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The study of collective movement of pedestrians is crucial in various situations, such as evacuation of buildings, stadiums, or
external events like concerts or public events. In such situations and under panic conditions, several incidents and disasters may
arise, resulting in loss of human lives. Hence, the study andmodeling of the pedestrians behavior are imperative in both normal and
panic situations. In a previous work, we developed a microscopic model for pedestrian movement based on the algorithm of Ant
Colonies and the principles of cellular automata.We took advantage of a fuzzymodel to better reflect the uncertainty and vagueness
of the perception of space to pedestrians, especially to represent the desirability or blurred visibility of virtual pedestrians.This paper
uses the mechanism of artificial potential fields. Said fields provide virtual pedestrians with better visibility of their surroundings
and its various components (goals and obstacles). The predictions provided by the first-order traffic flow theory are confirmed by
the results of the simulation. The advantage of this model lies in the combination of benefits provided by the model of ants and
artificial potential fields in a fuzzy modeling, to better understand the perceptions of pedestrians.

1. Introduction

Pedestrians’ dynamics are continuously affected by the design
of their surroundings. Their comfort and mobility become
very important both inside public building and in open areas.
Architects and designers have to take into consideration
the characteristics of pedestrian flows in order to design
the infrastructure as well as to assess its efficiency and
safety. In particular, a good understanding of the emergent
patterns is required to predict how the flowwill behave under
different circumstances. Many studies have been carried out
to evaluate these influences, either by traditional simulation
tools or by developing models to serve modern pedestrian’s
simulation. Most of these models attempt to understand how
space will affect pedestrians’ crowd flow and how to improve
space designing particularly in public transport.

In the real world, on the one hand, almost everything
is relative and has a degree of truth. People can carry a

wide variety of mental and physical work, without previous
measurements or calculations. This ability is based on their
perception. Probability theory, based on bivalent logic, shows
an inability to operate on perception-based information.
The bivalence of the conceptual structure characterizing
probability theory is in fundamental conflict with reality, in
which almost everything has a degree of truth. It is this reality
which is the starting point of fuzzy theory.

On the other hand, pedestriansmove in two-dimensional
spaces, and their complex behavior is easily affected by
surroundings architecture. Scientific researchers focused on
studying the characteristics of unidirectional and bidirec-
tional counter pedestrian flows [1]. Their studies were con-
ducted either by using models or by using empirical or
experimental investigations with video analysis [2].

In previous work, we mix the concept of fuzzy ant given
by Ant Colony paradigm and associated cellular automaton
model. We have adopted a fuzzy model for its particular
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Figure 1: Decomposition of virtual pedestrians’ movement.

ability to better represent pedestrian’s desirability or visibility
[3]. Reference [4] introduced artificial potential concept for a
first and small investigation without a deep development.

Another previouswork presents ameasurement of virtual
pedestrians and vehicles’ mutual accidents risk indicator [5],
where pedestrians’ dynamics are modeled using the basic
fuzzy ant model [3], to which we have integrated artificial
potential fields.

This paper is structured as follows: after a short introduc-
tion, in Section 2, we present the related works to our model.
Next section presents definitions and some useful rules, in
fuzzy logic, for our interest.The proposed model is described
in Section 4 by introducing artificial potential fields’ concept.
And finally Section 6 describes the obtained results given by
simulation.

2. Related Works

Faced to a navigation problem while moving with a proper
motivation, pedestrians explore their environment and carry
out a path planning to undertake. To perform this decom-
position step, they use three levels of analysis: (i) strategic,
(ii) tactical, and (iii) operational (see Figures 1 and 5). For
example, an employee wants to join his office after a meeting
at the strategic level; there are two possible paths and he
chooses the closest at the tactical level, and then he moves

there. While moving, he will interact with other pedestrians
in his path and avoid obstacles in operational level. The
latter proves to be sufficient to study the collective behavior
of pedestrians. It includes three modeling levels according
to the studied detail level: microscopic, mesoscopic, and
macroscopic.

2.1. Macroscopic Approach. Pedestrians’ crowds’ dynamics
models belonging to this scale represent a generalization of
those of traffic, considering the multidimensional nature of
the dynamics and motivations of pedestrians moving toward
specific objectives [6]. These models are based on an analogy
between the collective movement of pedestrians and that
of fluid and granular flows [7]. The macroscopic approach
uses the equation of mass conservation and the amount
of motion balance [6]. However, we must remember that
pedestrians have the flexibility of moving in two dimensions,
with the possibility to stop and move according to the
permissible speeds interval. But the hydrodynamic approach
refers to the average quantities at the local level, and therefore
the local velocity fluctuations are not explicitly modeled.
Also pedestrians do not behave only according to physics
laws. In addition, the characteristics and heterogeneities of
pedestrians’ motion as well as their individual characteristics
are not taken into consideration.
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2.2.Mesoscopic Approach. This approach adopts the principle
of platoon traffic by focusing on groups of pedestrians with
common behavioral characteristics [8]. It is used when the
state of the system can be identified by the positions and
velocities of microscopic entities, while their representation
is given by an appropriate probability distribution on the
microscopic state.

