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A numericalmethod alongwith explicit construction to interpolation of fuzzy data through the extension principle results bywidely
used fuzzy-valued piecewise Hermite polynomial in general case based on the cardinal basis functions, which satisfy a vanishing
property on the successive intervals, has been introduced here. We have provided a numerical method in full detail using the linear
space notions for calculating the presented method. In order to illustrate the method in computational examples, we take recourse
to three prime cases: linear, cubic, and quintic.

1. Introduction

Fuzzy interpolation problem was posed by Zadeh [1]. Lowen
presented a solution to this problem, based on the fundamen-
tal polynomial interpolation theorem of Lagrange (see, e.g.,
[2]). Computational and numerical methods for calculating
the fuzzy Lagrange interpolate were proposed by Kaleva
[3]. He introduced an interpolating fuzzy spline of order 𝑙.
Important special cases were 𝑙 = 2, the piecewise linear
interpolant, and 𝑙 = 4, a fuzzy cubic spline. Moreover, Kaleva
obtained an interpolating fuzzy cubic spline with the not-
a-knot condition. Interpolating of fuzzy data was developed
to simple Hermite or osculatory interpolation, 𝐸(3) cubic
splines, fuzzy splines, complete splines, and natural splines,
respectively, in [4–8] byAbbasbandy et al. Later, Lodwick and
Santos presented the Lagrange fuzzy interpolating function
that loses smoothness at the knots at every 𝛼-cut; also every𝛼-cut (𝛼 ̸= 1) of fuzzy spline with the not-𝛼-knot boundary
conditions of order 𝑘 has discontinuous first derivatives
on the knots and based on these interpolants some fuzzy
surfaces were constructed [9]. Zeinali et al. [10] presented
a method of interpolation of fuzzy data by Hermite and
piecewise cubic Hermite that was simpler and consistent
and also inherited smoothness properties of the generator
interpolation. However, probably due to the switching points
difficulties, the method was expressed in a very special
case and none of three remaining important cases was not

investigated and this is a fundamental reason for the method
weakness.

In total, low order versions of piecewise Hermite inter-
polation are widely used and when we take more knots,
the error breaks down uniformly to zero. Using piecewise-
polynomial interpolants instead of high order polynomial
interpolants on the same material and spaced knots is a
useful way to diminish the wiggling and to improve the
interpolation. These facts, as well as cardinal basis functions
perspective, motivated us in [11] to patch cubic Hermite
polynomials together to construct piecewise cubic fuzzy
Hermite polynomial and provide an explicit formula in a
succinct algorithm to calculate the fuzzy interpolant in cubic
case as a new replacement method for [4, 10].

Now, in this paper, in light of our previous work, we
want to introduce a wide general class of fuzzy-valued
interpolation polynomials by extending the same approach
in [11] applying a very special case of which general class of
fuzzy polynomials could be an alternative to fuzzy osculatory
interpolation in [4] and so its lowest order case (𝑚 =1), namely, the piecewise linear polynomial, is an analogy
of fuzzy linear spline in [3]. Meanwhile, when 𝑚 = 2
with exactly the same data, we will simply produce the
second lower order form of mentioned general class that was
introduced in [11] and the interpolation of fuzzy data in [10].

The paper is organized in five sections. In Section 2, we
have reviewed definitions and preliminary results of several
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basic concepts and findings; next, we construct piecewise
fuzzy Hermite polynomial in detail based on cardinal basis
functions and prove some new properties of the introduced
general interpolant (Section 3). In Section 4, we have pro-
duced three initial, linear, cubic [11], and quintic cases and
shown the relationship between some of the mentioned cases
and the newly presented interpolants in [3, 4, 10]. Further-
more, to illustrate themethod, some computational examples
are provided. Finally, the conclusions of this interpolation are
in Section 5.

2. Preliminaries

To begin, let us introduce some brief account of notions
used throughout the paper. We shall denote the set of
fuzzy numbers by RF the family of all nonempty convex,
normal, upper semicontinuous, and compactly supported
fuzzy subsets defined on the real axis R. Obviously,R ⊂ RF.
If 𝑢 ∈ RF is a fuzzy number, then 𝑢𝛼 = {𝑥 ∈ R | 𝑢(𝑥) ≥ 𝛼},0 < 𝛼 ≤ 1, shows the 𝛼-cut of 𝑢. For 𝛼 = 0 by the closure
of the support, 𝑢0 = cl{𝑥 | 𝑥 ∈ R, 𝑢(𝑥) > 0}. It is well
known the 𝛼-cuts of 𝑢 ∈ RF are closed bounded intervals
in R and we will denote them by 𝑢𝛼 = [𝑢𝛼, 𝑢𝛼]; functions𝑢(⋅), 𝑢(⋅) are the lower and upper branches of 𝑢. The core of 𝑢
is 𝑢1 = {𝑥 | 𝑥 ∈ R, 𝑢(𝑥) = 1}. In terms of 𝛼-cuts, we have the
addition and the scalar multiplication:

(𝑢 + V)𝛼 = 𝑢𝛼 + V𝛼 = {𝑥 + 𝑦 | 𝑥 ∈ 𝑢𝛼, 𝑦 ∈ V𝛼}
(𝜆𝑢)𝛼 = 𝜆𝑢𝛼 = {𝜆𝑥 | 𝑥 ∈ 𝑢𝛼}
(0)𝛼 = {0}

(1)

for all 0 ≤ 𝛼 ≤ 1, 𝑢, V ∈ RF, and 𝜆 ∈ R.𝑢 = ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ specifies a trapezoidal fuzzy number,
where 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 and if 𝑏 = 𝑐 we obtain a triangular fuzzy
number. For𝛼 ∈ [0, 1], we have 𝑢𝛼 = [𝑎+𝛼(𝑏−𝑎), 𝑑−𝛼(𝑑−𝑐)].
In the rest of this paper, we will assume that 𝑢 is a triangular
fuzzy number.

