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Active contour models, colloquially known as snakes, are quite popular for several applications such as object boundary detection,
image segmentation, object tracking, and classification via energyminimization.While energyminimizationmay be accomplished
using traditional optimization methods, approaches based on nature-inspired evolutionary algorithms have been developed in
recent years. One such evolutionary algorithm that has been used extensively in active contours is the particle swarm optimization
(PSO).However, conventional PSO converges slowly and gets trapped in localminimumeasily which results in inaccurate detection
of concavities in the object boundary. This is taken care of by using proposed multiswarm PSO in which a swarm is set for every
control point in the snake and then all the swarms search for their best points simultaneously through information sharing among
them.Theperformance of themultiswarmPSO-based search process is further enhanced by using dynamic adaptation of the inertia
factor. In this paper, we propose using a set of fuzzy rules to adjust the inertia weight on the basis of the current normalized snake
energy and the current value of inertia. Experimental results demonstrate the effectiveness of the proposed method compared to
conventional approaches.

1. Introduction

Active contours are deformable models that were introduced
by Kass et al. for automatic object boundary detection [1].
The active contour model is an energy minimizing problem
induced by specific image features such as the edge and shape
information. The active contour model gradually evolves the
final contour of the desired object by minimizing energy
terms such as the internal and the external energy. In a digital
image, these energy terms are computed from object features
at some discrete points known as the control points; the
contour is a spline curve fitted through these control points.
As the energy terms computed at these points are minimized,
they gradually move towards the desired object boundary.
Thus, starting from an initial contour, the contour deforms
iteratively and in the end shrinks to wrap around the object.

One of the many concerns with the active contour model
is the local minimum problem. The energy minimization

procedure depends on the initial choice of the control points
and hence, in case of inappropriate initialization, is highly
prone to getting trapped in local minima. There are two
issues associated with initialization and convergence of the
active contour algorithm. First, the initial control pointsmust
generally be chosen close to the true boundary. Otherwise,
the contour is likely to converge to a wrong result.The second
problem is that active contours generally find it difficult
to capture concave boundaries. In view of this, various
approaches for snake implementation have been proposed
in the literature that aim at enlarging the search space so
as to enable the active contours to progress into the object
concavities thereby capturing the true object boundary.

Williams and Shah [2] did an early attempt in implement-
ing active contour using greedy algorithm for faster conver-
gence. Another early work in this direction was proposed by
Cohen [3] in which the external forces that push the curve to
the edges are modified to give amore stable result.Themodel
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makes the curve behave like a balloon which is inflated by
an additional force. Wang et al. [4] presented multistage,
optimal active contour model by using spline representation
and dividing the energy minimization process into multiple
stages. Yezzi Jr. et al. [5] proposed geometric snake model for
segmentation of medical images. This method is based on
defining feature-based metrics on a given image. An active
contour algorithm with the objective of better localization
was developed by Xu and Prince [6]. This method uses a
new external force for active contour, called the gradient
vector flow (GVF), which is computed as the diffusion of the
gradient vectors of the edge map derived from the image.
A “Segmented Snake” approach was proposed by Wong et
al. in [7]. In this, the problem of global optimization of the
closed snake curve is converted into local optimization of
a number of open Segmented Snake curves. A “Directional
Snake” model is presented in [8] which considers both the
gradient strength and the gradient direction of the image to
guide the snake towards the appropriate edges. Chan and
Vese proposed active contour without edges in [9]. This
model detects objects whose boundaries are not defined by
gradient. Energy minimization is done as a case of minimal
partition problem using level set formulation. In [10], Park
and Keller presented a method for initialization of the snake
using watershed transformation following which a coarse-
to-fine strategy is used to finally capture the object boundary.
Goldenberg et al. proposed a fast version of the geodesic
active contour model in [11]. This object segmentation
scheme is useful for tracking moving objects in a sequence
of images. Adaptive snakes using expectation maximization
(EM) algorithm were presented in [12]. The EM algorithm
is used to update the confidence degrees associated with
edge points and to estimate the object contour. Kim et al.
[13] proposed object contour tracking by insertion of new
points and deletion of unnecessary points to better describe
and track the object’s boundary. They used more points in
highly curved parts of the contour and fewer points in less
curved parts. Venkatesh et al. [14] proposed multiple contour
extraction using artificial neural network by splitting a single
contour into asmany subcontours as the objects in the image.

