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We propose a new Mamdani fuzzy rule-based system in which the fuzzy sets in the antecedents and consequents are assigned in
a discrete set of points and approximated by using the extended inverse fuzzy transforms, whose components are calculated by
verifying that the dataset is sufficiently dense with respect to the uniform fuzzy partition. We test our system in the problem of
spatial analysis consisting in the evaluation of the livability of residential housings in all the municipalities of the district of Naples
(Italy). Comparisons are done with the results obtained by using trapezoidal fuzzy numbers in the fuzzy rules.

1. Introduction

A fuzzy number (FN) is a fuzzy setwithmembership function
A: Reals 󳨀→ [0, 1] defined as

A (𝑥) =
{{{{{{{{{{{{{{{{{{{{{

0 IF x < a

A− (x) IF a ≤ 𝑥 < 𝑐
1 IF 𝑐 ≤ 𝑥 ≤ 𝑑
A+ (x) IF d < 𝑥 ≤ 𝑏
0 IF x > b

(1)

where a ≤ c ≤ d ≤ b, A−: [a,c] 󳨀→ [0,1] is a not decreasing
continuous function with A−(a) = 0, A− (c) = 1 and A+: [b,d]󳨀→ [0, 1] is a not increasing continuous function with A+(d)
= 1, A+(b) = 0. A− and A+ are called left side and right side of
A, respectively.

Complicated left-side and right-side functions can gener-
ate serious computational difficulties when imprecise infor-
mation is modeled by FNs. In order to overcome this
problem, the original FN can be approximated with other
easier functions. The simplest FNs used in fuzzy modeling,
fuzzy control, and fuzzy decision-making are the trapezoidal
and triangular FNs. In a trapezoidal FN the functions A− and

A+ are linear; for instance, A− (x) = (x-a)/(c-a) and A+(x)
= (b-x)/(b-d) with a≤b≤c≤d, a ̸=c, b ̸=d. In a triangular FN
it is assumed that d=c. Other simple FNs widely used are
the degenerated left (resp., right) size semitrapezoidal FNs
with a = c < d < b (resp., a < c < d = b). In many problems
trapezoidal, triangular, or semitrapezoidal approximations of
FNs could give a loss of information not negligible and this
can significantly affect the reliability of the results.

Furthermore, the membership functions of FNs used in
applications are not generally known, for example, when they
are obtained as relative frequencies of measured occurrences
in a discrete set of points or in collaborative applications in
which a set of stakeholders evaluate separately the member-
ship degrees of a FN and the function is assigned as an average
of these membership degrees. For making understandable
this idea, in the example of Figure 1, the membership degree𝑓(T) of the fuzzy set “daily temperature T” (measured in ∘C)
for a discrete set of 100 points is the average of the member-
ship degrees evaluated separately by many stakeholders.

Recently many methods are proposed in order to approx-
imate FNs with easier FNs using a suitable metric (see, e.g.,
[1–6]). Some authors investigate approximations by adding
some restrictions to preserve properties of a FN as core [7],
ambiguity [8–10], expected interval, translation invariance,
and scale invariance [11, 12]. As pointed out in [13], by
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(1) nfln0(2) Create the fuzzy partition(3) Calculate the direct F-transform components(4) WHILE the dataset is sufficiently dense with respect to the fuzzy
partition(5) Calculate the approximation error(6) IF (approximation error ≤ threshold) THEN(7) Store the direct F-transform components(8) RETURN “SUCCESS”(9) END IF(10) nfln+1(11) Calculate the extended direct F-transform components(12) END WHILE(13) RETURN “ERROR: Dataset not sufficiently dense”(14) END

Algorithm 1: Approximation of a set of data by using the extended inverse F-transform.
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Figure 1: Example of FN constructed for a discrete set of points and
approximated with a trapezoidal membership function.

using a trapezoidal FN as approximation function by, only
a limited number of characteristics can be preserved since
a trapezoidal FN depends only on four parameters, and the
best approach to preserve multiple characteristics is to use
sequences of FNs. In [14] a new method is proposed based
on the inverse fuzzy transform (F-transform) [15] in order
to construct sequence of FNs which converge uniformly to
a FN, preserving properties as its support, core, ambiguity,
quasiconcavity, and expected interval (Algorithm 1). The F-
transform method was already used in image analysis (see,
e.g., [15–18]) and data analysis applications (see, e.g., [19, 20]).
In [21] the bidimensional F-transform is used to approximate
type 2 FNs. In [13], the extended iF-transform method, pro-
posed in [15], is applied to approximate FNs preserving the
support and the quasiconcavity property.Themain advantage
of this method is to reach the desired approximation with
a linear rate of uniform convergence. However, when the
membership function is given in a discrete set of points, it
is necessary to verify that this dataset is sufficiently dense
with respect to the uniform fuzzy partition of the support

of the FN. More specifically, the F-transform method divides
the interval [a,b] in n subintervals of width h = (n-1)/(b-
a). The points x1= a, x2= a+h,. . ., xi= a+(i-1)h,. . ., xn= b are
called nodes: a uniform fuzzy partition of [a,b] is created by
assigning n fuzzy setswith continuousmembership functions
A1,. . .,An: [a,b] 󳨀→ [0, 1], called basic functions, where Ai(x)
= 0 if x∉(xi-1, xi+1), i = 1,. . .,n. When the input data form a
dataset of points in [a,b], it is necessary to control that this set
is dense with respect to the uniform fuzzy partition; namely,
we must verify that at least one data point with nonzero
membership degree falls within a subinterval (xi-1, xi+1) for
i=1,. . .,n. In Figure 2 we show an example of dataset not
sufficiently dense with respect to the fuzzy partition: no data
is included in (xi-1, xi+1).

The FNs are largely used in fuzzy reasoning systems, par-
ticularly in fuzzy rule-based inference systems in which fuzzy
rules are applied in an inferential process. In a fuzzy rule-
based inference system [22] the fuzzy rule set is composed
of fuzzy rules, called “compositional rules of inference”: each
antecedent in a fuzzy rule is a fuzzy relation in which the
min operator is applied for the conjunction and the max
operator is applied for the disjunction of fuzzy sets. The max
operator is applied for the aggregation of the rules as well.
The discrete Center of Gravity (CoG) method is applied in
the defuzzification process to obtain the final crisp value of
the output variable.

We apply the iF-transform method for constructing the
FN modeling the input variables in the antecedent and the
output variables in the consequent of fuzzy rules in a Mam-
dani fuzzy inference system.

The paper is organized as follows: Section 2 contains
the basic notions of fuzzy number and F-transform and in
Section 3 we introduce the extended iF-transform method
which in Section 4 is applied to a Fuzzy Rule-Based Systems
(FRBS). In Section 5 we give the results of our tests, and final
considerations are reported in Section 6.