The models belonging to this scale differ from the way
they model the interactions between the particles. These
interactions may be localized, as in the case of the Boltzmann
equation, or medium-range, as for the Vlasov equation. The
difference compared to the classical kinetic theory is that
interactions do not follow the rules of classicalmechanics, but
rather the driving strategy is expressed by the behavioral rules
of formed pedestrian groups.

A combined macroscopic simulation of vehicles and
pedestrians is extremely helpful for all-encompassing traffic
control. Zhang and Chang [9] developed a hybrid model
for both pedestrians’ and vehicular traffic, by using the
macroscopic Hartmann and Sivers model on a network of
nodes and edges.Thismodel can be used to identify pathways
and roads, which have a higher risk of congestions [10]. Oth-
erwise, the work presented in [9] has integrated the strengths
of the Mixed-Cellular Automata with some probabilistic
functions in order to offer a realistic mechanism to reflect
the competing and conflict interactions between vehicle and
pedestrian flows, whereas Di Mauro et al. developed a hybrid
evacuationmodel able to target both pedestrians and vehicles
traffic patterns during an evacuation under the constraint of
modeling a large number of evacuees [11].

2.3. Microscopic Approach. This scale describes the collective
dynamics of pedestrians and their forms of self-organization,
from a detailed analysis of their individual movement. Unlike
macroscopic and mesoscopic models, these models take into
account the specific motivations of pedestrians and their
interactions [12]. However, they clash problems of analysis,
calculation, and cost. They can be categorized into several
categories corresponding to different ways of describing the
acceleration term on the basis of a detailed interpretation of
individual behavior. Categories are as follows:

(1) Rules Based Models. They have been widely used to
simulate animal herds and crowds of pedestrians. Two
key examples are the Boids [13] and the PSO (Particle
Swarm Optimization) metaheuristic of swarm’s intel-
ligence. These models have simple rules to simulate a
virtual group of entities moving collectively avoiding
obstacles and collisions between them [14].

(2) Cellular Automata Based Models. They adopt an arti-
ficial intelligence approach for modeling pedestrian
simulation, based on simple formulations of physical
systems under conditions discretized in terms of
space, time, and values of physical quantities [15].
Spatial discretization is space displacement pedes-
trian as discrete uniform lattice cells, while temporal
discretization represents the change frequency of
pedestrians positions, as transitions between cells.
These transitions are governed by a function of the

cells states in the pedestrians’ neighborhood and
those they occupy.

(3) Physical Forces Based Models. They are motivated by
the observation that the pedestrians movement devi-
ates from a straight trajectory in the presence of other
pedestrians or obstacles. Trends in social behavior
of pedestrians are formalized using a combination
of sociopsychological and physical forces covering
pedestrian individual motivation and obstacle avoid-
ance. Hence, the term “social forces” (acceleration,
repulsion, and attraction) arises, to which pedestrians
are subject to long range [16].

(4) Network Queues Based Models. These models repre-
sent the pedestrian environment as a network and
describe how they move from one node to another
[17]. They rely heavily on the basic principles of the
waiting theory. However, the assumptions of the latter
condition restrict its applicability in modeling real-
world situations.

(5) Models Based on Multiagent Systems: They are espe-
cially beneficial when it comes to modeling a hetero-
geneous population of agents with complex behav-
iors. Important examples based on multiagent sys-
tems models can be identified in the following work
[18, 19]. However, despite their obvious advantages,
these models have been criticized for their lack (or
scarcity) of integrating psychological and physiolog-
ical elements to make them more realistic and allow
decisions similar to those of humans.

3. Fundamental Diagrams of Traffic Flow

Fundamental diagrams of traffic flow are curves representing
relations between flow and density, density and speed, and
speed and flow (Figure 2). These diagrams are vital tools
which enable analysis of fundamental relationship of traffic
flow [20]. In this work, we are interested in curve connecting
the flow and density of the traffic of pedestrians, by analyzing
in parallel the density curves and flow separately.

The flow and density vary with time and location. When
there is no pedestrian on the map, the density is zero, and the
flow is also zero. Meanwhile, when the pedestrians number
increases, gradually the density as well as flow increases.
Traffic reaches its jam state when pedestrians cannot move
because their density becomes maximum (see Figure 2). At
jam density, flow will be zero because the pedestrians are
not moving. When density is between zero density and jam
density, flow is in a free state. Note that the same flow can
have two different densities. However, corresponding speeds
are different.

