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We discussed two different cases of the probabilistic continuous review mixture shortage inventory model with varying and con-
strained expected order cost, when the lead time demand follows some different continuous distributions.The first case is when the
total cost components are considered to be crisp values, and the other case iswhen the costs are considered as trapezoidal fuzzy num-
ber. Also, some special cases are deduced. To investigate the proposedmodel in the crisp case and the fuzzy case, illustrative numer-
ical example is added. From the numerical results we will conclude that Uniform distribution is the best distribution to get the exact
solutions, and the exact solutions for fuzzy models are considered more practical and close to the reality of life and get minimum
expected total cost less than the crisp models.

1. Introduction

Inventory system is one of the most diversified fields of
applied sciences that are widely used in a variety of areas
including operations research, applied probability, computer
sciences, management sciences, production system, and
telecommunications. More than fifty years ago, the analysis
of inventory system has appeared in the reference books and
survey papers. Hadley and Whitin [1] are considered one
of the first researchers who have discussed the analysis of
inventory systems, where they displayed a method for the
analysis of the mathematical model for inventory systems.
Also, Balkhi and Benkherouf [2] have introduced production
lot size inventory model in which products deteriorate at a
constant rate and in which demand and production rates are
allowed to vary with time. Inventory models may be either
deterministic or probabilistic, since the demand of commod-
ity may be deterministic or probabilistic, respectively. These
cases were dealt with by Hadley andWhitin [1], Abuo-El-Ata
et al. [3], and Vijayan and Kumaran [4].

Some managers allow the shortage in inventory sys-
tems; this shortage may be backorder case, lost sales case,

and mixture shortage case. Many authors are dealing with
inventory problems with various shortage cases where the
cost components are considered as crisp values which does
not depict the real inventory system fully. For example,
constrained probabilistic inventorymodel with varying order
and shortage costs using Lagrangian method has been inves-
tigated by Fergany [5]. In addition, constrained probabilistic
inventory model with continuous distributions and varying
holding cost was discussed by Fergany and El-Saadani [6].
In 2006, several models of continuous distributions for con-
strained probabilistic lost sales inventory models with vary-
ing order cost under holding cost constraint using Lagrangian
method by Fergany and El-Wakeel [7, 8] were discussed.
Recently, El-Wakeel [9] deduced constrained backorders
inventory system with varying order cost under holding
cost constraint: lead time demand uniformly distributed
using Lagrangian method. Also, El-Wakeel and Fergany
[10] deduced constrained probabilistic continuous review
inventory system with mixture shortage and stochastic lead
time demand.

Sometimes, the cost components are considered as fuzzy
values, because, in real life, the various physical or chemical

Hindawi Publishing Corporation
Advances in Fuzzy Systems
Volume 2016, Article ID 3673267, 10 pages
http://dx.doi.org/10.1155/2016/3673267



2 Advances in Fuzzy Systems

characteristics may cause an effect on the cost components
and then precise values of cost characteristics become diffi-
cult to measure as the exact amount of order, holding, and
especially shortage cost. Thus, in controlling the inventory
system it may allow some flexibility in the cost parameter
values in order to treat the uncertainties which always fit
the real situations. Since we want to satisfy our requirements
for such contradictions, the fuzzy set theory meets these
requirements to some extent. In 1965, Zadeh [11] first intro-
duced the fuzzy set theory which studied the intention to
accommodate uncertainty in the nonstochastic sense rather
than the presence of random variables. Syed and Aziz [12]
have examined the fuzzy inventory model without shortages
using signed distance method. Kazemi et al. [13] have treated
the inventory model with backorders with fuzzy parameters
and decision variables. Gawdt [14] presented a mixture
continuous review inventory model under varying holding
cost constraint when the lead time demand follows Gamma
distribution, where the costs were fuzzified as the trapezoidal
fuzzy numbers.The continuous review inventory model with
mixture shortage under constraint involving crashing cost
based on probabilistic triangular fuzzy numbers by Fergany
andGawdt [15] was discussed. A probabilistic periodic review
inventory model using Lagrange technique and fuzzy adap-
tive particle swarm optimization was presented by Fergany
et al. [16]. Fuzzy inventory model for deteriorating items
with time dependent demand and partial backlogging is
established by Kumar and Rajput [17]. Indrajitsingha et al.
[18] give fuzzy inventory model with shortages under fully
backlogged using signed distance method. Recently, Patel et
al. [19] introduced the continuous review inventory model
under fuzzy environmentwithout backorder for deteriorating
items.

As we found earlier, many authors have studied the
inventory models with different assumptions and conditions.
These assumptions and conditions are represented in con-
straints and costs (constant or varying).Therefore, due to the
importance of the inventory models we shall propose and
study, in this paper, the mixture shortage inventory model
with varying order cost under expected order cost constraint
and the lead time demand follow Exponential, Laplace, and
Uniform distributions. Our goal of studying the inventory
models is to minimize the total cost. The order quantity and
the reorder point are the policy variables for this model,
which minimize the expected annual total cost. We evaluated
the optimal order quantity and the reorder point in two cases:
first case is when the cost components are considered as crisp
values, and the second case is when the cost components
are fuzzified as a trapezoidal fuzzy numbers, which is called
the fuzzy case. Finally this work is illustrated by numerical
example and we will make comparisons of all results and
obtain conclusions.