Although the above modifications to the traditional
optimization procedure work well, they are plagued by
increased computational cost. The extra energy terms and/or
the complex processes involved in these methods increase
the computational cost. This has motivated looking for some
nonconventional techniques in optimizing the active contour
model. Recently, nature-inspired evolutionary algorithms
like particle swarm optimization (PSO), bacterial foraging
algorithm (BFA), ant colony optimization (ACO), genetic
algorithm (GA), and so forth, have been applied in solving
many complex problems including the active contour model.
GA approach to active contour [15, 16], ACO-based active
contour [17], active contour using dynamic evolutionary
algorithm [18], and active contour with honey bee mating
optimization [19–22] employing PSO are some of the exam-
ples. Wang et al. [17] use ACO to search for the best path in
a constrained region and reach the best feasible boundary
with minimum energy function value. Horng et al. [19]
used honey bee mating optimization for active contour. Each

active contour contains a chromosome that includes several
genes as well as the control points of active contour. These
control points are moved iteratively by minimizing the total
energy of the active contour. Novo et al. [23] proposed the
segmentation model that uses Differential Evolution as an
evolutionary method that minimizes the decisions of the
designer. Discrete particle swarm optimization algorithm to
solve the branch-cut phase unwrapping problem of MRI
data has been proposed by He et al. [24]. Cruz-Aceves et al.
[25] proposed a novel Cardiac medical image segmentation
method based on multiple active contours driven by particle
swarm optimization. Xia et al. [26] proposed an improved
active contour without edges to detect boundary in a given
image, based on the techniques of curve evolution. A novel
hybrid region-based active contourmodel is presented in [27]
to segment medical images with intensity inhomogeneity.
Boonnuk et al. [28] proposed active contourmodel with edge
flow for texture segmentation to give better quality. Bilqis and
Widita [29] studied segmentation comparison between fast
marching and geodesic active contours. Results proved that
the active contours method has slightly higher accuracy and
sensitivity values than the fast marching method.

We recently proposed active contour model using multi-
swarm PSO in which the inertia factor is adaptively varied
using fuzzy rules [30]. This eventually facilitates gradual
transition from global to local search as the control points
move nearer to the object boundary. In this paper, we give
a detailed description of our earlier proposed active contour
model. Theory of the basic active contour model is given
in Section 2 followed by existing PSO-based active contour
models in Section 3. Section 4 presents our proposedmethod
of multiswarm PSO and fuzzy-rule based adaptation of
inertia factor in the multiswarm PSO process. Section 5 gives
detailed description of implementation steps of multiswarm
PSO with fuzzy adaptive inertia. Experimental results in the
support of our proposed method and comparison are given
in Section 6 while we draw our conclusion in Section 7.

2. Active Contour Model

Basic snake model [1] is a spline under the influence of
internal and external image forces. Image forces push the
snake towards the image salient features such as edges and
lines. Snake is a closed curve and representing the position
of points parametrically by V(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) and energy
functional can be written as

𝜉snake = ∫
1

0

𝜉snake (V (𝑠)) 𝑑𝑠

= ∫
1

0

[𝜉int (V (𝑠)) + 𝜉ext (V (𝑠))] 𝑑𝑠,

(1)

where 𝜉int represents the internal energy of spline and 𝜉ext
generates image forces. The internal spline energy and the
external image energy are represented as

𝜉int =
1

2
[𝛼 (𝑠)

V𝑠 (𝑠)

2

+ 𝛽 (𝑠)
V𝑠𝑠 (𝑠)


2

] ,

𝜉ext = −Γ |Δ𝐼 (V (𝑠))|
2
,

(2)
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where 𝛼, 𝛽, and Γ are weights of the energy components,
Δ𝐼(V(𝑠)) is the gradient of the image intensity at V(𝑠), and V

𝑠
(𝑠)

and V
𝑠𝑠
(𝑠) represent the first and the secondderivatives of V(𝑠),

respectively. In case of digital images, spatial discretization
of the contour at 𝑁 distinct control points is done by the
standard finite difference operators. Accordingly, internal and
external energy terms are redefined in discrete domain using
these transformations as