4. Fuzzy Theory

Nonrandom impreciseness or vagueness occurs associated
with numeric quantities in many human activities. This
impreciseness may have different origins. For example, it is
usual to say “he is about forty” or “I expect to make more
than two million on this deal.” The natural modeling tool for
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Figure 2: Fundamental diagram.

this kind of situation is the theory of fuzzy sets. Given that
precise numeric quantities are represented by real numbers,
it should be thought that imprecise or vague quantities may
be represented by “real fuzzy numbers.”

Zadeh introduced the concept of an infinite valued logic
[21] where he described fuzzy set theory mathematics by
extension fuzzy logic. The fuzzy concept cannot be repre-
sented by the conventional approaches. Consequently, the
theory of the classic probability do not supply an abstract
frame suited to represent the knowledge, because such a
concept is lexically indistinct. Fuzzy set theory maps the
values true and false to real numbers on the interval [0, 1].
New operations for the logic calculations were proposed as
a generalization of the classic one. The work given by Wang
et al. [22] proposes the following definitions and performs a
ranking method for fuzzy number.

Definition 1. Let𝑋 be a nonempty set. A fuzzy set “𝐴” in𝑋 is
characterized by its membership function:

𝜇
𝐴
: 𝑋 󳨀→ [0, 1] . (1)

𝜇
𝐴
(𝑢) is interpreted as the degree of membership of ele-

ment 𝑥 in fuzzy set 𝐴 for each 𝑢 ∈ 𝑋. The set 𝐴 is completely
determined by the set of tuples 𝐴 = {(𝑢, 𝜇

𝐴
(𝑢))/𝑢 ∈ 𝑋}.

Definition 2. The membership function 𝑓
𝐴
(𝑥) of trapezoidal

fuzzy number (TNF) 𝐴̃(𝑎, 𝑏, 𝑐, 𝑑) is defined by

𝑓
𝐴
(𝑥) =

{{{{{{{

{{{{{{{

{

𝑓
𝐿

𝐴̃
(𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏,

𝜔 𝑏 ≤ 𝑥 ≤ 𝑐,

𝑓
𝑅

𝐴̃
(𝑥) , 𝑐 ≤ 𝑥 ≤ 𝑑,

0 otherwise,

(2)

where 0 ≤ 𝜔 ≤ 1 is a constant and 𝑓𝑅
𝐴̃
: [𝑐, 𝑑] → [0, 𝜔] and

𝑓
𝐿

𝐴̃
: [𝑎, 𝑏] → [0, 𝜔] are two applications strictly monotonous

and continuous from 𝑅 to a closed interval [0, 𝜔]. If 𝜔 = 1,
then 𝐴̃ is called a normal fuzzy number. If the membership
function𝑓

𝐴
(𝑥) is linear piecewise, then it is called trapezoidal

fuzzy number, denoted by 𝐴̃(𝑎, 𝑏, 𝑐, 𝑑; 𝜔) or 𝐴̃(𝑎, 𝑏, 𝑐, 𝑑) if𝜔 =
1.
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Figure 3: Memberships function of a trapezoidal fuzzy number.

Particularly, if 𝑏 = 𝑐, the trapezoidal fuzzy number is
reduced to a triangular fuzzy number denoted by 𝐴̃(𝑎, 𝑏, 𝑑; 𝜔)
or 𝐴̃(𝑎, 𝑏, 𝑑) if 𝜔 = 1.

Because 𝑓
𝐿

𝐴̃
and 𝑓

𝑅

𝐴̃
are two applications strictly

monotonous and continuous, then their reverse exists
and must be also strictly monotonous and continuous. Let
𝑔
𝐿

𝐴̃
: [0, 𝜔] → [𝑎, 𝑏] and 𝑔𝑅

𝐴̃
: [0, 𝜔] → [𝑐, 𝑑] be the inverse

application of 𝑓𝐿
𝐴̃

and 𝑓𝑅
𝐴̃
, respectively. Then, 𝑔𝐿

𝐴̃
(𝑦) and

𝑔
𝑅

𝐴̃
(𝑦) must be integrals on closed interval [0, 𝜔]. In the case

of trapezoidal fuzzy number, the reverse functions 𝑔𝐿
𝐴̃
(𝑦) and

𝑔
𝑅

𝐴̃
(𝑦)may be analytically expressed by

𝑔
𝐿

𝐴̃
(𝑦) = 𝑎 +

(𝑏 − 𝑎) 𝑦

𝜔
, 0 ≤ 𝑦 ≤ 𝜔,

𝑔
𝑅

𝐴̃
(𝑦) = 𝑑 −

(𝑑 − 𝑐) 𝑦

𝜔
, 0 ≤ 𝑦 ≤ 𝜔.