1.1. Preliminaries. As already shown in [17], the extended iF-
transform method, proposed in [13], approximates a function
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Figure 2: Example of input dataset nonsufficiently dense with respect to the fuzzy partition.

assigned on a discrete set of points by means of an iterative
process. Strictly speaking, we set initially the dimension n of
the fuzzy partition to a value n0; afterwards it is necessary to
verify at any step that the dataset is sufficiently dense with
respect to the fuzzy partition and that the approximation
error is less than or equal to a prefixed threshold: in this case
the process stops and the direct F-transform components are
stored; otherwise, n is set to n + 1 and the process is iterated
by considering a finer fuzzy partition. Below, we schematize
the pseudocode of this process.

We propose a new Mamdani FRBS in which we use the
extended iF-transform to approximate FNs and we apply the
above process for constructing the input fuzzy sets in the
antecedent and the output fuzzy sets.

The extended iF-transform method for approximation of
the FNs is used to fuzzify the crisp input data. The min and
max operators are applied as AND and OR connectives in
the antecedent of the fuzzy rules to calculate the strength of
any rule.The defuzzification process of the output fuzzy set is
carried out via the discrete Center of Gravity (CoG) method.
For example, we consider a system formed by two fuzzy rules
in the following form:

𝑟1 : (𝑥 is A1) OR (𝑦 is B1) 󳨀→ 𝑧 is C1

𝑟2 : (𝑥 is A2) AND (𝑦 is B2) 󳨀→ 𝑧 is C2
(2)

where A1 and A2 are two FNs for the linguistic input variable
x, B1 andB2 are twoFNs for the input linguistic variable y, and
C1 and C2 are two FNs for the output variable z. Applying the
extended iF-transforms to evaluate each fuzzy set, we suppose
that 𝐴−1(𝑥) = 0.4, 𝐴+1(𝑥) = 0.7, 𝐵−1 (𝑥) = 0.7, 𝐵+2 (𝑥) =0.3.With max (resp., min) operator as connective OR (resp.,
AND), we obtain the value of the two rules: r1 = max(0.4,
0.7) = 0.7 and r2 = min(0.7, 0,3) = 0.3. In the defuzzification
process we reconstruct the output fuzzy set as

C (𝑧) = max [min (𝐶1 (𝑧) , 𝑠1) ,min (𝐶2 (𝑧) , 𝑠2)] , (3)

where s1 and s2 are suitable thresholds prefixed a priori
(Figure 3).

The CoG method is useful for obtaining the final crisp
value 𝑧̂ of the output variable as

𝑧̂ = ∑𝑁𝑐𝑖=1 𝐶 (𝑧𝑖) ⋅ 𝑧𝑖∑𝑁𝑐𝑖=1 𝐶 (𝑧𝑖) (4)

where Nc is the number of rules and z1 < z2 < ⋅ ⋅ ⋅ < zNc are
points of the support of C. In Figure 3 we give an example.

2. Fuzzy Numbers and F-Transforms

2.1. Fuzzy Numbers. Given a value 𝛼 ∈[0, 1], we denote with
A𝛼, called 𝛼-cut of a FN A, the crisp set containing the
elements x∈Rwith amembership degree greater than or equal
to 𝛼. We also use the interval

[𝐴]𝛼 = [a1 (𝛼) , a2 (𝛼)] (5)

where

𝑎1 (𝛼) = inf {𝑥 ∈ 𝑅 : 𝐴 (𝑥) ≥ 𝛼} (6)

𝑎2 (𝛼) = sup {𝑥 ∈ 𝑅 : 𝐴 (𝑥) ≥ 𝛼} (7)

For 𝛼 = 1, [𝐴]1 = [𝑎1(1), 𝑎2(1)] is called the core of the
FN and denoted by core(A). Note that for 𝛼 = 0, [𝐴]0 =[𝑎1(0), 𝑎2(0)] = [−∞,+∞]= 𝑅. The support of a fuzzy set is
given by the closure of the crisp set

supp (𝐴) = {𝑥 ∈ 𝑅 | 𝐴 (𝑥) > 0} (8)

Given two arbitrary FNs, A and B, twometrics are considered
in [23, 24]:

the Chebyshev distance

𝑑 (𝐴, 𝐵) = sup {𝑥 ∈ 𝑅 : |𝐴 (𝑥) − 𝐵 (𝑥)|} (9)
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Figure 3: Defuzzification of the output fuzzy set.

and the extension of the Euclidean metric given by

𝑑 (𝐴, 𝐵)
= √∫1
0
[𝑎1 (𝛼) − 𝑏1 (𝛼)]2 𝑑𝛼 + ∫1

0
[𝑎2 (𝛼) − 𝑏2 (𝛼)]2 𝑑𝛼 (10)

Two properties of A are given in [25] called ambiguity and
value, defined as

𝐴𝑚𝑏𝑟 (𝐴) = ∫1
0
𝑟 (𝛼) ⋅ [𝑎2 (𝛼) − 𝑎1 (𝛼)] 𝑑𝛼 (11)

and

𝑉𝑎𝑙𝑟 (𝐴) = ∫1
0
𝑟 (𝛼) ⋅ (𝑎2 (𝛼) + 𝑎1 (𝛼)) 𝑑𝛼, (12)

respectively, where r: [0, 1] 󳨀→ [0, 1] is a not decreasing
function called reducing function with r(0) = 0 and r(1) =
1. Another important propriety is the expected interval of A,
introduced in [3, 24], defined as follows:

𝐸𝐼 (𝐴) = [∫1
0
𝑎1 (𝛼) 𝑑𝛼, ∫1

0
𝑎2 (𝛼) 𝑑𝛼] (13)

We have EI(A) = [(a+c)/2, (d+b)/2] for a trapezoidal FN A.