V
𝑠
(𝑠) = 𝑥

𝑠
(𝑠)
2
+ 𝑦
𝑠
(𝑠)
2
= (𝑥
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)
2
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𝑖
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𝑖−1
)
2

, (3)
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𝑠𝑠
(𝑠)
2
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2
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𝑖−1

− 2𝑥
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,
(4)

𝜉ext = −Γ
Δ𝐼 (𝑥𝑖, 𝑦𝑖)


2

. (5)

Finally, the discrete form of the snake energy is written as the
sum of internal and external energies as

𝜉snake =
𝑁

∑
𝑖=1

𝜉
𝑖
, (6)

where 𝜉
𝑖
is the local energy at the 𝑖th control point, defined as
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(7)

3. Existing PSO-Based Active Contour Models

Particle swarm optimization (PSO) is a population based
evolutionary algorithm developed by Kennedy and Eberhart
[31]. In this, the candidate solution, termed particles, explores
the search space thoroughly to reach the point in the search
space at which the objective function is minimum. In this
process, velocity is constantly adjusted according to the con-
cerned particles self-experience and global best information
available from neighboring particles. Motivated by this idea
of PSO, Zeng and Zhou [20] proposed an active contour
model (ACM) that is based on invariant snake topology
driven by PSO. This method uses swarm particles as control
points on the contour to capture the object boundary. Later,
Tseng et al. proposed using multipopulation PSO [21] for
active contours so as to enhance the concavity searching
ability. In another piece of work, snake driven PSO is used
for segmentingmedical images [22]. In this, snakemovement
around the object of interest is guided by modified velocity
update equation of PSO.

In multipopulation PSO method for active contour
model, control points are initialized around the boundary
of the object in a manner same as in any conventional
method for active contour model. Let the total number of
control points around the object be𝑁 and each control point
is designated as q

𝑖
= (𝑥

𝑖
, 𝑦
𝑖
). The total snake energy is

calculated as per (6) and (7) and subsequently minimized

using particle swarm optimization. A swarm Q
𝑖
, having 𝑆

number of particles, is initialized around control point q
𝑖
.

During the optimization process, the swarm Q
𝑖
takes part in

the energy minimization process. This is done by iterating
PSO over the swarm Q

𝑖
at the 𝑖th control point q

𝑖
for some

fixed number of generations.
In mathematical terms, PSO dynamics for the 𝑗th swarm

particle of the 𝑖th swarm (corresponding to the 𝑖th control
point) is expressed as follows:

V
𝑖,𝑗
(𝑡 + 1) = 𝜔 ⋅ V

𝑖,𝑗
(𝑡) + 𝑐

1
⋅ 𝑟
1
[𝑝𝑏𝑒𝑠𝑡

𝑖,𝑗
(𝑡) − p

𝑖,𝑗
(𝑡)]

+ 𝑐
2
⋅ 𝑟
2
[𝑔𝑏𝑒𝑠𝑡

𝑖
(𝑡) − p

𝑖,𝑗
(𝑡)] ,

p
𝑖,𝑗
(𝑡 + 1) = p

𝑖,𝑗
(𝑡) + V

𝑖,𝑗
(𝑡 + 1) ,

(8)

where 𝜔 is the inertia factor of the swarm, 𝑐
1
and 𝑐

2
are

positive constants, 𝑟
1
and 𝑟
2
are random numbers between

[0, 1], p
𝑖,𝑗
(𝑡) is the position of the 𝑗th particle in the 𝑖th swarm

after the 𝑡th iteration, V
𝑖,𝑗
(𝑡) is velocity of the 𝑗th particle

in the 𝑖th swarm during 𝑡th iteration, 𝑝𝑏𝑒𝑠𝑡
𝑖,𝑗
(𝑡) denotes the

best position of the 𝑗th particle in the 𝑖th swarm till 𝑡th
iteration, and 𝑔𝑏𝑒𝑠𝑡

𝑖
(𝑡) denotes the best position of the whole

population of the 𝑖th swarm till 𝑡th iteration. Since the swarm
is set in the two-dimensional space corresponding to the
image plane, the swarm particles move along the image plane
and hence the velocity V

𝑖,𝑗
(𝑡) consists of two components

corresponding to the displacements along the horizontal (𝑥-
axis) and vertical (𝑦-axis) directions in the image plane. The
cost associated with the 𝑗th swarm particle in the 𝑖th swarm
(p
𝑖,𝑗
) is defined as