(3)

Figures 2 and 3 give, respectively, membership function
and reciprocal membership function of a trapezoidal fuzzy
number.

The center point of a fuzzy number is given by

𝑥
0
(𝐴̃) =

∫
+∞

−∞
𝑥𝑓
𝐴
(𝑥) 𝑑𝑥

∫
+∞

−∞
𝑓
𝐴
(𝑥) 𝑑𝑥

=
∫
𝑏

𝑎
𝑥𝑓
𝐿

𝐴̃
(𝑥) 𝑑𝑥 + ∫

𝑐

𝑏
(𝑥𝜔) 𝑑𝑥 + ∫

𝑑

𝑐
𝑥𝑓
𝑅

𝐴̃
(𝑥) 𝑑𝑥

∫
𝑏

𝑎
𝑓𝐿
𝐴̃
(𝑥) 𝑑𝑥 + ∫

𝑐

𝑏
(𝜔) 𝑑𝑥 + ∫

𝑑

𝑐
𝑓𝑅
𝐴̃
(𝑥) 𝑑𝑥

,

𝑦
0
(𝐴̃) =

∫
𝜔

0
𝑦 (𝑔
𝐿

𝐴̃
(𝑦) − 𝑔

𝑅

𝐴̃
(𝑦)) 𝑑𝑦

∫
𝜔

0
(𝑔𝐿
𝐴̃
(𝑦) − 𝑔𝑅

𝐴̃
(𝑦)) 𝑑𝑦

,

𝑥
0
(𝐴̃) =

1

3
[𝑎 + 𝑏 + 𝑐 + 𝑑 −

𝑑𝑐 − 𝑎𝑏

(𝑑 + 𝑐) − (𝑎 + 𝑏)
] ,

𝑦
0
(𝐴̃) = 𝜔

1

3
[1 +

𝑐 − 𝑏

(𝑑 + 𝑐) − (𝑎 + 𝑏)
] .

(4)

For a normal trapezoidal fuzzy number 𝐴̃(𝑎, 𝑏, 𝑐, 𝑑), we
have 𝑦

0
(𝐴̃) = (1/3)[1 + (𝑐 − 𝑏)/((𝑑 + 𝑐) − (𝑎 + 𝑏))].
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Or for a triangular fuzzy number,

𝑥
0
(𝐴̃) =

1

3
[𝑎 + 𝑏 + 𝑑] ,

𝑦
0
(𝐴̃) = 𝜔

1

3
.

(5)

Particularly, for a normal triangular fuzzy number, we
have

𝑦
0
(𝐴̃) =

1

3
. (6)

The ordering function of fuzzy number [17] is defined by

𝑅 (𝐴) = √(𝑥0)
2
+ (𝑦
0
)
2
. (7)

So, let 𝐴̃ and 𝐵̃ be two fuzzy numbers:

𝐴̃ ≤ 𝐵̃ ⇐⇒ 𝑅 (𝐴) ≤ 𝑅 (𝐵) . (8)

Fuzzy Arithmetic. Let 𝐴̃(𝑎
𝐴
, 𝑏
𝐴
, 𝑐
𝐴
, 𝑑
𝐴
; 𝜔
𝐴
), 𝐵̃(𝑎

𝐵
, 𝑏
𝐵
, 𝑐
𝐵
, 𝑑
𝐵
;

𝜔
𝐵
), and 𝐶̃(𝑎

𝐶
, 𝑏
𝐶
, 𝑐
𝐶
, 𝑑
𝐶
; 𝜔
𝐶
) be three fuzzy numbers; fuzzy

operators can be expressed as follows:

𝐴̃ ⊕ 𝐵̃ = 𝐶̃ (𝑎
𝐴
+ 𝑎
𝐵
, 𝑏
𝐴
+ 𝑏
𝐵
, 𝑐
𝐴
+ 𝑐
𝐵
, 𝑑
𝐴

+ 𝑑
𝐵
;min (𝜔

𝐴
, 𝜔
𝐵
))

𝐴̃ − 𝐵̃ = 𝐶̃ (𝑎
𝐴
− 𝑎
𝐵
, 𝑏
𝐴
− 𝑏
𝐵
, 𝑐
𝐴
− 𝑐
𝐵
, 𝑑
𝐴

− 𝑑
𝐵
;min (𝜔

𝐴
, 𝜔
𝐵
))

𝐴̃ ⊗ 𝐵̃ = 𝐶̃ (𝑎
𝐴
∗ 𝑎
𝐵
, 𝑏
𝐴
∗ 𝑏
𝐵
, 𝑐
𝐴
∗ 𝑐
𝐵
, 𝑑
𝐴

∗ 𝑑
𝐵
;min (𝜔

𝐴
, 𝜔
𝐵
)) .