2.2. Direct and Inverse F-Transforms. Following the defini-
tions and notations of [15], let n ≥ 2 and P = {x1, x2, . . ., xn}
be a set of points of [a,b], called nodes, such that x1 = a <
x2 < ⋅ ⋅ ⋅ < xn = b. Let {A1,. . .,An} be an assigned family of
fuzzy sets with membership functions A1(x),. . .,An(x): [a,b]󳨀→ [0, 1], called basic functions. We say that it constitutes a
fuzzy partition of [a,b] if the following properties hold:

(1) Ai(xi) =1 for every i =1,2,. . .,n
(2) Ai(x) = 0 if x∉ (xi-1,xi+1) for i=2,. . .,n-1
(3) Ai(x) is a continuous function on [a,b]

(4) Ai(x) strictly increases on [xi-1, xi] for i = 2, . . ., n and
strictly decreases on [xi,xi+1] for i = 1,. . ., n-1

(5) ∑n
i=1 Ai(x) = 1 for every x∈[a,b]

Furthermore, we say that the fuzzy sets {A1,. . .,An} form an
h-uniform fuzzy partition of [a,b] if

(6) n ≥ 3 and xi = a + h⋅(i-1), where h = (b-a)/(n-1) and i
= 1, 2, . . ., n (that is, the nodes are equidistant)

(7) Ai(xi – x) = Ai(xi + x) for every x∈ [0,h] and i = 2,. . .,
n-1

(8) Ai+1 (x) = Ai(x - h) for every x∈[xi,xi+1] and i = 1,2,. . .,
n-1

Let 𝑓(x) be a continuous function on [a,b]. The quantity

𝐹𝑖 = (∫𝑏
𝑎
𝑓 (𝑥) 𝐴 𝑖 (𝑥))
∫𝑏
𝑎
𝐴 𝑖 (𝑥) , (14)

for i = 1, . . ., n, is the ith component of the direct F-transform{F1, F2, . . ., Fn} of f with respect to the family of basic functions



Advances in Fuzzy Systems 5

{A1, A2, . . ., An}. If this fuzzy partition is h-uniform, the
components are as follows [26]:

𝐹𝑖 =
{{{{{{{{{{{{{{{{{

2ℎ−1∫𝑥2
𝑥1

𝑓 (𝑥) 𝐴1 (𝑥) 𝑑𝑥 𝑖𝑓 𝑖 = 1
ℎ−1∫𝑥𝑖
𝑥𝑖−1

𝑓 (𝑥) 𝐴 𝑖 (𝑥) 𝑑𝑥 𝑖𝑓 𝑖 = 2, . . . , 𝑛 − 1
2ℎ−1∫𝑥𝑛

𝑥𝑛−1

𝑓 (𝑥) 𝐴𝑛 (𝑥) 𝑑𝑥 𝑖𝑓 𝑖 = 𝑛
(15)

The function

𝑓𝐹,𝑛 (𝑥) = 𝑛∑
𝑖=1

𝐹𝑖𝐴 𝑖 (𝑥) , (16)

where x∈[a,b], is defined as the iF-transform of f with respect
to {A1, A2, . . ., An} and it approximates 𝑓 in the sense of the
following theorem [26].

�eorem 1. Let f(x) be a continuous function on [a,b]. For
every 𝜀 > 0, then there exist an integer n(𝜀) and a fuzzy
partition {𝐴1, A2, . . .,𝐴𝑛(𝜀)} of [a,b] such that |𝑓(𝑥) - 𝑓𝐹,𝑛(𝜀)| <𝜀 with respect to the existing fuzzy partition.

In the discrete case we know that the function 𝑓 assumes
assigned values in the points p1,. . .,pm of [a,b]. If the set{p1,. . .,pm} is sufficiently dense with respect to the fixed
partition {A1, A2, . . ., An}, that is, for each i = 1,. . .,n, there
exists an index j∈ {1,. . .,m} such that Ai(pj) > 0, we can define
the n-tuple {F1, F2,. . ., Fn} as the discrete direct F-transform
of f with respect to {A1, A2, . . ., An}, where each Fi is given by

𝐹𝑖 = (∑𝑚𝑗=1 𝑓 (𝑝𝑗) ⋅ 𝐴 𝑖 (𝑝𝑗))∑𝑚𝑗=1 𝐴 𝑖 (𝑝𝑗) (17)

for i=1,. . .,n. Similarly we define the discrete iF-transform of
f with respect to the {A1, A2, . . ., An} by setting

𝑓𝐹,𝑛 (𝑝𝑗) = 𝑛∑
𝑖=1

𝐹𝑖𝐴 𝑖 (𝑝𝑗) (18)

for every j∈ {1,. . .,m}. We have the following theorem [15].

�eorem 2. Let 𝑓(𝑥) be a function assigned on a set of points{𝑝1,. . .,𝑝𝑚} ⊆ [𝑎, 𝑏].Then, for every 𝜀 > 0, there exist an integer
n(𝜀) and a related fuzzy partition {𝐴1, A2, . . ., 𝐴𝑛(𝜀)} of [𝑎, 𝑏]
such that {𝑝1,. . .,𝑝𝑚} is sufficiently dense with respect to the
existing fuzzy partition and for every 𝑝𝑗 ∈ [𝑎, 𝑏], j = 1,. . .,m,
the inequality 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑝𝑗) - 𝑓𝐹,𝑛(𝜀) (𝑝𝑗)󵄨󵄨󵄨󵄨󵄨 < 𝜀 (19)

remains true.

3. The Extended iF-Transform and
Fuzzy Numbers

In [15] the extended iF-transform of a continuous function𝑓 is introduced in order to preserve the monotonicity as

follows. For an h-uniform fuzzy partition {A1, A2, . . ., An},
the function 𝑓 is extended to [a-h,b+h] as follows:

𝑓 (𝑥) = {{{{{{{{{
2𝑓 (𝑎) − 𝑓 (2𝑎 − 𝑥) if x ∈ [a-h, a]
𝑓 (𝑥) if x ∈ [a, b]
2𝑓 (𝑏) − 𝑓 (2𝑏 − 𝑥) if x ∈ [b, b + h]

(20)

Then the following basic functions are defined as

𝐴1 (𝑥) = {{{
𝐴1 (2𝑎 − 𝑥) if x ∈ [a-h, a]
𝐴1 (𝑥) if x ∈ [a, a + h]

𝐴𝑖 (𝑥) = 𝐴 𝑖 (𝑥) for i = 2, . . . ,n-1
𝐴𝑛 (𝑥) = {{{

𝐴𝑛 (𝑥) if x ∈ [b-h, b]
𝐴𝑛 (2𝑏 − 𝑥) if x ∈ [b, b + h]

(21)

Then the ith component𝐹𝑖 of the extended direct F-transform
of 𝑓 with respect to the family of basic functions {A1, A2, . . .,
An} is given by

𝐹1 = 1
h
∫𝑎+ℎ
𝑎−ℎ

f (𝑥) 𝐴1 (𝑥) 𝑑𝑥,
𝐹𝑖 (𝑥) = 𝐹𝑖 (𝑥) 𝑖 = 2, . . . , 𝑛 − 1

𝐹𝑛 = 1
h
∫𝑏+ℎ
𝑏−ℎ

𝑓 (𝑥) 𝐴𝑛 (𝑥) 𝑑𝑥
(22)

Hence the extended iF-transform of 𝑓 is given by

f𝐹,𝑛 (𝑥) = 𝐹1 𝐴1 (𝑥) + 𝑛−1∑
𝑖=2

𝐹𝑖𝐴 𝑖 (𝑥) + 𝐹𝑛 A𝑛 (𝑥)
x ∈ [a-h, b + ℎ]