𝜉
𝑖,𝑗
=
1
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(9)

Once the swarm Q
𝑖
converges to the final 𝑔𝑏𝑒𝑠𝑡

𝑖
, the

location of the control point q
𝑖
is updated to this 𝑔𝑏𝑒𝑠𝑡

𝑖

position. This process is performed for all the 𝑁 control
points sequentially.That is, swarms are set around the control
points q

1
, q
2
, q
3
, . . . , q

𝑁
and the PSO process is repeated

for every swarm. This way, one round of optimization is
performed. Further rounds of this process are repeated for
further energy minimization starting from control point
q
1
and continued to q

𝑁
in every round. These rounds of

optimization (snake energy minimization) are carried on for
a predecided fixed number of rounds or till there is no more
significant decrease in the total snake energy 𝜉snake. The final
object contour is obtained by passing a spline through the
coordinates of the𝑁 control points (final 𝑔𝑏𝑒𝑠𝑡

𝑖
location for

all 𝑖 = 1, 2, . . . , 𝑁) at the end of all rounds of optimization.

4. Proposed Method of Multiswarm PSO with
Fuzzy Adaptive Inertia

Tseng et al.’s multipopulation PSO-based scheme encounters
the problem due to the serial nature of the algorithm inwhich
the position of the control points is updated sequentially
one after the other while keeping the position of the other
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Declare these as initial gbesti points

Set swarm number i = 1

Figure 1: Flow chart of proposed multiswarm PSO-based active contour model.

control points fixed. In order to alleviate this problem, it
seems to be reasonable, justified, and effective if the control
points are updated simultaneously. In viewof this, we propose
a multiswarm PSO-based active contour model in which
multiple swarms, one swarm at every control point, look for

the best position of the control points simultaneously via
cooperation and information sharing among themselves.

Flow chart illustrating our proposed multiswarm PSO-
based active contour model is given in Figure 1 and drawn
as per [32].
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Traditional active contourmodel has limitation in search-
ing for boundary concavities. Our proposed PSO-based
active contour model provides better movement of particles
to enhance search ability but still the search capability is
restricted due to the nonadaptive nature of the inertia value.
Inertia plays key role in the PSO implementation. Inertia
factor is used to balance the global and local search ability.
High value of inertia causes the swarm particles to fly/swim
a larger distance from one generation to the next thereby
aiding in better and wider exploration of the search space.
This is particularly important where the search space is large.
On the other hand, it is desired that the swarm particles
make very small displacements when the swarm is very
close to the point of global minimum.This guarantees better
stabilization and convergence of the algorithm.Thus, using a
fixed high or low inertia factor, as used in [21], may not result
in good convergence. Accordingly, we propose improving
the performance of the search process by using dynamic
adaptation of the inertia factor. We propose using a set
of fuzzy rules to adjust the inertia weight on the basis of
the current normalized snake energy and the current value
of inertia of the swarm particles. This eventually facilitates
gradual transition from global to local search as the control
points move nearer to the object boundary.

As discussed above, the inertia factor 𝜔 plays a vital role
in achieving better convergence. High value of inertia is used
for better global exploration in search of theminimumenergy
point. Nevertheless, such high value is less desired near points
where energy minimization is almost complete so that the
contour stabilizes for better capture of the object. On the
other hand, low inertia values during the initial phase may
lead to the contour trapped in local minimum. Hence, an
adaptive PSO with adjustable inertia factor is desired. One
popularly used strategy is to reduce the inertia at a linear rate
as the search progresses so that local exploration is preferred
over global search in the later stage of the search process.
A variation to this is to use a nonlinear change in inertia,
as proposed in [33]. However, setting the rate of change in
inertia to an appropriate value is again a question. Fuzzy
adaptive particle swarm optimization introduced in [34, 35]
uses a set of fuzzy rules for dynamic adaptation of the inertia.
This way, inertia of all particles in a swarm (𝜔

𝑖
) is modified

dynamically as per the current search result. Following the
idea in [34, 35], we propose a fuzzy-rule based adaptation
to the multiswarm PSO technique for active contour model
given in [21]. In our work, we define a set of fuzzy rules
to adjust the inertia weight on the basis of the current
normalized snake energy and the current value of inertia.