Definition 1 (see, e.g., [5]). An L-R fuzzy number 𝑢 = (𝑚,𝑙, 𝑟)𝐿𝑅 is a function from the real numbers into the interval[0, 1] satisfying

𝑢 (𝑥) =
{{{{{{{{{{{{{

𝑅(𝑥 − 𝑚𝑟 ) for 𝑚 ≤ 𝑥 ≤ 𝑚 + 𝑟,
𝐿 (𝑚 − 𝑥𝑙 ) for 𝑚 − 𝑙 ≤ 𝑥 ≤ 𝑚,
0 otherwise,

(2)

where 𝑅 and 𝐿 are continuous and decreasing functions from[0, 1] to [0, 1] fulfilling the conditions 𝑅(0) = 𝐿(0) = 1 and𝑅(1) = 𝐿(1) = 0.When𝑅(𝑥) = 𝐿(𝑥) = 1−𝑥, wewill have 𝐿−𝐿
fuzzy numbers that involve the triangular fuzzy numbers. For
an 𝐿 − 𝐿 fuzzy number 𝑢 = (𝑚, 𝑙, 𝑟), the support is the closed
interval [𝑚 − 𝑙,𝑚 + 𝑟] (see, e.g., [6]).

The linear space of all polynomials of degree at most 𝑁
will be designated by 𝑃𝑁. Full Hermite interpolation problem
defines a unique polynomial, called 𝑝𝑁(𝑥), which solves the
following problem.

Theorem 2 (see [12] (existence and uniqueness)). Let𝑥0, 𝑥1, . . . , 𝑥𝑛 be 𝑛 + 1 distinct points, 𝛼0, 𝛼1, . . . , 𝛼𝑛 be positive
integers, 𝑘 = 0, 1, . . . , 𝛼𝑖, and 𝑁 = 𝛼0 + 𝛼1 + ⋅ ⋅ ⋅ + 𝛼𝑛 + 𝑛. Set𝑤(𝑥) = ∏𝑛𝑖=0(𝑥 − 𝑥𝑖)𝛼𝑖+1 and
𝑙𝑖𝑘 (𝑥)
= 𝑤 (𝑥) (𝑥 − 𝑥𝑖)𝑘−𝛼𝑖𝑘! (𝑥 − 𝑥𝑖)𝛼𝑖+1−𝑘

𝑑(𝛼𝑖−𝑘)𝑑𝑥(𝛼𝑖−𝑘) [(𝑥 − 𝑥𝑖)
𝛼𝑖+1

𝑤 (𝑥) ]
𝑥=𝑥𝑖

𝑝𝑁 (𝑥) = 𝑛∑
𝑖=0

𝑟𝑖𝑙𝑖0 (𝑥) + 𝑛∑
𝑖=0

𝑟󸀠𝑖 𝑙𝑖1 (𝑥) + ⋅ ⋅ ⋅ + 𝑛∑
𝑖=0

𝑟(𝛼𝑖)𝑖 𝑙𝑖𝛼𝑖 (𝑥)
(3)

is a unique member of 𝑃𝑁 for which
𝑝𝑁 (𝑥0) = 𝑟0, 𝑝󸀠𝑁 (𝑥) = 𝑟󸀠0, . . . , 𝑝(𝛼0−1)𝑁 (𝑥0) = 𝑟(𝛼0)0...
𝑝𝑁 (𝑥𝑛) = 𝑟𝑛, 𝑝󸀠𝑁 (𝑥𝑛) = 𝑟󸀠𝑛, . . . , 𝑝(𝛼𝑛−1)𝑁 (𝑥𝑛) = 𝑟(𝛼𝑛)𝑛 .

(4)

When 𝛼0 = 𝛼1 = ⋅ ⋅ ⋅ = 𝛼𝑛 = 1, the full Hermite interpolation
simplifies into simple Hermite or osculatory interpolation.

Definition 3. Given distinct knots 𝑥0, 𝑥1, . . . , 𝑥𝑛, associated
function values 𝑓0, 𝑓1, . . . , 𝑓𝑛, and a linear space Φ of spe-
cific real functions generated by continuous cardinal basis
functions 𝜙𝑗 : R → R, (𝑗 = 0, 1, . . . , 𝑛), 𝜙𝑗(𝑥𝑖) = 𝛿𝑖𝑗,(𝑖 = 0, 1, . . . , 𝑛), we say that the function 𝐹 organized in the
shape𝐹(𝑥) = ∑𝑛𝑗=0 𝑓𝑗𝜙𝑗(𝑥) is an interpolant based on cardinal
basis and such a procedure is the cardinal basis functions
method.