(9)

5. Proposed Model

Our model is based on the paradigm of two-dimensional
cellular automata and ACO (Ant Colony Optimization)
metaheuristic in its simplest version, without focusing on
an optimization aspect that differs from our goal [23]. The
latter consists in developing a model of virtual pedestrians’
motion, without providing it with any personal intelligence
formula. The bioinspired character of intelligence in swarms
treats virtual pedestrians like a swarm that can act and
interact with the components of their environment, while
having a collective artificial distributed intelligence. This
collective intelligence enables them to produce structures
self-organized and global that are not even considered at the
local level.

Artificial potential fields are integrated to facilitate pedes-
trians’ navigation toward their goals.

5.1. Artificial Potential Fields. The potential field method
treats pedestrian as a particlemoving on an artificial potential
field. The goal point acts as an attractive force on the pedes-
trian and the known obstacles act as repulsive forces. The
superposition of all forces impacts the pedestrian. Therefore,

an artificial potential field guides the pedestrian toward the
goal point while simultaneously avoiding obstacles.

In general, the scalar potential field is defined as the sum
of the attractive potential field of the goal point and the
repulsive potential field of the obstacles [24]:

𝑈 = 𝑈rep + 𝑈att, (10)

where𝑈att and𝑈rep are the attractive and repulsive potentials,
respectively. The attractive potential influence attracts the
pedestrian toward the goal position,while repulsive one tends
to push him away from the obstacles.

Similarly, the vector field of artificial forces 𝐹(𝑝) acting at
the pedestrian position 𝑝 = (𝑥, 𝑦) is given by

𝐹 (𝑝) = 𝐹att (𝑝) + 𝐹rep (𝑝) , (11)

where 𝐹att(𝑝) = −∇𝑈att and 𝐹rep(𝑝) = −∇𝑈rep, where ∇𝑈 is
the gradient vector of potential 𝑈 at pedestrian position 𝑝 =
(𝑥, 𝑦) in a two-dimensional map.

5.2. Attractive Potential Field. Themost commonly used form
of potential field functions proposed by Khatib is defined as
(see [24])

𝑈att =
1

2
𝜉𝑑
𝑔

2
, (12)

where 𝑑
𝑔
= ‖𝑝 − 𝑝

𝑔
‖ denotes the Euclidian distance, 𝑝 is

the pedestrian current position and 𝑝
𝑔
is the position of an

attraction point, and 𝜉 is an adjustable positive constant.
The attractive force 𝐹att(𝑝) could be computed as the

corresponding potential is differentiable. So we have

𝐹att (𝑝) = −∇𝑈att = 𝜉
󵄩󵄩󵄩󵄩󵄩
𝑝 − 𝑝
𝑔

󵄩󵄩󵄩󵄩󵄩
. (13)

Hence, the attractive force tends linearly toward zero as
the pedestrian reaches the goal.

5.3. Repulsive Potential Field. One example of repulsion
potential field is given by

𝑈rep =
{{

{{

{

1

2
𝜂(

1

𝑑
𝑜

−
1

𝜌
0

)

2

if 𝑑
𝑜
≤ 𝜌
0

0 if 𝑑
𝑜
> 𝜌
0
,

(14)

where 𝑑
𝑜
= ‖𝑝 − 𝑝

𝑜
‖ denotes the Euclidian distance, 𝑝 is the

pedestrian current position and 𝑝
𝑜
is the obstacle position,

and 𝜂 is an adjustable positive constant.
The repulsive potential field is positive or null and tends to

infinity as 𝑝 gets closer to the obstacle. If the object boundary
is convex and piecewise differentiable, 𝑑

𝑜
is differentiable

everywhere in the configuration space.
Then, the repulsive force could be computed as

𝐹rep = −∇𝑈rep =
{

{

{

𝜂(
1

𝑑
𝑜

−
1

𝜌
0

)
1

𝑑2
𝑜

if 𝑑
𝑜
≤ 𝜌
0

0 if 𝑑
𝑜
> 𝜌
0
.

(15)
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Consequently, the resulting force 𝐹(𝑝) acts on the pedes-
trian by guiding him toward the goal object while simultane-
ously avoiding obstacles [25].

The abovementioned formulation does not allow virtual
pedestrians to pass between closely spaced obstacles. To solve
this problem, Miguel and colleagues proposed a modified
formulation for repulsion forces [26]:

𝑈rep =
{{

{{

{

1

2
𝜂(

1

𝑑
𝑜

−
1

𝜌
0

)

2
󵄩󵄩󵄩󵄩󵄩
𝑝 − 𝑝
𝑔

󵄩󵄩󵄩󵄩󵄩

𝑛

if 𝑑
𝑜
≤ 𝜌
0

0 if 𝑑
𝑜
> 𝜌
0
.