2. Model Development

To develop any model of inventory models we need to put
some notations and assumptions represented in Notations
section.

2.1. Assumptions

(1) Consider that continuous review inventory model
under order cost constraint and shortages are allowed.

(2) Demand is a continuous randomvariable with known
probability.

(3) The lead time is constant and follows the known
distributions.

(4) 𝛾 is a fraction of unsatisfied demand that will be
backordered while the remaining fraction (1 − 𝛾) is
completely lost, where 0 ≤ 𝛾 ≤ 1.

(5) New order with size (𝑄) is placed when the inventory
level drops to a certain level, called the reorder point
(𝑟); assume that the system repeats itself in the sense
that the inventory position varies between 𝑟 and 𝑟+𝑄

during each cycle.

3. Model (I): The Mixture Shortage
Model Where the Cost Components
Are Considered as Crisp Values

In this section, we consider that the continuous review
inventory model with shortage is allowed. Some customers
are willing to wait for the new replenishment and the others
have no patience; this case is called mixture shortage or
partial backorders.

The expected annual total cost consisted of the sum of
three components:

𝐸 (Total Cost) = 𝐸 (order Cost) + 𝐸 (Holding Cost)

+ 𝐸 (Shortage Cost) ,

𝐸 (TC (𝑄, 𝑟)) = 𝐸 (OC) + 𝐸 (HC) + 𝐸 (SC) ,

(1)

where

𝐸 (SC) = 𝐸 (BC) + 𝐸 (LC) (2)

and we assume the varying order cost function, where the
order cost is a decreasing function of the order quantity 𝑄.
Then, the expected order cost is given by

𝐸 (OC) = 𝑐
𝑜
(𝑄)

𝐷

𝑄
= 𝑐
𝑜
𝑄
−𝛽

𝐷

𝑄
= 𝑐
𝑜
𝐷𝑄
−𝛽−1

,

𝐸 (HC) = 𝑐
ℎ
𝐻 = 𝑐

ℎ
[
𝑄

2
+ 𝑟 − 𝐸 (𝑥) + (1 − 𝛾) 𝑆 (𝑟)] ,

𝐸 (BC) =
𝑐
𝑏
𝛾𝐷

𝑄
𝑆 (𝑟) ,

𝐸 (LC) =
𝑐
𝑙
(1 − 𝛾)𝐷

𝑄
𝑆 (𝑟) .

(3)

Our objective is to minimize the expected total costs
[min𝐸(TC(𝑄, 𝑟))] with varying order cost under the
expected order cost constraint which needs to find the
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optimal values of order quantity 𝑄 and reorder point 𝑟. To
solve this primal function, let us write it as follows:

𝐸 (TC (𝑄, 𝑟)) = 𝑐
𝑜
𝐷𝑄
−𝛽−1

+ 𝑐
ℎ
[
𝑄

2
+ 𝑟 − 𝐸 (𝑥) + (1 − 𝛾) 𝑆 (𝑟)]

+
𝑐
𝑏
𝛾𝐷

𝑄
𝑆 (𝑟) +

𝑐
𝑙
(1 − 𝛾)𝐷

𝑄
𝑆 (𝑟)

= 𝑐
𝑜
𝐷𝑄
−𝛽−1

+ 𝑐
ℎ
(
𝑄

2
+ 𝑟 − 𝐸 (𝑥))

+
𝑐
𝑏
𝛾𝐷

𝑄
𝑆 (𝑟)

+ (𝑐
ℎ
+

𝑐
𝑙
𝐷

𝑄
) (1 − 𝛾) 𝑆 (𝑟)

(4)

Subject to: 𝑐
𝑜
𝐷𝑄
−𝛽−1

≤ 𝐾. (5)
We use the Lagrange multiplier technique to get the optimal
values 𝑄∗ and 𝑟

∗ which minimize (4) under constraint (5) as
follows:

𝐺 (𝑄, 𝑟, 𝜆) = 𝑐
𝑜
𝐷𝑄
−𝛽−1

+ 𝑐
ℎ
(
𝑄

2
+ 𝑟 − 𝐸 (𝑥))

+
𝑐
𝑏
𝛾𝐷

𝑄
𝑆 (𝑟) + (𝑐

ℎ
+

𝑐
𝑙
𝐷

𝑄
) (1 − 𝛾) 𝑆 (𝑟)

+ 𝜆 (𝑐
𝑜
𝐷𝑄
−𝛽−1

− 𝐾) .

(6)

Putting each of the corresponding first partial derivatives of
(6) equal to zero at 𝑄 = 𝑄

∗ and 𝑟 = 𝑟
∗, respectively, we get

𝑐
ℎ
𝑄
∗2

+ 𝐵𝐷𝑄
∗−𝛽

− 2𝐴𝑆 (𝑟
∗

) = 0,

𝑅 (𝑟
∗

) =
𝑐
ℎ
𝑄
∗

𝑐
ℎ
(1 − 𝛾)𝑄∗ + 𝐴

,

(7)

where
𝐴 = 𝐷 [𝑐

𝑏
𝛾 + 𝑐
𝑙
(1 − 𝛾)] ,

𝐵 = 2𝑐
𝑜
(−𝛽 − 1) [1 + 𝜆] .

(8)

Clearly, it is difficult to find an exact solution of 𝑄∗ and 𝑟
∗

of (7), so we can suppose that the lead time demand follows
some distributions.