3. Piecewise Fuzzy Hermite
Interpolation Polynomial

A special case of full Hermite interpolation is piecewise
Hermite interpolation (see, e.g., [13, 14]). Let us assume
throughout the paper that Δ : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ <𝑥𝑛 = 𝑏 is a grid of 𝐼 = [𝑎, 𝑏] with knots 𝑥𝑖 and 𝑚 is
a positive integer. All piecewise Hermite polynomials form
a certain finite dimensional smooth linear space which we
name𝐻2𝑚−1(Δ; 𝐼).
Definition 4. 𝐻2𝑚−1(Δ; 𝐼) is a collection of all real-valued
piecewise-polynomial functions 𝑠(𝑥) of degree at most 2𝑚 −1, defined on 𝐼, such that 𝑠(𝑥) ∈ 𝐶𝑚−1(𝐼). The associated
function to 𝑠(𝑥) on successive intervals [𝑥𝑖−1, 𝑥𝑖], 1 ≤ 𝑖 ≤ 𝑛,
with knots from Δ, is defined by 𝑠𝑖(𝑥), that is, a (𝑚− 1)-times
continuously differentiable piecewise Hermite polynomial of
degree 2𝑚 − 1, on 𝐼.
Definition 5 (see [15]). Given any real-valued function,𝑓(𝑥) ∈ 𝐶𝑚−1(𝐼). Let its unique 𝐻2𝑚−1(Δ; 𝐼)-interpolate, for
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𝑚 and grid Δ of 𝐼, be the element 𝑠(𝑥) of degree 2𝑚 − 1 on
each interval [𝑥𝑖 − 1, 𝑥𝑖], 1 ≤ 𝑖 ≤ 𝑛, such that

𝐷𝑘𝑠 (𝑥𝑖) = 𝐷𝑘𝑓 (𝑥𝑖)
∀0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖 ≤ 𝑛, 𝐷𝑘 = 𝑑𝑘𝑑𝑥𝑘 .

(5)

Existence and uniqueness of full Hermite interpolation is
provided in [12]. Because of this, presentation (5) is actually a
special case of such interpolation on a gridded interval and it
follows that each function belonging to 𝐶𝑚−1(𝐼) has a unique
interpolate in𝐻2𝑚−1(Δ; 𝐼).

A particular cardinal basis for linear space𝐻2𝑚−1(Δ; 𝐼) of
dimension 𝑚(𝑛 + 1) is B = {𝜙𝑖𝑘(𝑥)}𝑛,𝑚−1𝑖=0,𝑘=0, (see, e.g., [16]),
where the basis function 𝜙𝑖𝑘(𝑥) is defined by

𝐷𝑙𝜙𝑖𝑘 (𝑥𝑗) = 𝛿𝑘𝑙𝛿𝑖𝑗,
0 ≤ 𝑘, 𝑙 ≤ 𝑚 − 1, 0 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝐷𝑙 = 𝑑𝑙𝑑𝑥𝑙 .

(6)

Some important results based on (6) are simple to see in the
sequel, as 𝜙𝑖0(𝑥𝑖) = 1 and 𝜙𝑖0(𝑥𝑗) = 0 at all knots 𝑥𝑗 and
since 𝑠(𝑥) outside [𝑥𝑖−1, 𝑥𝑖], 1 ≤ 𝑖 ≤ 𝑛, satisfies zero data,
then 𝜙𝑖0 ≡ 0 for all 𝑥0 ≤ 𝑥 ≤ 𝑥𝑖−1 and 𝑥𝑖+1 ≤ 𝑥 ≤ 𝑥𝑛.𝜙𝑖1(𝑥) is of degree 2𝑚 − 1, and 𝜙󸀠𝑖1(𝑥𝑖) = 1 but it is zero
at all other knots. Moreover, because outside the interval[𝑥𝑖−1, 𝑥𝑖+1]𝜙𝑖1(𝑥) interpolates zero data, then 𝜙𝑖1(𝑥) must be
vanished identically for all 𝑥 ≥ 𝑥𝑖+1 and 𝑥 ≤ 𝑥𝑖−1 (see, e.g.,
[13, 14, 17]). Analogous reasoning applies to

𝜙𝑖1 (𝑥)

=
{{{{{{{{{{{{{{{{{

(𝑥 − 𝑥𝑖−1)𝑚 (𝑥 − 𝑥𝑖)𝑚−2∑
𝑗=0

𝑎𝑗𝑥𝑗, 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖,
(𝑥 − 𝑥𝑖+1)𝑚 (𝑥 − 𝑥𝑖)𝑚−2∑

𝑗=0

𝑏𝑗𝑥𝑗, 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,
0, otherwise.

(7)

In the following theorem, we will use the recent features.

Theorem 6. Assume that 𝜙𝑖𝑘 ∈ B and satisfies the piecewise
Hermite polynomial cardinal basis function constraints (6).
Then,

(i) 𝜙𝑖 0(𝑥) + 𝜙𝑖+1 0(𝑥) ≥ 1, for all 𝑥 ∈ (𝑥𝑖, 𝑥𝑖+1), 𝑖 =0, 1, . . . , 𝑛 − 1.
(ii) For all 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝜙𝑖1 changes the sign at 𝑥𝑖. The

sign of 𝜙𝑖1 is not positive on any subinterval [𝑥𝑖−1, 𝑥𝑖],
and that is not negative on [𝑥𝑖, 𝑥𝑖+1].