(16)

The introduction of the term ‖𝑝 − 𝑝
𝑔
‖
𝑛 ensures that the

total potential reaches its global minimum 0, if and only if
𝑝 = 𝑝

𝑔
. The corresponding repulsive force is given by

𝐹rep = −∇𝑈rep =
{

{

{

𝐹rep1𝑛OR + 𝐹rep2𝑛OG if 𝑑
𝑜
≤ 𝜌
0

0 if 𝑑
𝑜
> 𝜌
0
,

(17)

while

𝐹rep1 =
{{

{{

{

𝜂(
1

𝑑
𝑜

−
1

𝜌
0

)
𝑑
𝑛

𝑔

𝑑2
𝑜

𝑑
𝑜
≤ 𝜌
0

0 𝑑
𝑜
> 𝜌
0
,

𝐹rep2 =
{{

{{

{

𝑛

2
𝜂(

1

𝑑
𝑜

−
1

𝜌
0

)

2

𝑑
𝑔

𝑛−1 if 𝑑
𝑜
≤ 𝜌
0

0 if 𝑑
𝑜
> 𝜌
0
,

(18)

while 𝑛OR = ∇𝑑
𝑜
and 𝑛OG = −∇𝑑

𝑔
are two unit vectors

pointing from obstacle to pedestrian and from this latter to
the goal, respectively.

Consequently, 𝐹rep repulses the pedestrian from the
obstacle with its component𝐹rep1 and attracts him toward the
goal with the component𝐹rep2. Hence, this formulation solves
the problem of nonreachable goals under some obstacles
configurations.

5.4. Model Rules. Our model uses Ant Colony Optimization
paradigm, which is one of the most successful techniques
in swarm intelligence. It is inspired by the pheromone trail
laying and following behavior of ants. Such behaviors allow
ant colonies and find shortest paths between their colonies
and food sources. Ants communicate indirectly by the mine
of chemical pheromone trials. In nature, ants usually walk
randomly while laying down pheromone trials. If other ants
find such a path, they do not keep walking randomly but
follow the trail and reinforce it if they find food. However,
the pheromone evaporates with time passing. More ants will
visit a shorter path and consequently the pheromone density
remains high for a longer time.

Pedestrians move in a two-dimensional map. For each
pedestrian in a cell (𝑖) and wishing to move to a cell (𝑗), the
possibility of movement depends on the following:

(1) A parameter of dynamic floor field 𝜏
𝑖
.

(2) An attractive potential field to the goal 𝑈att.

(3) A repulsive potential field to obstacles 𝑈rep.
(4) The movement possibility toward a cell 𝑜 depending

on its occupation state (𝑂
𝑗
= 1 or 𝑂

𝑗
= 0). We

have chosen to not represent this parameter as a
fuzzy number because it does not require a degree of
correctness. Each cell can hold just one person per
time, and its size is set to fit this matter.

(5) A fuzzy general utility of movement from a cell (𝑖) to
a cell (𝑗) given by

𝑃̃
𝑖𝑗 (𝑡) =

[𝜏̃
𝑖𝑗 (𝑡)]
𝛼

[𝜂̃
𝑖𝑗
(𝑡)]
𝛽

∑
𝑙∈𝐽
𝑇
𝑘

𝑖

[𝜏̃
𝑖𝑙 (𝑡)]
𝛼
[𝜂̃
𝑖𝑙
(𝑡)]
𝛽
× 𝐼
𝑉
𝑖

8

(𝑗) , (19)

while 𝜏̃
𝑖𝑗
is the pheromone quantity, 𝛼 is the influence

control parameter of 𝜏̃
𝑖𝑗
, 𝛽 is the influence control

parameter of 𝜂̃
𝑖𝑗
, and 𝐼

𝑉
𝑖

8

is the set of eight cells
neighboring cell (𝑖).
The pedestrian desirability or visibility is given by

𝜂̃
𝑖𝑗
(𝑡) = exp [− (𝑈att (𝑐𝑗) + 𝑈rep (𝑐𝑗))]

× (1 − 𝑂
𝑖𝑗 (𝑡)) ,

(20)

where

𝑈att (𝑐𝑗) =
1

2
∗ 𝐾att ∗ 𝑑𝑔

2
,

𝑈rep (𝑐𝑗)

=

{{

{{

{

1

2
∗ 𝐾rep ∗ [

1

𝑑
𝑜

−
1

𝜌
0

]

2

∗ 𝑑
𝑔

2 if 𝑑
𝑜
≤ 𝜌
0

0 if 𝑑
𝑜
> 𝜌
0

(21)

while 𝜌
0
is a specific parameter for each obstacle in

the simulation grid and 𝑑
𝑜
and 𝑑

𝑔
are the distances

between pedestrian position and nearest obstacle and
the goal, respectively.
dist(𝑝, 𝑝󸀠) = |𝑥−𝑥󸀠|+|𝑦−𝑦󸀠| is theManhattandistance
between points 𝑃 and 𝑃󸀠.