3.1. Lead Time Demand Follows Exponential Distribution.
Supposing that the lead time demand follows the Exponential
distribution with parameters ], then its probability density
function is given by

𝑓 (𝑥) = ]𝑒−]𝑥; 𝑥 ≥ 0, ] > 0

with 𝐸 (𝑥) =
1

]
,

𝑅 (𝑟) = 𝑒
−]𝑟

,

𝑆 (𝑟) =
1

]
𝑒
−]𝑟

.

(9)

The optimal order quantity and the optimal reorder level
which minimize the expected relevant annual total cost
can be obtained by substituting (9) into (7). Solving them
simultaneously we get

]𝑐2
ℎ
(1 − 𝛾)𝑄

∗3

+ ]𝑐
ℎ
𝐴𝑄
∗2

− 2𝑐
ℎ
𝐴𝑄
∗

+ ]𝑐
ℎ
(1 − 𝛾) 𝐵𝐷𝑄

∗1−𝛽

+ ]𝐴𝐵𝐷𝑄
∗−𝛽

= 0,

𝑟
∗

= −
1

]
ln[

𝑐
ℎ
𝑄
∗

𝑐
ℎ
(1 − 𝛾)𝑄∗ + 𝐴

] ,

(10)

which give exact solutions for model (I).

3.2. Lead Time Demand Follows Laplace Distribution. If the
lead time demand follows the Laplace distribution with
parameters 𝜇, 𝜃, the probability density function will be

𝑓 (𝑥) =
1

2𝜃
𝑒
−|𝑥−𝜇|/𝜃

; − ∞ < 𝑥 < ∞, 𝜃 > 0

with 𝐸 (𝑥) = 𝜇,

𝑅 (𝑟) =
1

2
𝑒

−((𝑟−𝜇)/𝜃)

,

𝑆 (𝑟) =
𝜃

2
𝑒
−((𝑟−𝜇)/𝜃)

.

(11)

The optimal order quantity and the optimal reorder level
which minimize the expected relevant annual total cost can
be obtained by substituting (11) into (7), and, solving them
simultaneously, we obtain

𝑐
2

ℎ
(1 − 𝛾)𝑄

∗3

+ 𝑐
ℎ
𝐴𝑄
∗2

− 2𝑐
ℎ
𝜃𝐴𝑄
∗

+ 𝑐
ℎ
(1 − 𝛾) 𝐵𝐷𝑄

∗1−𝛽

+ 𝐴𝐵𝐷𝑄
∗−𝛽

= 0,

𝑟
∗

= 𝜇 − 𝜃 ln[
2𝑐
ℎ
𝑄
∗

𝑐
ℎ
(1 − 𝛾)𝑄∗ + 𝐴

] ,

(12)

which give exact solutions for model (I).

3.3. Lead Time Demand Follows Uniform Distribution. Simi-
larly, suppose that the lead time demand follows the Uniform
distribution over the range from 0 to 𝑏, that is, 𝑥 ∼

Uniform(0, 𝑏); then its probability density function is given
by

𝑓 (𝑥) =
1

𝑏
; 0 ≤ 𝑥 ≤ 𝑏

with 𝐸 (𝑥) =
𝑏

2
,

𝑅 (𝑟) = 1 −
𝑟

𝑏
,

𝑆 (𝑟) =
1

2𝑏
(𝑟 − 𝑏)

2

.

(13)

The optimal order quantity and the optimal reorder level
which minimize the expected relevant annual total cost
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can be obtained by substituting (13) into (7). Solving them
simultaneously, we find

𝑐
3

ℎ
(1 − 𝛾)

2

𝑄
∗4

+ 2𝑐
2

ℎ
(1 − 𝛾)𝐴𝑄

∗3

+ 𝑐
ℎ
𝐴 [𝐴 − 𝑏𝑐

ℎ
] 𝑄
∗2

+ 𝑐
2

ℎ
(1 − 𝛾)

2

𝐵𝐷𝑄
∗2−𝛽

+ 2𝑐
ℎ
(1 − 𝛾)𝐴𝐵𝐷𝑄

∗1−𝛽

+ 𝐴
2

𝐵𝐷𝑄
∗−𝛽

= 0,

𝑟
∗

= 𝑏 [1 −
𝑐
ℎ
𝑄
∗

𝑐
ℎ
(1 − 𝛾)𝑄∗ + 𝐴

] ,

(14)

which give exact solutions for model (I).
Thus, the exact solution for constrained continuous

review inventory model with mixture shortage and varying
order cost can obtained by solving previous equations for
each distribution separately at different values of 𝛽 and
varying 𝜆 until the smallest positive value is found such that
the constraint holds.

4. Model (If): The Mixture Shortage
Model Where the Cost Components Are
Considered as Fuzzy Numbers

Consider continuous review inventory model similar to
model (I), but assuming that the cost components 𝑐

𝑜
, 𝑐
ℎ
, 𝑐
𝑏
,

and 𝑐
𝑙
are all fuzzy numbers, to control various uncertainties

from various physical or chemical characteristics where there
may be an effect on the cost components.