(iii) The sign of all other elements ofB is not negative on 𝐼.
Proof. With the assumption of (6), let 𝜙𝑖 0(𝑥) + 𝜙𝑖+1 0(𝑥) be
polynomial of degree 2𝑚 − 1 on the interval [𝑥𝑖−1, 𝑥𝑖+2] and
interpolate the data (𝑥𝑗, 𝑓𝑗), where 𝑓𝑗 = 1 for 𝑗 = 𝑖, 𝑖 + 1 and
zero on the other knots of partition Δ. Suppose that 0 < 𝑖 <𝑛 − 1 and 𝜙𝑖 0(𝑥) + 𝜙𝑖+1 0(𝑥) < 1 for some 𝑥 ∈ (𝑥𝑖, 𝑥𝑖+1). By

themean value theorem, its derivative has a zero on (𝑥𝑖, 𝑥𝑖+1).
The derivative has two (𝑚−2)th order zeros at 𝑥𝑖 and 𝑥𝑖+1 and
its two other zeros are 𝑥𝑖−1, 𝑥𝑖+2. Then, it has at least 2𝑚 − 1
zeros on the interval [𝑥𝑖−1, 𝑥𝑖+2], which is a contradiction.The
cases 𝑖 = 0 and 𝑖 = 𝑛 − 1 are treated similarly.

In light of representation (7) and condition (6), the
polynomial 𝜙𝑖1(𝑥) is of degree 2𝑚 − 1. It has only one
minimum point on [𝑥𝑖−1, 𝑥𝑖] and a single maximum on
the subinterval [𝑥𝑖, 𝑥𝑖+1]. Suppose that each of the above
points are one more. Then, by the mean value theorem, first
derivative of 𝜙𝑖1(𝑥) has at least three zeros on (𝑥𝑖−1, 𝑥𝑖) and
three zeros on (𝑥𝑖, 𝑥𝑖+1). Also, the derivative has two (𝑚−2)th
order zeros at 𝑥𝑖−1, 𝑥𝑖+1. Then, it has at least 2𝑚 + 2 zeros,
which is a contradiction. Hence, 𝜙󸀠𝑖1(𝑥) has only one zero
on each of the intervals (𝑥𝑖−1, 𝑥𝑖) and (𝑥𝑖, 𝑥𝑖+1). Now, recall𝜙󸀠𝑖1(𝑥𝑖) = 1; it follows that 𝜙𝑖1(𝑥) ≤ 0, on [𝑥𝑖−1, 𝑥𝑖] and𝜙𝑖1(𝑥) ≥ 0, on [𝑥𝑖, 𝑥𝑖+1]. This gives (ii).

A similar proof via definition of basis functions and (6)
follows the claim (iii).

For a given 𝑓(𝑥) ∈ 𝐶𝑚−1(𝐼) and its piecewise Hermite
interpolate 𝑠(𝑥) ∈ 𝐻2𝑚−1(Δ; 𝐼), an equivalent explicit repre-
sentation of 𝑠(𝑥) in (5) can be uniquely expressed (see, e.g.,
[13, 17]); namely,

𝑠 (𝑥) = 𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑓(𝑘) (𝑥𝑖) 𝜙𝑖𝑘 (𝑥) . (8)

Now, we want to construct a fuzzy-valued function as 𝑠 :𝐼 → RF such that 𝑠(𝑘)(𝑥𝑖) = 𝑓(𝑘)(𝑥𝑖) = 𝑢𝑘𝑖 ∈ RF, 0 ≤ 𝑘 ≤𝑚− 1, 0 ≤ 𝑖 ≤ 𝑛. Also, if for all 0 ≤ 𝑘 ≤ 𝑚− 1, 0 ≤ 𝑖 ≤ 𝑛, 𝑢𝑘𝑖 =𝑦(𝑘)𝑖 are crisp numbers in R and 𝑓(𝑘)(𝑥𝑖) = 𝜒𝑦(𝑘)𝑖 (see, e.g.,
[2]), then there is a polynomial of degree 2𝑚−1 on successive
intervals [𝑥𝑖−1, 𝑥𝑖], 0 ≤ 𝑖 ≤ 𝑛, with 𝑠(𝑘)(𝑥𝑖) = 𝑦(𝑘)𝑖 , 0 ≤ 𝑘 ≤𝑚 − 1, 0 ≤ 𝑖 ≤ 𝑛 such that 𝑠(𝑥) = 𝜒𝑓(𝑥) for all 𝑥 ∈ R, where{(𝑥𝑖, 𝑓𝑖, 𝑓󸀠𝑖 , . . . , 𝑓(𝑚−1)𝑖 ) | 𝑓(𝑘)𝑖 ∈ RF, 0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖 ≤𝑛} is given.