(6) The pheromone update rule is given by

𝜏̃
𝑖𝑗
= 𝜌𝜏̃
𝑖𝑗
+ Δ𝜏̃
𝑖𝑗
, (22)

where 𝜌 is pheromone vaporization rate. Δ𝜏̃
𝑖𝑗
=

∑
𝑚

𝑘=1
Δ𝜏̃
𝑘

𝑖𝑗
(𝑡) is the sum of pheromone laid down by

all pedestrians at time step 𝑡. In a time step, only one
pedestrian occupies a cell, so Δ𝜏̃𝑘

𝑖𝑗
(𝑡) = 𝑂

𝑖𝑗
(𝑡).

Since in the real world pedestrians cannot move in
a straight line, we choose then to replace the Manhattan
distance. Literature proposes many distance algorithms. For
their simplicity, we choose to apply the brush fire algorithm
in calculating distance between the next target cell and an
obstacle, and wavefront algorithm for the one between the
next target cell and the goal. These algorithms are applied
using Von Neumann neighborhood.
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5.5. Brush Fire and Wavefront Algorithms. The brush fire
algorithm is as follows:

(1) Initialize all distances by 0
(2) Set distance of cells, on which obstacle to 1
(3) Initially, create a queue𝐿 to save cells on the boundary

of all obstacles
(4) While 𝐿 is not empty
(5) Remove the first element 𝑡 of 𝐿
(6) If 𝑑(𝑡) = 0
(7) 𝑑(𝑡) = 1 +min(𝑡󸀠 ∈ 𝑁(𝑡)/𝑑(𝑡󸀠) ̸= 0)

(8) Add all 𝑡󸀠 ∈ 𝑁(𝑡) with 𝑑(𝑡) = 0, at the end of queue 𝐿.

The result is a distancemap inwhich each cell contains the
minimum distance to an obstacle. Since wavefront algorithm
is a variant of brush fire one, we apply the algorithm of brush
fire starting with the objective. The cells distances on which
the goal is set are initialized by 2, and the others by 0. We
obtain a distance map from goal to all cells.

5.6. Conflicts Mitigation. Pedestrian collision means two
pedestrians will move into the same cell in time step (𝑡 + 1).
A solution is proposed to avoid this problem. We choose
randomly one of two pedestrians to enable him to execute his
step. The other pedestrian remains in his cell.

5.7. Model’s Algorithm. The proposed model follows the
following algorithm:

(1) The repulsive potential is calculated for all obstacles
(denoted as obs in the following equation) by the
following formula:

𝑈rep (𝑐𝑗) = ∑
obst
𝑈rep (𝑐𝑗, obst) . (23)

(2) The attractive potential toward the goal is calculated
for cells in the map.

(3) For each pedestrian, the utility of transition to a
nonoccupied neighboring cell (𝑗) is determined by
the attractive potential, the repulsive potential, the
dynamic field, and the state of occupation of the cell.
Pedestrians choose tomove to cell (𝑗) where the fuzzy
general utility obtains its maximum value:

𝑃̃
𝑘

𝑖𝑗
(𝑡) = max

𝑘

(𝑃̃
𝑘

𝑖𝑘
(𝑡)) . (24)

The conflicts arising between pedestrians attempting
to move to the same target cell are solved randomly.

(4) Pedestrians who are allowed to move execute their
simulation step.

(5) Pedestrians update the amount of pheromone present
in the cells just before their movement.

(6) Pedestrians alter the dynamic floor field of the cell
they occupied before their move.

w

a

b

c

d

gL
Ã

gR
Ã

Figure 4: Reciprocal memberships function of a trapezoidal fuzzy
number.

In Figure 5, we represent our model algorithm.
Figure 4 shows reciprocal memberships function of a
trapezoidal fuzzy number.