(23)

By [13, Lemma 9], we obtain that

𝑓𝐹,𝑛 (𝑎) = 𝐹1 = 𝑓 (𝑎)
𝑓𝐹,𝑛 (𝑏) = 𝐹𝑛 = 𝑓 (𝑏) (24)

Let S be a fuzzy number with a continuous membership
function and supp(S) = [a,b].We consider anh-uniform fuzzy
partition {A1, A2, . . ., An} of [a,b] with n ≥ 3 and let S𝐹,𝑛(𝑥) be
the extended iF-transform of S. We obtain that [13, Prop. 11]

(i) S𝐹,𝑛 (a) = S𝐹,𝑛 (𝑏) = 0
(ii) S𝐹,𝑛 (𝑥) > 0 ∀𝑥 ∈ (𝑎, 𝑏)
(iii) S𝐹,𝑛 (𝑥) = 𝑛−1∑

𝑖=2

𝑆𝑖𝐴 𝑖 (𝑥)
(25)

where Si is the ith component of the direct F-transform of S
(cfr., formulae (15)). Theorem 13 of [13] provides the approx-
imation property of the extended iF-transform as follows.
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�eorem 3. Let S be a FN having a continuous membership
function and supp(𝑆) = [𝑎, 𝑏]. Let a fuzzy partition {𝐴1, A2,. . ., 𝐴𝑛} of [𝑎, 𝑏] be h-uniform with n ≥ 3 and 𝑆𝐹,𝑛(𝑥) be
the extended iF-transform of S calculated by (23). Then the
following inequality holds:

sup
𝑥∈[𝑎,𝑏]

󵄨󵄨󵄨󵄨󵄨S𝐹,𝑛 (𝑥) − 𝑆 (𝑥)󵄨󵄨󵄨󵄨󵄨 ≤ 2𝜔 (𝑆, ℎ) (26)

where 𝜔(𝑆, ℎ) is the modulus of continuity of S given by

𝜔 (𝑆, ℎ) = sup
𝑥,𝑦∈[𝑎,𝑏]:|𝑎−𝑏|≤ℎ

󵄨󵄨󵄨󵄨𝑆 (𝑥) − 𝑆 (𝑦)󵄨󵄨󵄨󵄨 (27)

Another important theorem [13, Th. 14] is the following.

�eorem 4. Let S be a FN having a continuous membership
function, supp(𝑆) = [𝑎, 𝑏], and core(𝑆) = [𝑐, 𝑑], a< c< d< b. Let
a fuzzy partition {𝐴1, A2, . . ., 𝐴𝑛} of [𝑎, 𝑏] be h-uniform with
n ≥ 3 and a fuzzy set T such that T(𝑥) = 𝑆𝐹,𝑛(𝑥) calculated by
(23) in [𝑎, 𝑏] and T(𝑥)=0 if x∉ [𝑎, 𝑏]. If h = (b-a)/(n-1) is such
that h ≤ min{(d-c)/4, c-a, b-𝑑}, then T is a FN for which the
following hold:

1. supp(𝑇) = supp(𝑆)
2. If core(𝑇) = [𝑐󸀠,𝑑󸀠], then c ≤ 𝑐󸀠 ≤ 𝑑󸀠 ≤ d, |𝑐-𝑐󸀠| ≤ 2h,|𝑑-𝑑󸀠| ≤ 2h
3. sup𝑥∈[𝑎,𝑏]|𝑇(𝑥) − 𝑆(𝑥)| ≤ 4𝜔(𝑆, ℎ)
4. If S- strictly increases on [a,c], then T strictly increases

on [a,𝑐󸀠]
5. If S+ strictly decreases on [d,b], then T strictly decreases
on [𝑑󸀠,b]

The preservation of the properties “ambiguity” and “value” of a
FN and their approximation with an extended iF-transform is
given by the following theorem in [13, Theorem 27]:

�eorem 5. Let S be a FN having a continuous membership
function with supp(𝑆) = [a,b] and core(𝑆) = [c,d], a < c < d <
b. Let a fuzzy partition {𝐴1, A2, . . ., 𝐴𝑛} of [a,b] be h-uniform
with n ≥ 3 and a fuzzy set T such that T(𝑥) = 𝑆𝐹,𝑛(𝑥) given by
(23) in [a,b] and T(𝑥)=0 if x∉ [a,b]. Let core(𝑇) = [𝑐󸀠,𝑑󸀠] with𝑐󸀠 ≤ 𝑑󸀠. By putting 𝛿ℎ = 2𝜔(𝑓, ℎ), we obtain that󵄨󵄨󵄨󵄨𝐴𝑚𝑏𝑟 (𝑆) − 𝐴𝑚𝑏𝑟 (𝑇)󵄨󵄨󵄨󵄨 ≤ (𝐾̃ℎ,1 (𝑆) + 𝐾̃ℎ,2 (𝑆)) 𝛿ℎ (28)

󵄨󵄨󵄨󵄨𝑉𝑎𝑙𝑟 (𝑆) − 𝑉𝑎𝑙𝑟 (𝑇)󵄨󵄨󵄨󵄨 ≤ (𝐾̃ℎ,1 (𝑆) + 𝐾̃ℎ,2 (𝑆)) 𝛿ℎ (29)

where 𝐾̃ℎ,1(𝑆) = 𝑐 − 𝑎 + |𝑐| + 4ℎ and 𝐾̃ℎ,2(𝑆) = 𝑏 − 𝑑 + |𝑏| + 4ℎ.
In order to apply the extended iF-transform to approx-

imate a FN S with one-element core, in [13] the concept of
regular h-uniform partition of [a,b] is introduced as an h-
uniform partition of [a,b] such that A1 is differentiable in
[a,x2], Ai is differentiable in [xi-1 ,xi+1] for i = 2,. . .,n-1, andAn is
differentiable in [xn-1,b]. Thus, we can define the normalized
extended iF-transform given as

𝑆F,n (𝑥) = S𝐹,𝑛 (𝑥)
max𝑥∈[𝑎,𝑏] (S𝐹,𝑛 (𝑥)) 𝑥 ∈ [𝑎 − ℎ, 𝑏 + ℎ] (30)

A theorem similar to Theorem 5 is given in [13, Theorem 29]
as follows.