We suppose that such a fuzzy function exists and we
attempt to find and compute it with respect to interpolation
polynomial presented by Lowen [2]. Let, for each𝑥 ∈ [𝑥0, 𝑥𝑛],𝑠(𝑥) be a fuzzy piecewise Hermite polynomial and Λ ={𝑦(𝑘)𝑖 }𝑛,𝑚−1𝑖=0,𝑘=0; then, fromKaleva [3] andNguyen [18], we obtain
the 𝛼-cuts of 𝑠(𝑥) in a succinctly algorithm as follows:

𝑠𝛼 (𝑥) = {𝑡 ∈ R | 𝜇(𝑡)𝑠(𝑥) ≥ 𝛼} = {𝑡 ∈ R | ∃𝑦(𝑘)𝑖 : 𝜇(𝑦(𝑘)𝑖 )𝑢𝑘𝑖
≥ 𝛼, 0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖 ≤ 𝑛, 𝑠Λ (𝑥) = 𝑡} = {𝑡
∈ R | 𝑡 = 𝑠Λ (𝑥) , 𝑦(𝑘)𝑖 ∈ 𝑢𝛼𝑘𝑖, 0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖
≤ 𝑛} = 𝑚−1∑

𝑘=0

𝑛∑
𝑖=0

𝑢𝛼𝑘𝑖𝜙𝑖𝑘 (𝑥) ,
(9)

where

𝑠Λ (𝑥) = 𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑦(𝑘)𝑖 𝜙𝑖𝑘 (𝑥) (10)
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is a piecewise Hermite polynomial in crisp case and by
definition

𝑠𝛼 (𝑥) = 𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑢𝛼𝑘𝑖𝜙𝑖𝑘 (𝑥) (11)

we obtain a formula that comprises a simple practical way for
calculating 𝑠(𝑥):

𝑠 (𝑥) = 𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑢𝑘𝑖𝜙𝑖𝑘 (𝑥) . (12)

Since, for each 0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖 ≤ 𝑛, 𝑢𝛼𝑘𝑖 = [𝑢𝛼𝑘𝑖, 𝑢𝛼𝑘𝑖],
then we will have 𝑠𝛼(𝑥) by solving the following optimization
problems:

max & min
𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑦(𝑘)𝑖 𝜙𝑖𝑘 (𝑥)
subject to 𝑢𝛼𝑘𝑖 ≤ 𝑦(𝑘)𝑖 ≤ 𝑢𝛼𝑘𝑖,

0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖 ≤ 𝑛.
(13)

From the 𝜙𝑖𝑗’s sign that we represented in Theorem 6, these
problems have the following optimal solutions:

Maximization is as follows:

𝑦(𝑘)𝑖 = {{{
𝑢𝛼𝑘𝑖 if 𝜙𝑖𝑘 (𝑥) ≥ 0
𝑢𝛼𝑘𝑖 if 𝜙𝑖𝑘 (𝑥) < 0,

0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖 ≤ 𝑛.
(14)

Minimization is as follows:

𝑦(𝑘)𝑖 = {{{
𝑢𝛼𝑘𝑖 if 𝜙𝑖𝑘 (𝑥) ≥ 0
𝑢𝛼𝑘𝑖 if 𝜙𝑖𝑘 (𝑥) < 0,

0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤ 𝑖 ≤ 𝑛.
(15)

Theorem 7. If 𝑠(𝑥) = ∑𝑚−1𝑘=0 ∑𝑛𝑖=0 𝑢𝑘𝑖𝜙𝑖𝑘(𝑥) is an interpolating
piecewise fuzzy Hermite polynomial, then for all 𝛼 ∈ [0, 1],𝑖 ∈ {0, 1, . . . , 𝑛 − 1}, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1],

𝑙𝑒𝑛 𝑠𝛼 (𝑥) ≥ min {𝑙𝑒𝑛 𝑠𝛼 (𝑥𝑖) , 𝑙𝑒𝑛 𝑠𝛼 (𝑥𝑖+1)} , (16)

where

𝑠𝛼 (𝑥) = [𝑠𝛼 (𝑥) , 𝑠𝛼 (𝑥)] ,
𝑙𝑒𝑛 𝑠𝛼 (𝑥) = 𝑠𝛼 (𝑥) − 𝑠𝛼 (𝑥) . (17)

Proof. By using Theorem 6 and (11), we have 𝑠𝛼(𝑥𝑖) = 𝑢𝛼0 𝑖,𝑠𝛼(𝑥𝑖+1) = 𝑢𝛼0 𝑖+1 and len 𝑠𝛼(𝑥𝑖) = len 𝑢𝛼0𝑖, len 𝑠𝛼(𝑥𝑖+1) =

len 𝑢𝛼0 𝑖+1. Since the addition does not decrease the
length of an interval from (11), we can write 𝑠𝛼(𝑥) =∑𝑚−1𝑘=0 ∑𝑛𝑗=0 𝑢𝛼𝑘𝑗𝜙𝑗𝑘(𝑥); then,

len 𝑠𝛼 (𝑥) ≥ 𝑚−1∑
𝑘=0

𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝜙𝑗𝑘 (𝑥)󵄨󵄨󵄨󵄨󵄨 len 𝑢𝛼𝑘𝑗
≥ 𝑛∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝜙𝑗0 (𝑥)󵄨󵄨󵄨󵄨󵄨 len 𝑢0𝑗
≥ 󵄨󵄨󵄨󵄨𝜙𝑖0 (𝑥)󵄨󵄨󵄨󵄨 len 𝑢0𝑖 + 󵄨󵄨󵄨󵄨𝜙𝑖+1 0 (𝑥)󵄨󵄨󵄨󵄨 len 𝑢0 𝑖+1
≥ min {len 𝑢0 𝑖, len 𝑢0 𝑖+1} (󵄨󵄨󵄨󵄨𝜙𝑖0 (𝑥)󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜙𝑖+1 0 (𝑥)󵄨󵄨󵄨󵄨)
≥ min {len 𝑢0 𝑖, len 𝑢0 𝑖+1}
= min {len 𝑠𝛼 (𝑥𝑖) , len 𝑠𝛼 (𝑥𝑖+1)} .

