

̃

𝜃(𝑥) =

𝜇(𝑥) ≤ (⋂

𝑖∈Λ

̃

𝜃

𝑖

)(𝑥). This implies that (⋂
𝑖∈Λ

̃

𝜃

𝑖

)(𝑥) = 𝜇(𝑥) for
arbitrary 𝑥 ∈ 𝑆. Hence 𝜇 = ⋂

𝑖∈Λ

̃

𝜃

𝑖

. But (iii) implies every
̃

𝜃

𝑖

(𝑖 ∈ Λ) is an (i-v) semiprime fuzzy ideal of 𝑆. Hence, by
Theorem 51, every ̃

𝜃

𝑖

(𝑖 ∈ Λ) is an (i-v) prime fuzzy ideal of 𝑆.
Thus, it follows that 𝜇 is an intersection of (i-v) prime fuzzy
ideals of 𝑆 containing 𝜇.

(iv)⇒(ii). Let (iv) hold and consider 𝜇 to be an (i-v) fuzzy
ideal of 𝑆. Then 𝜇 ∘ 𝜇 ⊆ 𝜇. Again, since 𝜇 ∘ 𝜇 is an (i-v) fuzzy
ideal of 𝑆, by (iv), 𝜇 ∘ 𝜇 = ⋂{

̃

𝜗 :

̃

𝜗 is an (i-v) prime fuzzy ideal
of 𝑆 containing 𝜇 ∘ 𝜇}. This implies that 𝜇 ∘ 𝜇 ⊆

̃

𝜗 for every
̃

𝜗. But each ̃

𝜗 is an (i-v) prime fuzzy ideal of 𝑆. Hence, 𝜇 ⊆

̃

𝜗.
Therefore, 𝜇 ⊆ ⋂{

̃

𝜗} = 𝜇 ∘ 𝜇; that is, 𝜇 ⊆ 𝜇 ∘ 𝜇. Thus, it follows
that 𝜇 = 𝜇 ∘ 𝜇; that is, 𝜇 is an (i-v) idempotent fuzzy ideal of
𝑆.

Theorem 57. Every (i-v) fuzzy ideal of a semigroup 𝑆 is an (i-
v) prime fuzzy ideal of 𝑆 if and only if 𝑆 is regular and all (i-v)
fuzzy ideals of 𝑆 form an 𝑖-chain.

Proof. Let every (i-v) fuzzy ideal of 𝑆 be an (i-v) prime fuzzy
ideal of 𝑆. Then each of these ideals is also an (i-v) semiprime
fuzzy ideal of 𝑆 and hence, byTheorem 56, 𝑆 is regular. Again,
for any two (i-v) fuzzy ideals 𝜇

1

and 𝜇

2

of 𝑆, 𝜇
1

∘ 𝜇

2

⊆ 𝜇

1

∩

𝜇

2

and 𝜇

1

∩ 𝜇

2

is an (i-v) fuzzy ideal of 𝑆. Therefore, by our
assumption, 𝜇

1

∩ 𝜇

2

is an (i-v) prime fuzzy ideal of 𝑆. Thus, it
follows that either 𝜇

1

⊆ 𝜇

1

∩ 𝜇

2

or 𝜇
2

⊆ 𝜇

1

∩ 𝜇

2

; that is, either
𝜇

1

⊆ 𝜇

2

or 𝜇
2

⊆ 𝜇

1

. Thus, the set of all (i-v) fuzzy ideals of 𝑆
forms an 𝑖-chain.

Conversely, let 𝑆 be regular and all (i-v) fuzzy ideals form
an 𝑖-chain. Let 𝜇 be an (i-v) fuzzy ideal of 𝑆 and 𝜇

1

∘ 𝜇

2

⊆ 𝜇

for any two (i-v) fuzzy ideals 𝜇

1

, 𝜇

2

of 𝑆. Then, from chain
property, either 𝜇

1

⊆ 𝜇

2

or 𝜇
2

⊆ 𝜇

1

. Again, since 𝑆 is regular,
byTheorem 56, 𝜇

1

= 𝜇

1

∘ 𝜇

1

and 𝜇

2

= 𝜇

2

∘ 𝜇

2

. Now, if 𝜇
1

⊆ 𝜇

2

,
then 𝜇

1

= 𝜇

1

∘ 𝜇

1

⊆ 𝜇

1

∘ 𝜇

2

⊆ 𝜇 and if 𝜇
2

⊆ 𝜇

1

, then 𝜇

2

=

𝜇

2

∘ 𝜇

2

⊆ 𝜇

1

∘ 𝜇

2

⊆ 𝜇. Thus it follows that either 𝜇
1

⊆ 𝜇 or
𝜇

2

⊆ 𝜇. Hence 𝜇 is an (i-v) prime fuzzy ideal of 𝑆.

5. Conclusion

Interval-valued fuzzy ideals are new tools to study fuzzy
algebra. Interval-valued semiprime fuzzy ideals may be used
to further study of fuzzy semigroups and fuzzy semirings and
certainly give some important aspects of fuzzy algebra as a
whole.
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