�eorem 6. Let S be a FN having a continuous membership
function with supp(𝑆) = [a,b] and core(𝑆) = {𝑐}, a < c < b. Let{𝐴1, A2, . . ., 𝐴𝑛} be a regular h-uniform partition of [a,b] and
T(𝑥) = 𝑆𝐹,𝑛(𝑥) a fuzzy set given by (30) in [a,b] and T(𝑥)=0 if
x∉ [a,b]. Let core(𝑇) = [𝑐󸀠,𝑑󸀠] with 𝑐󸀠 ≤ 𝑑󸀠 and 𝛿ℎ = (8/(1 −4𝜔(𝑓, ℎ)))𝜔(𝑓, ℎ). Then the following properties hold:

󵄨󵄨󵄨󵄨𝐴𝑚𝑏𝑟 (𝑆) − 𝐴𝑚𝑏𝑟 (𝑇)󵄨󵄨󵄨󵄨 ≤ (𝐾̃1 (𝑆) + 𝐾̃2 (𝑆)) 𝛿ℎ (31)

󵄨󵄨󵄨󵄨𝑉𝑎𝑙𝑟 (𝑆) − 𝑉𝑎𝑙𝑟 (𝑇)󵄨󵄨󵄨󵄨 ≤ (𝐾̃1 (𝑆) + 𝐾̃2 (𝑆)) 𝛿ℎ (32)

where 𝐾̃1(𝑆) = 𝑐 − 𝑎 + 3|𝑐| + 2max(|𝑎|, |𝑏|) and 𝐾̃2(𝑆) = 𝑏 −𝑐 + 3|𝑐| + 2max(|𝑎|, |𝑏|).
Now we suppose that the membership values of a FN S in

form (1) are assigned on a discrete set of m points a = p1 <
p2 < ⋅ ⋅ ⋅ < pm-1 < pm = b. We consider an h-uniform fuzzy
partition {A1, A2, . . ., An} of [a,b]. If the set of points are
sufficiently dense with respect to the fuzzy partition, i.e., if

𝑚∑
𝑗=1

𝐴 𝑖 (𝑝𝑗) > 0 𝑖 = 2, . . . , n − 1, (33)

then the extended iF-transform of 𝑆 is defined for any x∈[a,b]
as follows [13]:

𝑆𝐹,𝑛 (𝑥) = 𝑆1𝐴1 (𝑥) + 𝑛−1∑
𝑖=2

𝑆𝑖𝐴 𝑖 (𝑥) + 𝑆𝑛𝐴𝑛 (𝑥) (34)

where 𝑆1 = 𝑆(𝑎), 𝑆𝑛 = 𝑆(𝑏), and Si is the ith component of
the direct F-transform of S in [a,b] for i=1,. . .,n. Similarly, it
can be proved that all the above properties of the extended
iF-transform of a FN with continuous membership function
apply in the discrete case as well.

4. Extended iF-Transform and
Fuzzy Rule-Based System

Let the expert knowledge be formed by a set of fuzzy rules in
a linguistic fuzzy model:

Rk: IF (x1 = X1k) Δ 1 (x2 = X2k) Δ 2 ⋅ ⋅ ⋅ Δ n (xn = Xnk)
THEN (y = Yi) (35)

where x1, x2,. . ., xn are input variables, y is the output
variable, X1i, X2i,. . ., Xni, Yi are fuzzy sets and the operator Δ i
(i=1,. . .,n) is an ANDor anOR operator. We construct a fuzzy
rule set considering only AND connectives, splitting rules in
which there are OR connectives in the antecedent. This fact
can be also represented via a fuzzy relation equation.

We propose a FRBS in which the FNs of the fuzzy rule
set are approximated by using extended iF-transforms. We
suppose that the fuzzy sets in the antecedent and consequent
of each rule are given by FNs whose membership functions



Advances in Fuzzy Systems 7

Inference Engine

Crisp input
data

Fuzzy rule base

Extended F-Transform
approximation

Discrete 
fuzzy

numbers

Fuzzification Defuzzification

Crisp
outputs

Extended Direct
F-transform
components

Inference Engine

Crisp input
data

Fuzzy rule base

Fuzzification Defuzzification

Crisp
outputs

Fuzzy Inference System

Extended F-Transform
approximation

Discrete 
fuzzy

numbers

Extended Direct
F-transform
components

Extended F-Transform
Fuzzy Number
Approximation

Figure 4: Schema of the proposed FRBS.

are assigned in a discrete set of points p1 = a < p2 < ⋅ ⋅ ⋅ <
pm-1 < pm = b. An example of this case occurs when, in a
collaborative project, the membership values of a fuzzy set
are given over a discrete set of points by means of averages of
membership values assigned by different stakeholders.

Let [a,b] be the core and [c,d] be the support of this
FN. We approximate the membership function of it by the
extended iF-transform calculated with (34). As already said
above in Section 3, we find a fuzzy partition such that the
set of points is sufficiently dense with respect to it and we
apply the iterative process given in Section 1.1. For each FN
in the antecedents and in the consequents of the fuzzy rules,
we calculate the discrete extended direct F-transform storing
them in the fuzzy rule set. The crisp input data are fuzzified
via (34) by using the stored direct F-transform components
of the FNs. The inference engine applies to the max-min
Mamdani inference model to calculate the strength of each
rule and to obtain the final fuzzy set aggregating the output
fuzzy sets. The crisp output value is obtained by applying the
CoG method. The FRBS is schematized in Figure 4.

The extended iF-transform approximates each fuzzy
number by considering the set of points in which its member-
ship function is assigned. This function creates an h-uniform
fuzzy partition of the support of the fuzzy set and verifies
that the set of points is sufficiently dense with respect to the
fuzzy partition. Initially n is set to a value n0 (for example,
n0 = 3). If the set of points is not sufficiently dense with
respect to the fuzzy partition, the F-transform approximation
method cannot be applied; otherwise, the extended direct
F-transform components and the approximation error are
calculated.

If this error is less than a defined threshold, the process
stops and the extended direct F-transform components are

stored; otherwise, n is increased by 1 and the process is
iterated.

If the set of points is not sufficiently dense with respect
to the fuzzy partition, the process stops with an error and the
previous extended direct F-transform components are stored.