We represent these costs by trapezoidal fuzzy numbers as
given below:

�̃�
𝑜
= (𝑐
𝑜
− 𝛿
1
, 𝑐
𝑜
− 𝛿
2
, 𝑐
𝑜
+ 𝛿
3
, 𝑐
𝑜
+ 𝛿
4
) ,

�̃�
ℎ
= (𝑐
ℎ
− 𝛿
5
, 𝑐
ℎ
− 𝛿
6
, 𝑐
ℎ
+ 𝛿
7
, 𝑐
ℎ
+ 𝛿
8
) ,

�̃�
𝑏
= (𝑐
𝑏
− 𝜃
1
, 𝑐
𝑏
− 𝜃
2
, 𝑐
𝑏
+ 𝜃
3
, 𝑐
𝑏
+ 𝜃
4
) ,

�̃�
𝑙
= (𝑐
𝑙
− 𝜃
5
, 𝑐
𝑙
− 𝜃
6
, 𝑐
𝑙
+ 𝜃
7
, 𝑐
𝑙
+ 𝜃
8
) ,

(15)

where 𝛿
𝑖
and 𝜃
𝑖
, 𝑖 = 1, 2, . . . , 8 are arbitrary positive numbers

and should satisfy the following constraints:

𝑐
𝑜
> 𝛿
1
> 𝛿
2
,

𝛿
3
< 𝛿
4
,

𝑐
ℎ
> 𝛿
5
> 𝛿
6
,

𝛿
7
< 𝛿
8
.

(16)

Similarly,

𝐶
𝑏
> 𝜃
1
> 𝜃
2
,

𝜃
3
< 𝜃
4
,

𝑐
𝑙
> 𝜃
5
> 𝜃
6
,

𝜃
7
< 𝜃
8
.

(17)

We can represent the order cost as a trapezoidal fuzzy number
as shown in Figure 1 and similarly for the remaining costs.

0

1

𝜇c̃𝑜(x)

(co − 𝛿2, 1)

(co − 𝛿1, 0)

(co + 𝛿3, 1)

(co + 𝛿4, 0)

𝛼 − cut

x

Figure 1: Order cost as a trapezoidal fuzzy number.

Note that themembership function of �̃�
𝑜
is 1 at points 𝑐

𝑜
−

𝛿
2
and 𝑐
𝑜
+𝛿
3
, decreases as the point deviates from 𝑐

𝑜
−𝛿
2
and

𝑐
𝑜
+ 𝛿
3
, and reaches zero at the endpoints 𝑐

𝑜
− 𝛿
1
and 𝑐
𝑜
+ 𝛿
4
.

The left and right limits of 𝛼 – cut of 𝑐
𝑜
, 𝑐
ℎ
, 𝑐
𝑏
, and 𝑐

𝑙
are

given as follows:

�̃�
𝑜V (𝛼) = 𝑐

𝑜
− 𝛿
1
+ (𝛿
1
− 𝛿
2
) 𝛼,

�̃�
𝑜𝑢

(𝛼) = 𝑐
𝑜
+ 𝛿
4
− (𝛿
4
− 𝛿
3
) 𝛼,

�̃�
ℎV (𝛼) = 𝑐

ℎ
− 𝛿
5
+ (𝛿
5
− 𝛿
6
) 𝛼,

�̃�
ℎ𝑢

(𝛼) = 𝑐
ℎ
+ 𝛿
8
− (𝛿
8
− 𝛿
7
) 𝛼,

�̃�
𝑏V (𝛼) = 𝑐

𝑏
− 𝜃
1
+ (𝜃
1
− 𝜃
2
) 𝛼,

�̃�
𝑏𝑢

(𝛼) = 𝑐
𝑏
+ 𝜃
4
− (𝜃
4
− 𝜃
3
) 𝛼,

�̃�
𝑙V (𝛼) = 𝑐

𝑙
− 𝜃
5
+ (𝜃
5
− 𝜃
6
) 𝛼,

�̃�
𝑙𝑢
(𝛼) = 𝑐

𝑙
+ 𝜃
8
− (𝜃
8
− 𝜃
7
) 𝛼.

(18)

The expected annual total cost for this case under the
expected order cost constraint and when all cost components
are fuzzy can be expressed as follows:

�̃� (�̃�
𝑜
, �̃�
ℎ
, �̃�
𝑏
, �̃�
𝑙
) = �̃�
𝑜
𝐷𝑄
−𝛽−1

+ �̃�
ℎ
[
𝑄

2
+ 𝑟 − 𝐸 (𝑥) + (1 − 𝛾) 𝑆 (𝑟)]

+
�̃�
𝑏
𝛾𝐷

𝑄
𝑆 (𝑟) +

�̃�
𝑙
(1 − 𝛾)𝐷

𝑄
𝑆 (𝑟)

= �̃�
𝑜
𝐷𝑄
−𝛽−1

+ �̃�
ℎ
(
𝑄

2
+ 𝑟 − 𝐸 (𝑥))

+
�̃�
𝑏
𝛾𝐷

𝑄
𝑆 (𝑟)

+ (�̃�
ℎ
+

�̃�
𝑙
𝐷

𝑄
) (1 − 𝛾) 𝑆 (𝑟)

(19)

Subject to: �̃�
𝑜
𝐷𝑄
−𝛽−1

≤ 𝐾. (20)
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We use the Lagrange multiplier technique to find the optimal
values 𝑄∗ and 𝑟

∗ which minimize (19) under constraint (20)
as follows:

�̃� (�̃�
𝑜
, �̃�
ℎ
, �̃�
𝑏
, �̃�
𝑙
) = �̃�
𝑜
𝐷𝑄
−𝛽−1

+ �̃�
ℎ
(
𝑄

2
+ 𝑟 − 𝐸 (𝑥))

+
�̃�
𝑏
𝛾𝐷

𝑄
𝑆 (𝑟)

+ (�̃�
ℎ
+

�̃�
𝑙
𝐷

𝑄
) (1 − 𝛾) 𝑆 (𝑟)

+ 𝜆 (�̃�
𝑜
𝐷𝑄
−𝛽−1

− 𝐾) .