In this model, the fuzzification of pedestrians’ util-
ity concerns only spatial perception (obstacles, amount of
pheromone for dynamic floor, etc.). Our goal in this approach
is to have a simple model integrating fuzzy modeling and the
Ant Colony paradigm and artificial potential fields’ concept.
This model ensures an easy and effective navigation to pedes-
trians by attracting them automatically to their objectives
while repulsing them from obstacles in their ways. Certainly,
other cognitive and behavioral factors will be considered in
our future work. This work is scheduled to consider danger-
ousness of crossing intersections by pedestrians. Perception
of vehicle speed by pedestrians and other psychological
factors can be integrated. The software architecture of the
simulator allows this extension. For theoretical foundation,
the fuzzy general utility proposed here may be interpreted as
a fuzzy probability, extending the crisp probability transition
given by Ant Colony paradigm.

6. Results and Discussion

We choose at first a simulation scenario as a blocked corridor
(see Figure 6). We placed a statistical detector in the part of
the corridor closest to the destination. Resulting attractive
and repulsive potential fields are shown in Figures 7 and 8.

We are not interested in the variation of influence param-
eters of fields’ floor. These parameters are set to 1 (𝛼 = 1 and
𝛽 = 1) for a fixed value of static and dynamic influences.

We have varied the width of different fuzzy numbers used
from crisp state “0” to “0.8,” to express pedestrian’s degree of
their environment perception. We noticed that pedestrian’s
density increases until it reaches a maximum value when
traffic becomes congested (see Figure 9), while pedestrians
flow decreases in the same phase (see see Figure 10).

The fundamental diagram (see Figure 11) illustrates
the phases of the free and congested pedestrian’s traffic.
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Environment construction

Initialization of dynamic floor
field

Set static objects: obstacles
and pedestrian generators

Calculate the transition
probability for a move to a

neighboring cell

Choose the target cell offering
the best value travel

Conflicts mitigation

Move of allowed pedestrians

Pheromone update Diffusion and decay

Calculate artificial potential
fields

Figure 5: Simulation algorithm.
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Figure 6: Simulation scenario as a blocked corridor.
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Figure 7: Resulting attractive potential field in the blocked corridor
scenario.

We observe that crisp pedestrians having exact knowledge
about their environment take more time to be in congested
state as shown in Figure 12 by red curve. This time decreases
while increasing fuzzy numbers width. For very low density,
pedestrians can evacuate easily and quickly compared to
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Figure 8: Resulting repulsive potential field in the blocked corridor
scenario.

the case of maximum density where pedestrian movement
becomes impossible. Pedestrians move according to the
artificial potential fields and virtual trace left by others, and
the fact of increasing the width of their components implies
that the fuzzification threshold also increases. This does not
allow pedestrians to find their way out quickly. Imprecise
perception of pedestrians in relation to their environment
leads the system to an entropy state that produces congestion
at an earlier time (see Figure 9). Average evacuation time
for pedestrians increases while the fuzzy numbers width
increases (see Figure 12). As for a macroscopic traffic model,
these results show that with extending the fuzzy ant model,
by the use of artificial potential fields, we can obtain results
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Figure 9: Density diagram in a blocked corridor.
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Figure 10: Flow diagram in a blocked corridor.

physically significant, such as the fundamental diagram
which considers two phases: free flow and congestion (see
Figures 9–11).

During simulation, pedestrians move forward with the
same speed until they are blocked either by the corridor
or by other blocked pedestrians (see Figure 13). They form
therefore a spreading chock wave as shown in Figure 13.

As a second test, we choose to simulate an evacuation of
students from their classroom (see Figure 14). The latter has
two doors; we placed in the first a pedestrian’s generator to
generate students, andwemarked the second as a destination.
We placed a statistical detector in the second door of
the classroom closest to the destination. The fundamental
diagram (see Figure 15) shows the phases of the traffic free
and congested pedestrian. Indeed, at very low densities,
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Figure 11: Fundamental diagram in a blocked corridor.
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Figure 12: Pedestrians’ average evacuation time in a blocked
corridor.

pedestrians can be evacuated easily and rapidly than in
the case of a maximum density. Pedestrian traffic becomes
congested when the density reaches a maximum value where
pedestrian traffic is almost impossible, while the pedestrian
flow decreases in the same phase. Furthermore, the mean
discharge time for pedestrians increases while the density of
pedestrians increases.

7. Conclusion

In this paper, we present a virtual pedestrian simulation
model. Ourmodel uses the basic antmodel, to which we have
integrated artificial potential fields to guide pedestrian in
their navigation toward their destinations. Relation between
density and velocity of pedestrian movement has so far
mainly been analyzed using an empirical approach and
fundamental relations found from the fitting of experimental
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Figure 15: Fundamental diagram in a classroom.

measurements of the main quantities. Simulation results
confirm predictions given by the first-order traffic flow
theory. Validation of the simulation model toward the real-
world data is recommended for further study. In our future
work, we plan to study the interactions between pedestrians
and vehicles, to estimate the risk of crossing intersections.
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