In this last case, the best possible approximation of the FN
is obtained, even if the approximation error is higher than the
threshold. In order to create an h-uniform fuzzy partition of
[a,b], the following basic functions are used:

𝐴1 (𝑥) = {{{
0.5 (cos 𝜋ℎ (𝑥 − 𝑎) + 1) if 𝑥 ∈ [𝑎, 𝑥2]0 otherwise

𝐴 𝑖 (𝑥)
= {{{

0.5 (cos 𝜋ℎ (𝑥 − 𝑥𝑖) + 1) if 𝑖 ∈ [xi-1, x𝑖+1]0 otherwise

𝑖 = 2, . . . , 𝑛 − 1
𝐴𝑛 (𝑥)

= {{{
0.5 (cos 𝜋ℎ (𝑥 − 𝑥𝑛−1) + 1) if 𝑖 ∈ [𝑥𝑛−1, 𝑏]0 otherwise

(36)

The approximation error is given by the Root Mean Square
Error (RMSE) defined as

𝑅𝑀𝑆𝐸 = √∑𝑛𝑗=1 (S𝐹,𝑛 (𝑝𝑗) − 𝑆 (𝑝𝑗))2𝑛 (37)
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Description: Approximate a fuzzy number with an extended iF-
transform

Input: Initial fuzzy partition size n0
Threshold parameter
A set of m points and their membership function value(𝑝1, 𝑓(𝑝1)), . . . , (𝑝𝑛, 𝑓(𝑝𝑛))

Output: RMSE error
Extended Direct F-transform components(1) nfl n0(2) Read the dataset of points(3) Create a h-uniform fuzzy partition by using the basic functions (36)(4) Calculate the extended direct F-transform components(5) WHILE the dataset is sufficiently dense with respect to the fuzzy partition(6) Calculate the RMSE approximation error (37)(7) IF (RMSE approximation error ≤ threshold) THEN(8) Store the extended direct F-transform components and the RSME error(9) RETURN “Success”(10) END IF(11) nfln+1(12) Create a h-uniform fuzzy partition by using the basic functions (36)(13) Calculate the extended direct F-transform components(14) END WHILE(15) Store the extended direct previous F-transform components (n = n-1) and the

RMSE error(16) RETURN “ERROR: Dataset non sufficiently dense”(17) END

Algorithm 2: Extended F-transform approximation.

The threshold for the RMSE is set as a positive value
much smaller than 1. The extended iF-transform method is
schematized in Algorithm 2.

The fuzzification reads the input data and calculates the
membership degree of each fuzzy set related to the input
variable using (34). The strength of each rule is obtained
via the min connective. If 𝑓󸀠𝑋ℎ𝑘 (𝑥𝑘) is the approximated
membership degree of the input variable xk, the strength of
the kth rule is as follows:

Sk: min {𝑓󸀠𝑋ℎ1 (𝑥1) , 𝑓󸀠𝑋ℎ2 (𝑥2) , . . . , 𝑓󸀠𝑋ℎ𝑘 (𝑥𝑘)} (38)

The output fuzzy set is constructed as follows:

𝑓𝐵 (𝑦) = max {min (𝑓󸀠𝑌1 (𝑦) , 𝑠1) ,min (𝑓󸀠𝑌2 (𝑦) , 𝑠2) ,
. . . ,min (𝑓󸀠𝑌𝑟 (𝑦) , 𝑠𝑟)} (39)

where 𝑓󸀠𝐵(𝑦) is the approximated membership function of
the output variable to the fuzzy set in the consequent of the
kth rule. The defuzzification function implements the CoG
algorithm for converting the fuzzy output in a crisp number.
We partition the support of the output fuzzy set in NB
intervals with equal width. Let yi be the value of the midpoint
of the ith interval. The output crisp value 𝑦 is as follows:

𝑦 = ∑𝑁𝐵𝑖=1 𝑓𝐵 (𝑦𝑖) ⋅ 𝑦𝑖∑𝑁𝐵𝑖=1 𝑓𝐵 (𝑦𝑖) (40)

We test our FRBS to a spatial decision problem in Section 5.

5. Experimental Results: The Livability in
Residential Housings

We apply the extended F-transform in a FRBS based on a
set of census data of the 92 municipalities of the district of
Naples (Italy), related to the residential housing. Our aim
is to evaluate their livability whose crisp output variable is
evaluated in percentage on the basis of a set of fuzzy rules
extracted by experts in which the following six linguistic
input variables are considered: x1 = average surface of the
housings in m2, x2 = percentage of housings with six or
more rooms, x3 = percentage of residential buildings built
since 2000, x4 = percentage of housings with centralized or
autonomous heating system, x5 =percentage of housingswith
two or more showers or bathtubs, and x6 = percentage of
housings with two or more restrooms. The crisp input data
are extracted from the ISTAT dataset. The crisp value of the
variable x1 is given by the total surface of the housings in the
municipality dividing by the number of housings. The crisp
values of the variables x2, . . ., x6 are obtained dividing the
corresponding absolute value recorded in the dataset by the
total number of housings in the municipality. The domain of
any variable is partitioned in 5 fuzzy sets labeled as “Low”,
“Mean Low”, “Mean”, “Mean High”, and “High”. The fuzzy
rule set contains the 62 fuzzy rules in Table 1 constructed by
a set of twenty experts.

In the preprocessing phase we apply the extended F-
transform based algorithm to approximate the five FNs
associated with each variable. Each FN is obtained as average
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Table 1: The fuzzy rule set used for evaluating the livability in residential housings.