(21)

We can obtain the formof left and right𝛼– cut of the fuzzified
cost function (21), respectively, as follows:

�̃� (�̃�
𝑜
, �̃�
ℎ
, �̃�
𝑏
, �̃�
𝑙
)V (𝛼) = �̃�

𝑜V𝐷𝑄
−𝛽−1

+ �̃�
ℎV (

𝑄

2
+ 𝑟 − 𝐸 (𝑥))

+
�̃�
𝑏V𝛾𝐷

𝑄
𝑆 (𝑟)

+ (�̃�
ℎV +

�̃�
𝑙V𝐷

𝑄
) (1 − 𝛾) 𝑆 (𝑟)

+ 𝜆 (�̃�
𝑜V𝐷𝑄
−𝛽−1

− 𝐾) ,

�̃� (�̃�
𝑜
, �̃�
ℎ
, �̃�
𝑏
, �̃�
𝑙
)
𝑢
(𝛼) = �̃�

𝑜𝑢
𝐷𝑄
−𝛽−1

+ �̃�
ℎ𝑢

(
𝑄

2
+ 𝑟 − 𝐸 (𝑥))

+
�̃�
𝑏𝑢
𝛾𝐷

𝑄
𝑆 (𝑟)

+ (�̃�
ℎ𝑢

+
�̃�
𝑙𝑢
𝐷

𝑄
) (1 − 𝛾) 𝑆 (𝑟)

+ 𝜆 (�̃�
𝑜𝑢
𝐷𝑄
−𝛽−1

− 𝐾) .

(22)

Since �̃�V(𝛼) and �̃�
𝑢
(𝛼) exist and are integrable for 𝛼 ∈ [0, 1],

as in Yao and Wu [20], we have

𝑑 (�̃�, 0̃) =
1

2
∫

1

0

(�̃�V (𝛼) + �̃�
𝑢
(𝛼)) 𝑑𝛼. (23)

We get the defuzzified value of �̃�(�̃�
𝑜
, �̃�
ℎ
, �̃�
𝑏
, �̃�
𝑙
)(𝛼) by using

(23) for (22) as follows:

𝑑 (�̃�, 0̃) = 𝐴
1
𝐷𝑄
−𝛽−1

+ 𝐴
2
(
𝑄

2
+ 𝑟 − 𝐸 (𝑥))

+
𝐴
3
𝛾𝐷

𝑄
𝑆 (𝑟)

+ (𝐴
2
+

𝐴
4
𝐷

𝑄
) (1 − 𝛾) 𝑆 (𝑟)

+ 𝜆 (𝐴
1
𝐷𝑄
−𝛽−1

− 𝐾) ,

(24)

where

𝐴
1
=

(4𝑐
𝑜
− 𝛿
1
− 𝛿
2
+ 𝛿
3
+ 𝛿
4
)

4
,

𝐴
2
=

(4𝑐
ℎ
− 𝛿
5
− 𝛿
6
+ 𝛿
7
+ 𝛿
8
)

4
,

𝐴
3
=

(4𝑐
𝑏
− 𝜃
1
− 𝜃
2
+ 𝜃
3
+ 𝜃
4
)

4
,

𝐴
4
=

(4𝑐
𝑙
− 𝜃
5
− 𝜃
6
+ 𝜃
7
+ 𝜃
8
)

4
.

(25)

Similarly, as in model (I), to get the optimal values𝑄∗ and 𝑟
∗

put each of the corresponding first partial derivatives of (24)
equal to zero at 𝑄 = 𝑄

∗ and 𝑟 = 𝑟
∗, respectively; we obtain

(2𝐴
1
(−𝛽 − 1)𝐷𝑄

∗−𝛽

) (1 + 𝜆) + 𝐴
2
𝑄
∗2

− 2𝐴
3
𝛾𝐷𝑆 (𝑟) − 2𝐴

4
(1 − 𝛾)𝐷𝑆 (𝑟) = 0

(26)

and the probability of the shortage is

𝑅 (𝑟
∗

) =
𝐴
2
𝑄
∗

𝐴
2
(1 − 𝛾)𝑄∗ + 𝐴

3
𝛾𝐷 + 𝐴

4
(1 − 𝛾)𝐷

. (27)

Clearly, there is no closed form solution of (26) and (27). We
can solve these equations by using the same manner as in
model (I).