(18)

Theorem 8. Let 𝑢𝑘𝑖 = (𝑚𝑘𝑖, 𝑙𝑘𝑖, 𝑟𝑘𝑖), 0 ≤ 𝑘 ≤ 𝑚 − 1, 0 ≤𝑖 ≤ 𝑛, be a triangular 𝐿 − 𝐿 fuzzy number; then, also 𝑠(𝑥),
the piecewise fuzzy Hermite polynomial interpolation, is such
a fuzzy number for each 𝑥.
Proof. The closed interval [𝑚 − 𝑙,𝑚 + 𝑟] is the support of 𝑢 =(𝑚, 𝑙, 𝑟), a triangular 𝐿−𝐿 fuzzy number; then for each 𝑥 and𝑢𝑘𝑖, we have
𝑠 (𝑥) = (𝑚−1∑

𝑘=0

𝑛∑
𝑖=0

𝑢𝑘𝑖𝜙𝑖𝑘 (𝑥))

= [
[∑ ∑
𝜙𝑖𝑘≥0

(𝑚𝑘𝑖 − 𝑙𝑘𝑖) 𝜙𝑖𝑘 (𝑥)
+∑ ∑
𝜙𝑖𝑘<0

(𝑚𝑘𝑖 + 𝑟𝑘𝑖) 𝜙𝑖𝑘 (𝑥) ,
∑ ∑
𝜙𝑖𝑘≥0

(𝑚𝑘𝑖 + 𝑟𝑘𝑖) 𝜙𝑖𝑘 (𝑥)

+∑ ∑
𝜙𝑖𝑘<0

(𝑚𝑘𝑖 − 𝑙𝑘𝑖) 𝜙𝑖𝑘 (𝑥)]] = [
[
𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑚𝑘𝑖𝜙𝑖𝑘 (𝑥)

− (∑ ∑
𝜙𝑖𝑘≥0

𝑙𝑘𝑖𝜙𝑖𝑘 (𝑥) −∑ ∑
𝜙𝑖𝑘<0

𝑟𝑘𝑖𝜙𝑖𝑘 (𝑥))

+ 𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑚𝑘𝑖𝜙𝑖𝑘 (𝑥)

+ (∑ ∑
𝜙𝑖𝑘≥0

𝑟𝑘𝑖 (𝑥) 𝜙𝑖𝑘 (𝑥) −∑ ∑
𝜙𝑖𝑘<0

𝑙𝑖𝑘𝜙𝑖𝑘 (𝑥))]]
= (𝑚 (𝑥) − 𝑙 (𝑥) , 𝑚 (𝑥) + 𝑟 (𝑥)) .

(19)
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It follows that if 𝑠(𝑥) = (𝑚(𝑥), 𝑙(𝑥), 𝑟(𝑥)), is a triangular𝐿 − 𝐿 fuzzy number for each 𝑥, then

𝑚(𝑥) = 𝑚−1∑
𝑘=0

𝑛∑
𝑖=0

𝑚𝑘𝑖𝜙𝑘𝑖,
𝑙 (𝑥) = ∑ ∑

𝜙𝑖𝑘≥0

𝑙𝑘𝑖𝜙𝑖𝑘 (𝑥) −∑ ∑
𝜙𝑖𝑘<0

𝑟𝑘𝑖𝜙𝑖𝑘 (𝑥) ,
𝑟 (𝑥) = ∑ ∑

𝜙𝑖𝑘≥0

𝑟𝑘𝑖𝜙𝑖𝑘 −∑ ∑
𝜙𝑖𝑘<0

𝑙𝑖𝑘𝜙𝑖𝑘 (𝑥) .
(20)

4. Piecewise-Polynomial Linear, Cubic, and
Quintic Fuzzy Hermite Interpolation

We consider 𝑚 = 1 and compute the piecewise fuzzy linear
interpolant as the initial case of the presented method based
on (12) and for a given set of fuzzy data {(𝑥𝑖, 𝑓𝑖) | 𝑓𝑖 ∈
RF, 0 ≤ 𝑖 ≤ 𝑛}, as follows:

𝑠 (𝑥) = 𝑛∑
𝑖=0

𝑢0𝑖𝜙𝑖0 (𝑥) , (21)

where 𝑢0𝑖 = 𝑓𝑖, 0 ≤ 𝑖 ≤ 𝑛, and subject to conditions (6),

𝜙00 (𝑥) = {{{{{
0, 𝑥 ≥ 𝑥1
( 𝑥1 − 𝑥𝑥1 − 𝑥0) , 𝑥0 ≤ 𝑥 ≤ 𝑥1

𝜙𝑖0 (𝑥) =
{{{{{{{{{{{{{{{{{

0, 𝑥 ≤ 𝑥𝑖−1, 𝑥 ≥ 𝑥𝑖+1
( 𝑥 − 𝑥𝑖−1𝑥𝑖 − 𝑥𝑖−1) , 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖
( 𝑥𝑖+1 − 𝑥𝑥𝑖+1 − 𝑥𝑖) , 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

1 ≤ 𝑖 ≤ 𝑛 − 1
𝜙𝑛0 (𝑥) = {{{{{

0, 𝑥 ≤ 𝑥𝑛−1
( 𝑥 − 𝑥𝑛−1𝑥𝑛 − 𝑥𝑛−1) , 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛.