In our proposed approach, we first calculate the normal-
ized energy at all control points and the same is calculated
after every round of PSO generation as follows:

𝜉norm =
𝜉snake
𝜉max

, (10)

where 𝜉snake is calculated using (6) after every PSO generation
and 𝜉max is the sanke enrgy due to the initial configuration of
the control points. This normalized energy value 𝜉norm and
the current value of the inertia 𝜔 for the swarm are then
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Figure 2: Membership function plots for fuzzy sets corresponding
to low,medium, and high normalized energy (𝜉norm).

combined using fuzzy reasoning to determine the necessary
change in the inertia value for use in the next round of PSO
generation. For this, we formulate a set of nine “IF . . . THEN
. . .” fuzzy rules, as stated below. Our proposed method for
fuzzy adaptive PSO uses deductive fuzzy inference system
based on this set of nine fuzzy rules.

Rule 1. IF 𝜉norm is low AND 𝜔 is low THEN Δ𝜔 is zero.

Rule 2. IF 𝜉norm is low AND 𝜔 is medium THEN Δ𝜔 is
negative.

Rule 3. IF 𝜉norm is low AND 𝜔 is high THEN Δ𝜔 is negative.

Rule 4. IF 𝜉norm is medium AND 𝜔 is low THEN Δ𝜔 is
positive.

Rule 5. IF 𝜉norm is medium AND 𝜔 is medium THEN Δ𝜔 is
zero.

Rule 6. IF 𝜉norm is medium AND 𝜔 is high THEN Δ𝜔 is
negative.

Rule 7. IF 𝜉norm is high AND 𝜔 is low THEN Δ𝜔 is positive.

Rule 8. IF 𝜉norm is high AND 𝜔 ismedium THEN Δ𝜔 is zero.

Rule 9. IF 𝜉norm is high AND 𝜔 is high THEN Δ𝜔 is negative.

Thus, our fuzzy inference system is a two-input and one-
output system: two input variables (antecedent clauses) are
the normalized energy 𝜉norm term and the current inertia 𝜔;
and the resultant output variable (consequent clause) is the
desired change in the inertia value Δ𝜔. Antecedent clauses
are linked by fuzzy AND operators. Three fuzzy sets for the
antecedents and three fuzzy sets for the consequent clauses
are used, as represented in Figures 2, 3, and 4. Fuzzy sets for
the antecedents are labeled as “low,” “medium,” and “high.”
Fuzzy sets for the consequent clauses are “negative,” “zero,”
and “positive” representing corresponding change in inertia
value. The range of values for all three fuzzy sets has been
taken as per [35]. Normalized energy is represented between
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Figure 3: Membership function plots for fuzzy sets corresponding
to low,medium, and high inertia (𝜔).
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Figure 4: Membership function plots for fuzzy sets corresponding
to negative, zero, and positive inertia change (Δ𝜔).

0 and 1 and inertia value is represented between 0.4 and 1.0.
Output variable is in the form of change in inertia value and
this variation is done between −0.1 and +0.1. Thus, the extent
by which the inertia value needs to be updated is estimated
on the basis of the present snake energy and the inertia
value. Thus, this strategy of varying inertia value adaptively
gives a trade-off between global and local exploration. The
above set of fuzzy rules are eventually combined using
Mamdani’s max-min deductive fuzzy inference mechanism
followed by centroid-based defuzzification to obtain the value
of the desired Δ𝜔. A detailed description of the inference
mechanism can be found in [36]. Flow chart of our proposed
active contour model by using multiswarm PSO with fuzzy
adaptive inertia factor is drawn in Figure 5.

5. Implementation Steps of Multiswarm PSO
with Fuzzy Adaptive Inertia

(1) Set PSO parameters. Calculate the image gradient at
each pixel location by using the Laplacian operator.
This gives the value of the external snake energy at
each pixel location, as defined in (5).

(2) Initialize 𝑁 number of control points in a clockwise
order and number these control points accordingly.