5. Special Cases

(1) Letting 𝛾 = 0, 𝛽 = 0 and 𝐾 → ∞ ⇒ 𝐶
𝑜
(𝑄) = 𝑐

𝑜
and

𝜆 = 0, thus 𝐴 = 𝑐
𝑙
𝐷, 𝐵 = −2𝑐

𝑜
and hence (7) reduces

to

𝑄
∗

= √
2𝐷 (𝑐
𝑜
+ 𝑐
𝑙
𝑠 (𝑟
∗

))

𝑐
ℎ

,

𝑅 (𝑟
∗

) =
𝑐
ℎ
𝑄
∗

𝑐
ℎ
𝑄∗ + 𝑐

𝑙
𝐷

.

(28)

This is an unconstrained lost sales continuous review
inventory model with constant units of costs, which
are the same results as in Hadley and Whitin [1].

(2) Letting 𝛾 = 1, 𝛽 = 0 and 𝐾 → ∞ ⇒ 𝐶
𝑜
(𝑄) = 𝑐

𝑜

and 𝜆 = 0, thus 𝐴 = 𝑐
𝑏
𝐷, 𝐵 = −2𝑐

𝑜
; thus (7) reduces

to

𝑄
∗

= √
2𝐷 (𝑐
𝑜
+ 𝑐
𝑏
𝑠 (𝑟
∗

))

𝑐
ℎ

,

𝑅 (𝑟
∗

) =
𝑐
ℎ
𝑄
∗

𝑐
𝑏
𝐷

.

(29)

This is an unconstrained backorders continuous
review inventory model with constant units of costs,
which are the same results as in Hadley and Whitin
[1].
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(i) Equations (10) give unconstrained backorders con-
tinuous review of inventory model with constant
units of cost and the lead time demand follows the
Exponential distribution, which are the same results
as in Hillier and Lieberman [21].

(ii) Equations (12) give unconstrained backorders contin-
uous review inventory model with constant units of
cost and the lead time demand follows the Laplace
distribution, which agree with results of Nahmias
[22].

(iii) Equations (14) give unconstrained backorders contin-
uous review inventory model with constant units of
cost and the lead time demand follows the Uniform
distribution, which are the same results as in Fabrycky
and Banks [23].

6. Numerical Example

Consider an inventory system with the following data:

𝐷 = 1050 units per year,

𝑐
𝑜
= 70 SR per unit ordered,

𝑐
ℎ
= 25 SR per unit per year,

𝑐
𝑏
= 7 SR per unit backorder,

𝑐
𝑙
= 15 SR per unit lost,

the backorder fraction has the values 𝛾 = 0.1, 𝛾 = 0.3,
and 𝛾 = 0.7,

let 𝐾 = 140 SR,

and take

𝛿
1
= 60,

𝛿
2
= 48,

𝛿
3
= 10,

𝛿
4
= 50,

𝛿
5
= 19,

𝛿
6
= 10,

𝛿
7
= 1,

𝛿
8
= 2,

𝜃
1
= 6,

𝜃
2
= 4,

𝜃
3
= 2,

𝜃
4
= 4,

𝜃
5
= 12,

𝜃
6
= 7,
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Figure 2: The comparison between the crisp and fuzzy cases for
Exponential at 𝛾 = 0.7.

𝜃
7
= 1,

𝜃
8
= 2.

(30)

Determine 𝑄
∗ and 𝑟

∗ for both cases of the previous
model, when the lead time demand has the following distri-
butions:

(i) Exponential distribution with ] = 0.077 units.
(ii) Laplace distribution with 𝜇 = 13 and 𝜃 = 10 units.
(iii) Uniform distribution with 𝑏 = 26 units.

Depending on the above data, we can obtain all results by
solving the previous deduced equations at different values of
𝛽, 𝜆, and 𝛾 as shown in the Tables 1, 2, and 3 which give
the optimal values of 𝑄∗ and 𝑟

∗ that minimize the expected
total cost, when the lead time demand follows Exponential,
Laplace, and Uniform distribution, respectively, for model (I)
and model (If ).

From Table 1 we have that

at 𝛾 = 0.1, we will make backorders by 10% of new
orders quantity;
at 𝛾 = 0.3, we will make backorders by 30% of new
orders quantity;
at 𝛾 = 0.7, we will make backorders by 70% of new
orders quantity.

After comparison of the crisp case and fuzzy case for Expo-
nential distribution, we can deduce that the least min𝐸(TC)

was obtained at 𝛾 = 0.7. We can draw the minimum expected
total cost for model (I) and model (If ) against 𝛽 for the
Exponential distribution at 𝛾 = 0.7 as shown in Figure 2.

From Table 2 we have that

at 𝛾 = 0.1, we will make backorders by 10% of new
orders quantity;
at 𝛾 = 0.3, we will make backorders by 30% of new
orders quantity;
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Table 1: The exact solutions and min𝐸(TC) for model (I) and model (If ) at Exponential distribution.