ID Rule
r1 IF (x1 = High) AND (x2 = High) AND (x3 = High) THEN y = High
r2 IF (x1 = High) AND (x2 = Mean High) AND (x4 = Mean High) THEN y = Mean High
r3 IF (x1 = High) AND (x3 = High) THEN y = High
r4 IF (x1 = High) AND (x4 = High) THEN y = High
r5 IF (x1 = High) AND (x3 = Mean High) AND (x5 = High) THEN y = High
r6 IF (x1 = High) AND (x3 = Mean High) AND (x6 = High) THEN y = High
r7 IF (x1 = High) AND (x3 = Mean High) AND (x5 = Mean High) THEN y = Mean High
r8 IF (x1 = High) AND (x3 = Mean High) AND (x6 = Mean High) THEN y = Mean High
r9 IF (x1 = High) AND (x4 = Mean High) AND (x5 = High) THEN y = High
r10 IF (x1 = High) AND (x4 = Mean High) AND (x6 = High) THEN y = High
r11 IF (x1 = High) AND (x4 = Mean High) AND (x5 = Mean High) THEN y = Mean High
r12 IF (x1 = High) AND (x4 = Mean High) AND (x6 = Mean High) THEN y = Mean High
r13 IF (x2 = High) AND (x3 = High) THEN y = High
r14 IF (x2 = High) AND (x4 = High) THEN y = High
r15 IF (x3 = High) AND (x4 = High) THEN y = High
r16 IF (x3 = High) AND (x4 = Mean High) AND (x5 = High) THEN y = High
r17 IF (x3 = High) AND (x4 = Mean High) AND (x5 = Mean High) THEN y = Mean High
r18 IF (x3 = High) AND (x4 = Mean High) AND (x5 = Mean) THEN y = Mean High
r19 IF (x3 = High) AND (x4 = Mean High) AND (x6 = High) THEN y = High
r20 IF (x3 = High) AND (x4 = Mean High) AND (x6 = Mean High) THEN y = Mean High
r21 IF (x4 = High) AND (x5 = High) THEN y = High
r22 IF (x1 = Mean High ) AND (x3 = Mean High) THEN y = Mean High
r23 IF (x1 = Mean High ) AND (x3 = Mean) THEN y = Mean High
r24 IF (x1 = Mean High ) AND (x4 = Mean High) THEN y = Mean High
r25 IF (x1 = Mean High ) AND (x4 = Mean) THEN y = Mean High
r26 IF (x2 = Mean High) AND (x3 = High) THEN y = Mean High
r27 IF (x2 = Mean High) AND (x3 = Mean High) THEN y = Mean High
r28 IF (x2 = Mean High) AND (x4 = High) THEN y = Mean High
r29 IF (x2 = Mean High) AND (x4 = Mean High) THEN y = Mean High
r30 IF (x1 = Mean) AND (x3 = Mean High) THEN y = Mean
r31 IF (x1 = Mean) AND (x3 = Mean) THEN y = Mean
r32 IF (x1 = Mean) AND (x4 = Mean High) THEN y = Mean
r33 IF (x1 = Mean ) AND (x4 = Mean) THEN y = Mean
r36 IF (x2 = Mean) AND (x3 = Mean) THEN y = Mean
r37 IF (x2 = Mean) AND (x4 = Mean) THEN y = Mean
r38 IF (x3 = Mean) AND (x5 = Mean) THEN y = Mean
r39 IF (x3 = Mean) AND (x6 = Mean) THEN y = Mean
r40 IF (x4 = Mean) AND (x5 = Mean) THEN y = Mean
r41 IF (x4 = Mean) AND (x6 = Mean) THEN y = Mean
r42 IF (x1 = Mean) AND (x3 = Mean Low) THEN y = Mean Low
r43 IF (x1 = Mean) AND (x4 = Mean Low) THEN y = Mean Low
r44 IF (x1 = Mean Low) AND (x3 = Mean) THEN y = Mean Low
r45 IF (x1 = Mean Low) AND (x4 = Mean) THEN y = Mean Low
r46 IF (x2 = Mean Low) AND (x3 = Mean) THEN y = Mean Low
r47 IF (x2 = Mean Low) AND (x4 = Mean) THEN y = Mean Low
r48 IF (x3 = Mean Low) AND (x5 = Mean Low) THEN y = Mean Low
r49 IF (x3 = Mean Low) AND (x6 = Mean Low) THEN y = Mean Low
r50 IF (x4 = Mean Low) AND (x5 = Mean Low) THEN y = Mean Low
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Table 1: Continued.

ID Rule
r51 IF (x4 = Mean Low) AND (x6 = Mean Low) THEN y = Mean Low
r52 IF (x3 = Mean Low) AND (x5 = Mean Low) THEN y = Mean Low
r53 IF (x1 = Low) AND (x4 = Mean Low) THEN y = Low
r54 IF (x1 = Low) AND (x4 = Low) THEN y = Low
r55 IF (x2 = Low) AND (x4 = Mean Low) THEN y = Low
r56 IF (x2 = Low) AND (x4 = Low) THEN y = Low
r57 IF (x2 = Low) AND (x5 = Low) THEN y = Low
r58 IF (x2 = Low) AND (x6 = Low) THEN y = Low
r59 IF (x3 = Low) AND (x5= Low) THEN y = Low
r60 IF (x3 = Low) AND (x6= Low) THEN y = Low
r61 IF (x4 = Low) AND (x5= Low) THEN y = Low
r62 IF (x4 = Low) AND (x6= Low) THEN y = Low
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Figure 5: Fuzzy numbers x1 = Low, x2 = Mean, x3 = Mean High, and x4 = High (in blue) and their extended iF-transform approximations
(in red).

of the membership values assigned by the experts in 200
points.

In Figure 5 we show some FNs and their approximations
obtained by applying the extended F-transform. We set the
threshold to 0.01, so having a RMSE less than 0.01 for every
FN.

The FNs (x1 = Low) and (x4 = High) have a degenerated
side. In Tables 2(a)–2(f) we show the parameters a, c, d, b of
each FN xi i = 1, 2, 3, 4, 5, 6 and the RMSE, respectively.

In Table 3 we show the parameters a, c, d, b of the
FNs used for the output variable y and the RMSE obtained
applying the extended F-transform.

At the end of the preprocessing phase, the fuzzification
of the input data is performed as well. In Figures 6(a)–6(f)
we show the thematic maps (in a Geographic Information
System environment) of the six input variables xi (i = 1,2, 3,
4, 5, 6), respectively, in the municipalities of the district of
Naples. In each map the municipality is classified with the
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Table 2

(a) Parameters and RMSE of the approximation for fuzzy sets of x1

x1 (m2)
Fuzzy number a c d b RMSE
Low 20 20 45 70 9.11×10-3
Mean Low 45 70 75 90 9.91×10-3
Mean 75 90 95 100 9.17×10-3
Mean High 95 100 115 125 9.76×10-3
High 110 120 150 150 9.34×10-3

(b) Parameters and RMSE of the approximation for fuzzy sets of x2

x2

Fuzzy number a c d b RMSE
Low 0 0 1 4 9.18×10-3
Mean Low 0.5 3 6 8 9.43×10-3
Mean 2 7 12 20 9.19×10-3
Mean High 8 12 15 25 9.57×10-3
High 15 25 50 50 9.15×10-3

(c) Parameters and RMSE of the approximation for fuzzy sets of x3

x3

Fuzzy number a c d b RMSE
Low 0 0 0.5 1 9.21×10-3
Mean Low 0.4 0.6 1 1.5 9.35×10-3
Mean 1 2 4 6 9.33×10-3
Mean High 2 4 7 10 9.02×10-3
High 6 10 30 30 9.26×10-3

(d) Parameters and RMSE of the approximation for fuzzy sets of x4

x4

Fuzzy number a c d b RMSE
Low 0 0 30 40 9.24×10-3
Mean Low 30 50 60 70 9.29×10-3
Mean 60 65 70 80 9.49×10-3
Mean High 75 80 85 90 9.35×10-3
High 85 95 100 100 9.08×10-3

(e) Parameters and RMSE of the approximation for fuzzy sets of x5

x5

Fuzzy number a c d b RMSE
Low 0 0 10 15 9.30×10-3
Mean Low 7 15 20 25 9.52×10-3
Mean 20 25 30 35 9.25×10-3
Mean High 30 35 40 50 9.31×10-3
High 40 50 100 100 9.37×10-3

(f) Parameters and RMSE of the approximation for fuzzy sets of x6

x6

Fuzzy number a c d b RMSE
Low 0 0 10 15 9.32×10-3
Mean Low 7 15 25 30 9.19×10-3
Mean 22 28 32 35 9.24×10-3
Mean High 30 40 45 55 9.48×10-3
High 50 60 100 100 9.28×10-3
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Table 3: Parameters and RMSE of the approximation for fuzzy sets of output y.

y
Fuzzy number a c d b RMSE
Low 0 0 10 20 9.67×10-3
Mean Low 10 20 30 40 9.32×10-3
Mean 30 40 60 70 9.46×10-3
Mean High 50 70 80 85 9.78×10-3
High 80 90 100 100 9.31×10-3

(a) Thematic map for the input variable x1 (b) Thematic map for input variable x2

(c) Thematic map for input variable x3 (d) Thematic map for input variable x4

(e) Thematic map for input variable x5 (f) Thematic map for input variable x6

Figure 6

linguistic label of the fuzzy set with the highest approximated
membership value.