These control points are declared as initial 𝑔𝑏𝑒𝑠𝑡
𝑖

points for the corresponding swarms, 𝑖 = 1, 2, . . . , 𝑁.
(3) Calculate initial snake energy 𝜉snake as per (6) and (7).
(4) Set a swarm (containing 𝑆number of particles) at each

control point q
𝑖
in such a manner that the position

of the 𝑗th swarm particle p
𝑖,𝑗
associated with the 𝑖th

swarm is adequately close to q
𝑖
so as to ensure that the

control points do not cross over as the snakemoves in
the next step. In our algorithm, in order to ensure that
no cross-over takes place, every particle of a swarm is
taken such that the following condition is satisfied:


p
𝑖,𝑗
, q
𝑖


≤

p
𝑖,𝑗
, q
𝑘


, ∀𝑘 ̸= 𝑖, (11)

where ‖u, v‖ denotes the Euclidean distance between
vectors u and v. This condition essentially divides the
whole image plane into 𝑁 nonoverlapping Voronoi
regions, each region corresponding to every control
point q

𝑖
, 𝑖 = 1, 2, . . . , 𝑁. Thus, all the particles in

the 𝑖th swarm Q
𝑖
are always restricted within the 𝑖th

Voronoi region that also contains the 𝑖th control point
q
𝑖
. Since, the position of the particles of the swarmQ

𝑖

are the candidates for the new location of the control
point q

𝑖
in the next step, it is guaranteed that no cross-

over will take place as the snake moves from one step
to the next step.

(5) Run PSO for the first generation by taking all initial
particle positions as 𝑝𝑏𝑒𝑠𝑡

𝑖,𝑗
and update 𝑔𝑏𝑒𝑠𝑡

𝑖
values

and control point q
𝑖
locations.

(6) Calculate velocity and then move swarm particles for
the next generation, starting from the first swarm
associated with the first control point and continuing
till the last control point, as per (8). Based on these
new positions of the particles, check fitness of all
particles using (9) and accordingly update𝑝𝑏𝑒𝑠𝑡

𝑖,𝑗
and

𝑔𝑏𝑒𝑠𝑡
𝑖
values. Declare position of𝑔𝑏𝑒𝑠𝑡

𝑖
particle as the

updated location of 𝑖th control point.
(7) Calculate snake energy at all control points (𝑔𝑏𝑒𝑠𝑡

𝑖

points) and 𝜉norm𝑖 for all control points. Next, using
𝜉norm𝑖 and 𝜔

𝑖
values together with the set of fuzzy

rules, as described above, update 𝜔 = 𝜔 + Δ𝜔 for all
control points. These new values of swarm inertia are
to be used in the next generation of PSO.

(8) For starting the next PSO generation round at all
control points, go back to Step (6) and run PSO using
the velocity and position of the particles obtained
in the previous generation. Repeat till maximum
number of generations are complete or until total
snake energy stabilizes.

6. Experimental Results and Comparison

In our experiments, we applied our proposed fuzzy adap-
tive multiswarm PSO method on four images and our
method is compared with the traditional snake [1], multi-
population PSO-based method, as given in [21], and our
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Figure 5: Flow chart of proposed active contour model by using multiswarm PSO with fuzzy adaptive inertia factor.

proposed multiswarm PSO method. In the first set of
experiments, four images were taken. “Star” and “Vase”
images are of sharp boundaries. “Peppers” and “MRI” images
are taken as complex real images. The final snake ener-
gies obtained in all these cases are tabulated in Table 1.

As far as results are concerned, our proposed method is able
to achieve better energy minimization compared to the other
methods. This verifies the efficacy of our proposed method
for catching up with concave image boundaries. Results show
that our proposed multiswarm PSO method is better than
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Table 1: Minimum snake energy values obtained by different methods.

Test images Minimum energy by different methods
Basic snake method Multipopulation method Proposed multiswarm PSO method

Star 32.6735 30.0565 27.8738
Vase 312.3285 286.8435 268.9538
Peppers 2312.7590 2265.8750 2216.6342
MRI 71.5205 69.8676 63.8672

Table 2: Minimum snake energy values obtained by “multipopulation PSO” method for different cases of inertia.

Test images Minimum snake energy values for different inertia cases
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Star 32.8845 29.8747 28.9897 32.1865 26.7459 26.9856
Vase 340.8169 287.0056 292.3181 276.8824 307.9734 259.6250
Peppers 3087.5735 2237.9973 2540.4562 2316.3786 2398.0388 2147.1753
MRI 73.7734 70.8345 65.5727 66.8063 69.7296 63.7169

Table 3: Minimum snake energy values obtained by “proposed multiswarm PSO” method for different cases of inertia.