𝛾 𝛽
Crisp case Fuzzy case

𝑄
∗

𝑟
∗ min𝐸(TC) 𝑄

∗

𝑟
∗ min𝐸(TC)

0.1

0.1 297.092 13.8608 4199.84 250.412 15.426 2741.44
0.2 184.893 18.4055 2910.93 158.061 20.016 1972.09
0.3 123.76 22.6467 2252.78 107.107 24.237 1578.8
0.4 87.6955 26.5107 1898.63 76.6735 28.054 1367.98
0.5 65.1132 29.9807 1703 57.4583 31.4585 1253.06
0.6 50.1308 33.1065 1593.97 46.7207 33.9499 1189.84
0.7 41.8943 35.2866 1533.94 43.0554 34.9436 1146.05
0.8 39.0054 36.1611 1491.79 39.9907 35.846 1112.46

0.3

0.1 297.079 11.8026 4148.23 250.456 13.6144 2708.31
0.2 184.905 16.4977 2863.37 158.08 18.3589 1941.59
0.3 123.759 20.8394 2207.59 107.132 22.6783 1550.15
0.4 87.7063 24.768 1855.18 76.7397 26.5535 1340.67
0.5 65.1619 28.2749 1660.8 57.4816 30.0074 1226.34
0.6 50.1482 31.4365 1552.36 46.8468 32.4964 1163.56
0.7 41.9983 33.6078 1492.73 43.1748 33.498 1119.93
0.8 39.1053 34.4876 1450.74 40.1052 34.4067 1086.48

0.7

0.1 297.118 6.33535 4012.01 250.446 8.99977 2622.85
0.2 184.851 11.5619 2739.35 158.081 14.2364 1865.33
0.3 123.742 16.2344 2092.27 107.118 18.864 1479.48
0.4 87.6963 20.3768 1745.29 76.7206 22.9372 1273.64
0.5 65.1605 24.0241 1554.52 57.4204 26.5318 1161.7
0.6 50.2168 27.266 1448.65 47.2184 28.9822 1100.36
0.7 42.327 29.4105 1390.22 43.5262 30.0069 1057.21
0.8 39.4206 30.3066 1348.72 40.4411 30.9342 1024.17

at 𝛾 = 0.7, we will make backorders by 70% of new
orders quantity.

After comparison of the crisp case and fuzzy case for
Laplace distribution, we can deduce that the least min𝐸(TC)

was obtained at 𝛾 = 0.7. We can draw the minimum expected
total cost for model (I) and model (If ) against 𝛽 for the
Laplace distribution at 𝛾 = 0.7 as shown in Figure 3.

From Table 3 we have that

at 𝛾 = 0.1, we will make backorders by 10% of new
orders quantity;
at 𝛾 = 0.3, we will make backorders by 30% of new
orders quantity;
at 𝛾 = 0.7, we will make backorders by 70% of new
orders quantity.

After comparison of the crisp case and fuzzy case for
Uniformdistribution, we can deduce that the leastmin𝐸(TC)

was obtained at 𝛾 = 0.7. We can draw the minimum expected
total cost for model (I) and model (If ) against 𝛽 for the
Uniform distribution at 𝛾 = 0.7 as shown in Figure 4.

7. Conclusion

In this study we discussed two cases for mixture shortage
inventory model under varying order cost constraint when
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Figure 3: The comparison between the crisp and fuzzy cases for
Laplace at 𝛾 = 0.7.

lead time demand follows Exponential, Laplace, andUniform
distributions.Wehave evaluated the exact solutions of𝑄∗ and
𝑟
∗ for each value of 𝛽 and 𝜆

∗ which yields our expected order
cost constraint and then obtain the minimum expected total
cost by using Lagrangian multiplier technique.

By comparing between the minimum expected total cost
for model (I) and model (If ) at each distribution, we can
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Table 2: The exact solutions and min𝐸(TC) for model (I) and model (If ) at Laplace distribution.

𝛾 𝛽
Crisp case Fuzzy case

𝑄
∗

𝑟
∗ min𝐸(TC) 𝑄

∗

𝑟
∗ min𝐸(TC)

0.1

0.1 297.123 16.7406 4197.53 250.409 17.9466 2732.79
0.2 184.844 20.2428 2881.62 158.099 21.4789 1944.2
0.3 123.72 23.5092 2199.23 107.093 24.7322 1532.59
0.4 87.7213 26.4792 1823.44 76.7474 27.6615 1305.96
0.5 65.081 29.1581 1607.46 57.4314 30.2959 1176.14
0.6 50.1314 31.5604 1480.65 44.6116 32.6421 1100.83
0.7 39.9135 33.6954 1405.74 40.0084 33.6658 1052.46
0.8 35.8352 34.715 1357.91 36.8761 34.4363 1014.82

0.3

0.1 297.09 15.1563 4157.53 250.449 16.5519 2707.33
0.2 184.858 18.7738 2845.06 158.053 20.2063 1920.28
0.3 123.74 22.1162 2164.62 107.069 23.536 1510.28
0.4 87.6956 25.141 1789.72 76.6717 26.5228 1284.38
0.5 65.0979 27.8493 1574.89 57.4223 29.1839 1155.52
0.6 50.2117 30.2628 1448.85 44.5733 31.5604 1080.66
0.7 39.8244 32.4508 1374.04 40.0876 32.5659 1032.46
0.8 35.9 33.4388 1326.43 36.9506 33.3419 994.931

0.7

0.1 297.084 10.9477 4052.24 250.405 12.9997 2641.24
0.2 184.853 14.9711 2749.93 158.116 17.0285 1862.01
0.3 123.776 18.5665 2076.28 107.095 20.5958 1456.08
0.4 87.7171 21.7564 1705.32 76.744 23.7273 1233.15
0.5 65.084 24.5783 1492.99 57.4997 26.4847 1106.02
0.6 50.1989 27.0667 1368.85 44.5736 28.9432 1032.24
0.7 39.9021 29.2867 1295.45 40.3191 29.9172 984.487
0.8 36.1029 30.2592 1248.3 37.1679 30.7094 947.275
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Figure 4: The comparison between the crisp and fuzzy cases for
Uniform at 𝛾 = 0.7.