The defuzzified final values of livability in the residential
housings (calculated in percentage) for everymunicipality are
in Table 4.

In Figure 7 we show a thematic map of the index of liv-
ability in the residential housings: the label of output variable

fuzzy set with the greatest membership degree is assigned for
every municipality.

We compare these results with the ones obtained by
approximating the input and output variables fuzzy sets with
trapezoidal FNs, by using the approximation method in [12]
(Table 5). We apply the inference system to the residential
housing dataset again, by using the approximated trapezoidal
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Table 4: Defuzzified values obtained for livability of residential housings.

Municipality 𝑦̂ Municipality 𝑦̂ Municipality 𝑦̂

Acerra 55.18 Forio 40.83 Procida 20.68
Afragola 27.12 Frattamaggiore 55.02 Qualiano 18.36
Agerola 59.21 Frattaminore 33.8 Quarto 65.52
Anacapri 60.29 Giugliano in Campania 81.75 Roccarainola 82.01
Arzano 23.34 Gragnano 29.64 SanGennaro Vesuviano 76.18
Bacoli 24.65 Grumo Nevano 55 SanGiorgio a Cremano 23.14
Barano d’Ischia 58.36 Ischia 27.13 SanGiuseppe Vesuviano 51.03
Boscoreale 32.23 Lacco Ameno 26.69 San Paolo BelSito 63.46
Boscotrecase 48.7 Lettere 42.57 San Sebastiano al Vesuvio 82.37
Brusciano 63.37 Liveri 81.39 San Vitaliano 66.52
Caivano 44.85 Marano di Napoli 24.93 Santa Maria la Carità 56.94
Calvizzano 52.06 Mariglianella 82.39 Sant’Agnello 33.85
Camposano 50.84 Marigliano 53.68 Sant’Anastasia 64.19
Capri 47.32 Massa di Somma 36.15 Sant’Antimo 47.82
Carbonara di Nola 73.29 MassaLubrense 71.5 Sant’Antonio Abate 58.19
Cardito 47.68 Melito di Napoli 26.87 Saviano 76.84
Casalnuovo di Napoli 23.45 Meta 56.38 Scisciano 88.93
Casamarciano 92.74 Monte di Procida 32.69 Serrara Fontana 54.08
Casamicciola Terme 34.61 Mugnano di Napoli 29.14 Somma Vesuviana 52.11
Casandrino 39.26 Napoli 53.82 Sorrento 20.18
Casavatore 33.15 Nola 75.35 Striano 73.69
Casola di Napoli 38.77 Ottaviano 52.94 Terzigno 52.01
Casoria 34.02 Palma Campania 62.9 Torre Annunziata 25.12
Castellammare di Stabia 44.26 Piano di Sorrento 60.67 Torre del Greco 26.36
Castello di Cisterna 73.89 Pimonte 27 Trecase 55.8
Cercola 49.67 Poggiomarino 75 Tufino 96.44
Cicciano 67.16 Pollena Trocchia 25.13 Vico Equense 20.37
Cimitile 87.38 Pomigliano d’Arco 19.75 Villaricca 78.36
Comiziano 85.46 Pompei 17.89 Visciano 78.45
Crispano 39.07 Portici 22.51 Volla 55.83
Ercolano 28.14 Pozzuoli 39.43

Figure 7:Thematicmap of index of livability in residential housings.

FNs as fuzzy sets in the antecedents and consequents of the
rule set. Then we calculate the RMSE and we calculate the
number and the percentage of municipalities classified with

a livability linguistic label different by the one contained in
Figure 7.

The mean RMSE index obtained by using the trapezoidal
FN is 6.3×10−2: this value is greater than the threshold 1×10−2
set by applying the extended F-transform. The mean differ-
ence in absolute value between the crisp livability obtained
by using the trapezoidal approximation of the input and
output FNs with respect to the ones obtained by using
the extended iF-transform approximation overcomes 5%:
this difference is generated by the greater error obtained by
the approximation with trapezoidal FNs. The percentage of
7.61% of the municipalities is classified differently in the final
map of livability underlining the effective improvement of
the final results obtained with the extended iF-transform
method. The seven municipalities with different livability
class are given in Table 6.

We can appropriately select the RMSE threshold in order
to increase the reliability of the final results; however, we point
out that the choice of a very small threshold can lead to a
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Table 6: Municipalities with different livability class.

Municipality Extended IFtr livability class Trapezoidal livability class
Casola di Napoli Mean Mean Low
Casoria Mean Low Mean
Crispano Mean Mean Low
Massa di Somma Mean Mean Low
Pozzuoli Mean Mean Low
Sant’Agnello Mean Low Mean
Scisciano Mean High High

fuzzy uniform partition too finer for which the dataset of the
corresponding values is not sufficiently dense.

6. Conclusions

Wepresent a newmethod based on the extended F-transform
to approximate FNs. We apply this method in a fuzzy rule-
based system of Mamdani type related to a spatial analysis
problem consisting in the evaluation of the livability of
residential housings in the municipality of the district of
Naples. In many spatial analysis problems, decision-making
systems based on expert rules are used in order to extract
thematic maps of a final index. A finer approximation of the
membership functions of the fuzzy sets in the antecedents
and in the consequence of the fuzzy rules is necessary to
guarantee a good reliability of the final thematic maps. In
many cases, for example, in participatory contexts in which
knowledge is provided by different experts, these FNs are
assigned on a discrete set of points. In future we propose to
apply the extended F-transformmethod to the approximation
of FNs in multicriteria fuzzy decision-making problems.
Data analysis shall be another field of investigation, mainly
for establishing linear dependency of attributes from other
attributes in large datasets via a fuzzy number: this is useful
for the reduction of the size of these datasets.

Data Availability

The data are the census data extracted from the Italian
Statistical Institute (ISTAT, Istituto nazionale di STATistica)
at the website: the crisp input data are extracted from the
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