(22)

The obtained 𝑠(𝑥) is the same as fuzzy spline of order 𝑙 = 2
that had been introduced in [3] because the basic splines and
the cardinal basis functions in two interpolants are equal.

Example 9 (see [4]). Suppose the data (1, (0, 2, 1), (1, 0, 3)),
(1.3, (5, 1, 2), (0, 2, 1)), (2.2, (1, 0, 3), (4, 4, 3)), (3, (4, 4, 3),
(5, 1, 2)), (3.5, (0, 3, 2), (1, 1, 1)), (4, (1, 1, 1), and (0, 3, 2)).
In Figure 1, the dashed line is the 0.5-cut set of piecewise
cubic fuzzy interpolation 𝑠(𝑥), 𝑥 ∈ [1, 4] and the solid lines
represent the support and the core of 𝑠(𝑥).

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−2

0

2

4

6

8

Figure 1: Graph of Example 9.
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Figure 2: Graph of Example 10.

When 𝑚 = 2, we get the piecewise cubic fuzzy Her-
mite polynomial interpolant in [11] for a given set of data{(𝑥𝑖, 𝑓𝑖, 𝑓󸀠𝑖 ) | 𝑓𝑖, 𝑓󸀠𝑖 ∈ RF, 0 ≤ 𝑖 ≤ 𝑛},

𝑠 (𝑥) = 𝑛∑
𝑖=0

𝑢0𝑖𝜙𝑖0 (𝑥) + 𝑛∑
𝑖=0

𝑢1𝑖𝜙𝑖1 (𝑥) , (23)

where 𝑢𝑘𝑖 = 𝑓(𝑘)𝑖 , 𝑘 = 0, 1, 0 ≤ 𝑖 ≤ 𝑛.
An outstanding feature of this study is that, by simply

applying the second case of the presented general method
and exactly the same data, we have produced an alternative
to simple fuzzy Hermite polynomial interpolation in [4].
Heretofore, thementioned cubic case (23) was independently
introduced in [10] but only in very weak conditions and
without using the extension principle.

The cardinal basis functions 𝜙𝑖𝑘(𝑥), 𝑘 = 0, 1, 0 ≤ 𝑖 ≤ 𝑛,
were computed in [17].

Example 10. Suppose the data (1, (0, 2, 1), (1, 0, 3)), (1.5, (5,
1, 2), (0, 2, 1)), (2.7, (1, 0, 3), (4, 4, 3)), (3, (4, 4, 3), (5, 1, 2)),
(3.7, (0, 3, 2), (1, 1, 1)), and (4, (1, 1, 1), (0, 3, 2)). In Figure 2,
the dashed line is the 0.5-cut set of piecewise cubic fuzzy
interpolations 𝑠(𝑥), 𝑥 ∈ [1, 4] and the solid lines represent
the support and the core of 𝑠(𝑥).

Let 𝑚 = 3; from (6), we shall construct the cardi-
nal basis for 𝐻5(Δ; 𝐼). The quintic Hermite polynomials
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𝜙𝑖0(𝑥), 𝜙𝑖1(𝑥), and 𝜙𝑖2(𝑥) are solving the interpolation
problem

𝐷𝑙𝜙𝑖𝑘 (𝑥𝑗) = 𝛿𝑘𝑙𝛿𝑖𝑗, 0 ≤ 𝑘, 𝑙 ≤ 2, 0 ≤ 𝑖, 𝑗 ≤ 𝑛. (24)

To this end, we determine uniquely all the pervious 𝜙𝑖𝑗’s by
the (24).

For 1 ≤ 𝑖 ≤ 𝑛 − 1, let

𝜙𝑖0 (𝑥) =
{{{{{{{{{{{{{{{{{

(𝑥𝑖−1 − 𝑥)3(𝑥𝑖−1 − 𝑥𝑖)5 [(𝑥𝑖−1 + 3𝑥) (𝑥𝑖−1 − 5𝑥𝑖) + 6𝑥
2 + 10𝑥2𝑖 ] , 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖,

(𝑥𝑖+1 − 𝑥)3(𝑥𝑖+1 − 𝑥𝑖)5 [(𝑥𝑖+1 + 3𝑥) (𝑥𝑖+1 − 5𝑥𝑖) + 6𝑥
2 + 10𝑥2𝑖 ] , 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

0, otherwise,

𝜙𝑖1 (𝑥) =
{{{{{{{{{{{{{{{

( 𝑥𝑖−1 − 𝑥𝑥𝑖−1 − 𝑥𝑖)
3 (𝑥 − 𝑥𝑖) [1 + 3 𝑥 − 𝑥𝑖𝑥𝑖−1 − 𝑥𝑖 ] , 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖,

( 𝑥𝑖+1 − 𝑥𝑥𝑖 − 𝑥𝑖+1)
3 (𝑥𝑖 − 𝑥) [1 + 3 𝑥𝑖 − 𝑥𝑥𝑖 − 𝑥𝑖+1 ] , 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

0, otherwise,

𝜙𝑖2 (𝑥) =
{{{{{{{{{{{{{{{{{

( 𝑥𝑖−1 − 𝑥𝑥𝑖−1 − 𝑥𝑖)
3 (𝑥𝑖 − 𝑥)22 , 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖,

( 𝑥 − 𝑥𝑖+1𝑥𝑖 − 𝑥𝑖+1)
3 (𝑥𝑖 − 𝑥)22 , 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

0, otherwise.