Test images Minimum snake energy values for different inertia cases
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Star 30.8645 27.1587 26.4797 32.1745 26.8359 24.6754
Vase 335.2819 286.4523 291.9311 268.6326 307.6539 243.1750
Peppers 3080.6115 2138.3984 2542.7400 2307.3176 2396.2976 1969.1973
MRI 70.3700 63.9098 65.1297 66.6803 69.0526 57.1506

the traditional snake and the multipopulation PSO-based
methods. Our proposed multiswarm PSO helps in more
stable convergence and better minimization of snake energy
due to the parallel nature of the algorithm.

In the next set of experiments, we demonstrate the
effectiveness of the proposed fuzzy based inertia adaptation
scheme. For this, we compare our proposed PSO-based active
contourmodels withmultipopulation PSOmethod [21] using
six different cases of inertia factor variations, as listed below.

Case 1. Fixed low inertia value (𝜔 = 0.4).

Case 2. Fixed high inertia value (𝜔 = 0.95).

Case 3. Linearly varying inertia using index 𝛿 = 1.0 in (12).

Case 4. Nonlinear inertia variation, index 𝛿 = 0.7 in (12).

Case 5. Nonlinear inertia variation, index 𝛿 = 1.3 in (12).

Case 6. Fuzzy adaptive inertia variation.

Nonlinear variation of inertia factor for dynamic adapta-
tion in PSO has been discussed in [33] in which the inertia
factor is adapted as

𝜔iter =
(itermax − iter)𝛿

(itermax)
𝛿

∗ (𝜔initial − 𝜔final) + 𝜔final, (12)

where linear or nonlinear variation is decided by proper
choice of the index value “𝛿”. In our experiments, 𝜔initial =
0.95, 𝜔final = 0.4, and iter is the iteration number in the
PSO algorithm. Here one PSO iteration means one complete
round of PSO optimization through all control points for
multiswarm implementation. In case of multiswarm PSO,
in each iteration, PSO runs for one generation only at each
control point. To maintain fair comparison, region of swarm
initialization as well as number of control points and number
of particles in each swarm are taken same in all the above
listed cases for one image.

Experiments have been performed on the same set of
four images by using three methods, namely, multipopula-
tion PSO, proposed multiswarm PSO, and proposed fuzzy
adaptive multiswarm PSO-based method, with all the above
six cases of inertia. Final contour energies obtained in these
methods are given in Tables 2-3. Total contour energy versus
computation time plots for all the above six cases for three
images are plotted in Figures 6–11. Results obtained by
multipopulation PSO-basedmethod are shown in Figures 12–
15 and results obtained by our proposed multiswarm PSO-
based method are shown in Figures 16–19.

High or low inertia values are to some extent capable
of capturing concavities. Results are generally better when
inertia factor is varied linearly or nonlinearly in comparison
to the fixed low or high value. Results show that our
proposed fuzzy adaptive multiswarm PSO-based method is
always able to provide better energy minimization than the
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Figure 6: Contour energy versus computation time plot for “mul-
tipopulation PSO” method with six different cases of inertia in case
of “Vase” image.
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Figure 7: Contour energy versus computation time plot for “mul-
tipopulation PSO” method with six different cases of inertia in case
of “Peppers” image.

multipopulation PSO method. Our proposed fuzzy adaptive
multiswarm PSO method is capable of capturing the true
boundaries including the concavities at the cost of increased
computational time.

As we observe in the contour energy versus computa-
tion time plots given in Figures 6–11, our proposed fuzzy
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Figure 8: Contour energy versus computation time plot for “mul-
tipopulation PSO” method with six different cases of inertia in case
of “MRI” image.
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Figure 9: Contour energy versus computation time plot for “pro-
posed multiswarm PSO” method with six different cases of inertia
in case of “Vase” image.

adaptivemultiswarmPSO-basedmethod takesmore number
of iterations to converge but converges with lesser contour
energy. Contour energy versus computation time plot have
been drawn by choosing number of PSO rounds (for different
cases of comparison) in such a manner that all the cases of
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Figure 10: Contour energy versus computation time plot for “proposed multiswarm PSO” method with six different cases of inertia in case
of “Peppers” image.
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Figure 11: Contour energy versus computation time plot for “proposed multiswarm PSO” method with six different cases of inertia in case
of “MRI” image.

the experiment run for almost similar time during the energy
minimization process.