deduce that the least min𝐸(TC) was obtained when the
lead time demand follows Uniform distribution and equals
844.584 SR with order quantity 𝑄

∗

= 32.4596 and reorder
point 𝑟

∗

= 23.9138 for model (I), while the minimum
expected annual total cost for model (If ) is 634.709 SR with

order quantity 𝑄
∗

= 29.3328 and reorder point 𝑟∗ = 24.2447

as shown in Table 3.Thismeans that we can conclude that the
minimum expected total cost in fuzzy case is less than in the
crisp case, which indicates that the fuzziness is very close to
the actuality of life and gets minimum expected total cost less
than the crisp case.

For the results of the numerical example, we note that
when 𝛽 increases, 𝑟∗ increases, and thus 𝑄∗ decreases which
indicate that the min𝐸(TC) decreases.

Also, the different values of 𝛽 lead to changes of 𝑄∗ in
each distribution separately. But in all distributions we note
that values of 𝑄∗ are almost fixed, due to the constraint on
the varying order cost. Also, we note that when 𝛾 increases,
min𝐸(TC) decreases; this indicates that 70% of the shortages
can be met at the lowest possible cost.

Finally, our study in particular provides the ample scope
for further research and exploration. For instance, we have
considered probabilistic mixture shortage inventory model
under varying order cost constraint. This work can be
further developed by considering an ample range of different
assumptions and conditions represented in constraints and
costs (constant or varying), such as varying two costs under
two constraints or varying two costs under constraint or
varying one cost under two constraints. Also, we can study
some of the inventory models with the system multiechelon-
multisource.
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Table 3: The exact solutions and min𝐸(TC) for model (I) and model (If ) at Uniform distribution.

𝛾 𝛽
Crisp case Fuzzy case

𝑄
∗

𝑟
∗ min𝐸(TC) 𝑄

∗

𝑟
∗ min𝐸(TC)

0.1

0.1 297.124 17.0568 4067.24 250.44 18.0722 2623.71
0.2 184.926 19.6971 2697.71 158.084 20.4323 1791.22
0.3 123.756 21.4539 1955.07 107.098 21.978 1333.88
0.4 87.7442 22.6221 1519.47 76.748 22.9994 1062.47
0.5 65.1225 23.415 1246.58 57.4541 23.6935 890.457
0.6 50.187 23.9661 1066.66 44.6672 24.1744 776.304
0.7 39.8908 24.3597 942.705 35.7373 24.5207 696.802
0.8 32.4803 24.6502 853.887 29.23 24.7787 639.579

0.3

0.1 297.121 15.5207 4048 250.42 16.8872 2612.58
0.2 184.862 18.7021 2684.53 158.097 19.6747 1784.32
0.3 123.725 20.7762 1946.25 107.066 21.4673 1328.91
0.4 87.7476 22.1372 1513.44 76.7256 22.6354 1058.95
0.5 65.132 23.0538 1242.15 57.475 23.421 888.053
0.6 50.1549 23.6892 1062.94 44.6562 23.9647 774.318
0.7 39.8284 24.1411 939.565 35.7041 24.3546 695.179
0.8 32.4725 24.4703 851.602 29.2817 24.6397 638.328

0.7

0.1 297.1 10.0378 3979.21 250.426 12.9987 2576.66
0.2 184.862 15.3252 2642.32 158.11 17.311 1762.56
0.3 123.72 18.5524 1918.4 107.112 19.9169 1314.92
0.4 87.7011 20.5852 1493.56 76.6763 21.5568 1048.64
0.5 65.1351 21.9128 1227.92 57.4479 22.6277 880.563
0.6 50.1559 22.8182 1052.06 44.6218 23.3576 768.557
0.7 39.8823 23.4508 931.288 35.6999 23.873 690.713
0.8 32.4596 23.9138 844.584 29.3328 24.2447 634.709

Notations

𝐷: A random variable denoting the demand
rate per period

𝑄: A decision variable representing the order
quantity per cycle

𝑟: A decision variable representing the
reorder point

𝐿: The lead time between the placement of an
order and its receipt

𝑥: The continuous random variable
representing the demand during 𝐿

𝑓(𝑥): The probability density function of the
lead time demand and (𝑥) is its
distribution function

𝑅(𝑟): The probability of the shortage
= 1 − 𝐹(𝑟) = ∫

∞

𝑟

𝑓(𝑥) 𝑑𝑥

𝑆(𝑟): The expected value of shortages per cycle
= ∫
∞

𝑟

(𝑥 − 𝑟)𝑓(𝑥) 𝑑𝑥

𝑐
𝑜
: The order cost per unit

𝐶
𝑜
(𝑄) = 𝑐

𝑜
𝑄
−𝛽: The varying order cost per cycle

𝛽: A constant real number selected to
provide the best fit of estimated expected
cost function

𝑐
ℎ
: The holding cost per unit per period

𝑐
𝑠
: The shortage cost per unit

𝑐
𝑏
: The backorders cost per unit

𝑐
𝑙
: The lost sales cost per unit

𝐾: The limitation on the expected annual
order cost

𝜆: The Lagrangian multiplier.
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