(25)

The six next functions are similarly defined. In particular,

𝜙00 (𝑥) =
{{{{{{{

(𝑥1 − 𝑥)3(𝑥1 − 𝑥0)5 [(𝑥1 + 3𝑥) (𝑥1 − 5𝑥0) + 6𝑥
2 + 10𝑥30] , 𝑥0 ≤ 𝑥 ≤ 𝑥1,

0, 𝑥1 ≤ 𝑥 ≤ 𝑥𝑛,

𝜙𝑛0 (𝑥) =
{{{{{{{

(𝑥𝑛−1 − 𝑥)3(𝑥𝑛−1 − 𝑥𝑛)5 [(𝑥𝑛−1 + 3𝑥) (𝑥𝑛−1 − 5𝑥𝑛) + 6𝑥
2 + 10𝑥2𝑛] , 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛,

0, 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛−1,
𝜙01 (𝑥) = {{{{{

( 𝑥1 − 𝑥𝑥0 − 𝑥1)
3 (𝑥0 − 𝑥) [1 + 3 𝑥0 − 𝑥𝑥0 − 𝑥1 ] , 𝑥0 ≤ 𝑥 ≤ 𝑥1,

0, 𝑥1 ≤ 𝑥 ≤ 𝑥𝑛,
𝜙𝑛1 (𝑥) = {{{{{

( 𝑥𝑛−1 − 𝑥𝑥𝑛−1 − 𝑥𝑛)
3 (𝑥 − 𝑥𝑛) [1 + 3 𝑥 − 𝑥𝑛𝑥𝑛−1 − 𝑥𝑛 ] , 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛,

0, 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛−1,
𝜙02 (𝑥) =

{{{{{{{
( 𝑥 − 𝑥1𝑥0 − 𝑥1)

3 (𝑥0 − 𝑥)22 , 𝑥0 ≤ 𝑥 ≤ 𝑥1,
0, 𝑥1 ≤ 𝑥 ≤ 𝑥𝑛,
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Figure 3: Graph of Example 11.

𝜙𝑛2 (𝑥) =
{{{{{{{
( 𝑥𝑛−1 − 𝑥𝑥𝑛−1 − 𝑥𝑛)

3 (𝑥𝑛 − 𝑥)22 , 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛,
0, 𝑥0 ≤ 𝑥 ≤ 𝑥𝑛−1.

(26)

Thus, we can immediately write down piecewise quintic fuzzy
Hermite interpolation polynomial 𝑠(𝑥) using

𝑠 (𝑥) = 𝑛∑
𝑖=0

𝑢0𝑖𝜙𝑖0 (𝑥) + 𝑛∑
𝑖=0

𝑢1𝑖𝜙𝑖1 (𝑥) + 𝑛∑
𝑖=0

𝑢2𝑖𝜙𝑖2 (𝑥) , (27)

where {(𝑥𝑖, 𝑓𝑖, 𝑓󸀠𝑖 , 𝑓󸀠󸀠𝑖 ) | 𝑓(𝑘)𝑖 ∈ BF, 0 ≤ 𝑘 ≤ 2, 0 ≤ 𝑖 ≤ 𝑛}, is
given and 𝑢𝑘𝑖 = 𝑓(𝑘)𝑖 .

Example 11. Suppose that (0, (0, 1, 3), (0, 2, 2), (1, 4, 4)), (1.3,
(0.05, 1.9, 3.5), (0.3, 3.2, 0.8), (1, 3.1, 3)), (2, (2, 6.7, 5.3), (2, 0.5,
3.5), (1, 2.6, 2.4)), (4, (8, 10.1, 9.9), (4, 4, 0), (1, 0.6, 0.5)), (5.3,
(14, 13, 12), (5.3, 0.2, 3.8), (1, 1.5, 1.7)), (6, (18, 13.2, 14.8), (6, 0.9,
3), and (1, 3.4, 3.2)) are the interpolation data. In Figure 3,
the solid lines denote the support and the core of piecewise
quintic fuzzy Hermite interpolation 𝑠(𝑥), 𝑥 ∈ [0, 6], and the
dashed line is the 0.5-cut set of 𝑠(𝑥).
5. Conclusions and Further Work

Based on the cardinal basis functions for𝑚(𝑛+ 1) dimension𝐻2𝑚−1(Δ, 𝐼) linear space, interpolation of fuzzy data by the
fuzzy-valued piecewise Hermite polynomial as the extension
of same approach in [11] has been successfully introduced in
general case and provided a succinct formula for calculating
the new fuzzy interpolant. Moreover, two first cases of
the presented method have been applied as an analogy to
fuzzy spline of order two in [3] and an alternative to fuzzy
osculatory interpolation in [4], respectively. In the guise of a
remarkable achievement, the piecewise fuzzy cubic Hermite
polynomial interpolation that was constructed with poor
conditions and without using the extension principle in [10]
has been produced in the role of a very special subdivision for
the presented general method in this study. Finally, the third
initial case, piecewise fuzzy quintic Hermite polynomial,

has been described in detail. The next step to improve this
method is interpolation of fuzzy data including switching
points by a fuzzy differentiable piecewise interpolant.
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