PSO parameters used in our implementation are as
follows:

(i) Population size (particles in each swarm) = 20.
(ii) Number of generations = 10.
(iii) Acceleration constants 𝑐

1
= 𝑐
2
= 1.5.

7. Conclusion

PSO-based active contour model has been used extensively
for image segmentation. However, the existing multipopula-
tion PSO-based active contour model gets trapped in local
minimum easily. The problem of local minimum results in
inaccurate detection of concavities in the object boundary.
In our proposed active contour model, we used multiswarm



Advances in Fuzzy Systems 11

Case 6
50 150 200 250100

250

200

150

100

50

50 150 200 250100
Case 4

250

200

150

100

50

50

100

150

200

250
100 150 20050 250

Initial
100 150 200 25050

Case 1

250

200

150

100

50

250

200

150

100

50

100 150 200 25050
Case 5

100 150 200 25050
Case 3

250

200

150

100

5050

100

150

200

250
50 100 150 200 250

Case 2

Figure 12: Active contour model implementation by “multipopulation PSO” method for different cases of inertia. Results for “Star” image
with control points = 60, 𝛼 = 0.05, 𝛽 = 0.025, and Γ = 0.16.
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Figure 14: Active contourmodel implementation by “multipopulation PSO”method for different cases of inertia. Results for “Peppers” image
with control points = 40, 𝛼 = 0.25, 𝛽 = 0.22, and Γ = 0.50.
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Figure 15: Active contour model implementation by “multipopulation PSO” method for different cases of inertia. Results for “MRI” image
with control points = 30, 𝛼 = 0.17, 𝛽 = 0.15, and Γ = 0.20.
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Figure 16: Active contour model implementation by “proposed multiswarm PSO” method for different cases of inertia. Results for “Star”
image with control points = 60, 𝛼 = 0.05, 𝛽 = 0.025, and Γ = 0.16.
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Figure 17: Active contour model implementation by “proposed multiswarm PSO” method for different cases of inertia. Results for “Vase”
image with control points = 30, 𝛼 = 0.321, 𝛽 = 0.054, and Γ = 0.003.
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Figure 18: Active contour model implementation by “proposedmultiswarm PSO”method for different cases of inertia. Results for “Peppers”
image with control points = 40, 𝛼 = 0.25, 𝛽 = 0.22, and Γ = 0.50.
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Figure 19: Active contour model implementation by “proposed multiswarm PSO” method for different cases of inertia. Results for “MRI”
image with control points = 30, 𝛼 = 0.17, 𝛽 = 0.15, and Γ = 0.20.
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PSO in which a swarm is set in the two-dimensional image
space for every control point in the snake and then all the
swarms search for their best positions simultaneously and
collaboratively through information sharing among them
by keeping all swarms active during the whole process of
energy minimization. The proposed multiswarm PSO-based
active contour model alleviates the convergence problem
encountered in the previously existingmultipopulation PSO-
based method in two ways: (1) parallel implementation of
PSO over multiple swarms, one swarm at every control
point, and (2) continuous updating of the control point
positions in every generation of the PSO. Results show that
our proposed multiswarm PSO-based method is capable of
providingminimumcontour energy inmost of the cases.This
verifies efficiency of our proposed method for images having
concavities.

Active contourmodel usingmultiswarm PSOwith fuzzy-
rule based inertia adaptation is presented. The proposed
method is able to provide better energy minimization than
other PSO implementations due to two factors: multiswarm
optimization and inertia adaptation. Multiswarm PSO helps
in more stable convergence due to the parallel nature of
the algorithm. At the same time, inertia updating based
on the current state of the algorithm gives a good com-
promise between global and local search, as necessary. The
proposedmethod is not only able to capture concavitiesmore
accurately but also free from manual tuning of the inertia
weight. However, the proposed method is computationally
more complex. Nevertheless, since this method offers better
energy minimization of active contours, it is useful where
more precision is required such as in cases of medical image
segmentation.
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