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�is paper presents the CP-TOPSIS Model in group decision-making using complex Fuzzy Data. Complex numbers were
employed in this model, and the central point index was used to de�ne both the negative and positive ideals as well as the distance
between each option. In this approach, the options are graded using complex data (due to replacing linguistic variables). One of
the advantages of this model in decision-making is the capability that creates a complex fuzzy technique for investigating, grading,
and selecting the best option related to complex fuzzy data. �e results show that this model e�ectively rates and grades the
complex fuzzy data through an alternative period. Quantummechanics wave functions could not be analyzed, nor could signals or
time series or stock exchange transactions predict factors of a multiperiod alternation, nor could predictions be made about any of
these variables. As a result, there are numerical results in rating with high precision.

1. Introduction

In everyday life, di�erent criteria are usually measured
implicitly. Such decisions may be made solely based on
intuition and judgment. �ere are several crises that must be
dealt with; therefore, it is critical to recognize the situation
accurately.�e site of a nuclear power facility, for instance, is
a highly complex subject involving numerous parameters.
�erefore, multicriteria decision-making (MCDM) is related
to constructing and solving decision-making and planning
problems with various criteria. MCDM was developed as a
part of operation research in designing computational and
mathematical tools to support the subjective assessment of
the criteria performance by decision-makers [1].

In the last few years, MCDM tools and their applications
have been used in di�erent studies to solve problems as-
sociated with the industry [2], science [3], and engineering
[4]. MCDM o�ers the best choice for decision-making out of
a �nite number of options [5]. Besides, due to the changes
and developments over the past decades, MCDM is one of

the fastest tools and methods for selecting the best option in
the decision-making business. �e decision-makers need
help deciding between the fast and superior options. De-
cision-making methods are well accepted in all areas of the
decision-making process with the help of computers.
MCDM is vital in operations research and management
science and is the basis for making and developing various
computer-based methods [6]. MCDM issues can be classi-
�ed into two categories: Multiple Attribute Decision-Mak-
ing (MADM) and Multiple Objective Decision-Making
(MODM). MADM is the most well-known branch of de-
cision-making and a general class of operations research
models dealing with decision-making problems under some
criteria.

MADM approach requires selecting among decision
alternatives described by their attributes. MADM problems
are assumed to have a predetermined and limited number of
decision alternatives. Solving a MADM problem involves
sorting and ranking. As an alternative to the decision-
making matrix and additional information provided by the

Hindawi
Advances in Fuzzy Systems
Volume 2022, Article ID 1477098, 14 pages
https://doi.org/10.1155/2022/1477098

mailto:m.barkhordariahmadi@gmail.com
https://orcid.org/0000-0003-4519-8543
https://orcid.org/0000-0003-1745-5274
https://orcid.org/0000-0003-0359-7458
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1477098


decision-maker, MADMmethodologies can be used to rank,
screen, or select among the options. Moreover, MODM is a
powerful tool to help find decisions that will best satisfy
several conflicting objectives. Contrary to the MADM, the
decision alternatives are not given in the MODM approach.
Instead, MODM provides a mathematical framework for
designing a set of decision alternatives. A solution’s suit-
ability for implementation is determined by how closely it
approaches a given set of goals. )eMADM can be classified
into two categories of compensatory and noncompensatory
methods. Compensatory MADM methods incorporate
trade-offs between high and low performance in the analysis.
)ose methods that do not perform such incorporation are
termed noncompensatory. Hwang and Yoon [5] presented
several MADM methods. Two methods used in the present
work are briefly explained as follows:

TOPSIS: the principle behind TOPSIS is simple; the
chosen alternative should be as close to the ideal and far
from the negative ideal solution as possible.
Distance from Target: this method and its results are
also straightforward for graphical description. First,
target values for each attribute are chosen, not re-
quiring to be exhibited by any available alternative.

)e TOPSIS method has some advantages, including its
simplicity, comprehensibility, ease of calculation, and ability
tomeasure the relative performance of each alternative using
a simple mathematical form. Fuzzy TOPSIS is one of the
most effective techniques in MCDM fuzzy, which was in-
troduced by Wang Yoon [5]. )e TOPSIS method is based
on the premise that the alternative should simultaneously
have the shortest distance with the (PIS) positive ideal
solution and the farthest distance with the (NIS) negative
ideal solution. In the TOPSIS method, for each criterion, the
relative weighted distances between the various options are
listed in relation to PIS and NIS. )e relative distances
represent efficiency. )erefore, the efficiency of each option
against each criterion can be operated in this way. Torfi et al.
[7] proposed a hierarchical (AHP) process to determine the
relative weighting of evaluation criteria and a fuzzy TOPSIS
to rank alternatives. Liao and Cao [8] presented an inte-
grated fuzzy TOPSIS approach and multichoice goal pro-
gramming (MCGP) to select support in supply chain
management. )e problem of selecting multicriteria group
support was simulated by Zouggari and Benyoucef [9] based
on the fuzzy TOPSIS approach. Doukas et al. [10] developed
a formula for separating weights to rank alternatives. A
ranking formula was proposed by Kuo [11] based on the
method of Dukas et al. by normalizing the performance
measure of each alternative relative to the cost and profit
criteria, that is, d+

i and d−
i . In both methods, the weights

assigned to the separations have crisp values, and the use of
crisp weights limits the range of applications, as linguistic
weights are commonly used in fuzzy TOPSIS. In this paper,
we used complex language weights to weight the complex
data described in sections.

)is paper is devoted to the discussion of complex fuzzy
number ranking and is expected to have wide applications in

other areas of complex fuzzy data ranking. )e following is
how this article is organized: Section 2 discusses the basic
concept of complex fuzzy numbers and their other appli-
cations. In Section 3, a detailed discussion of the concepts of
complex fuzzy numbers (including definitions and fuzzy
distances) is devoted. In this section, a new method for
ranking complex fuzzy numbers with a central point index is
introduced, and finally, an example of this rankingmethod is
introduced. In Section 4, the results of the new ranking
method are presented. In Section 5, managerial insights are
presented, and finally in Section 6, the work’s conclusion is
fundamentally summarized, and the next field of research is
offered.

2. Literature Review

)e concept of the type-1 fuzzy set was introduced by
LotfiZadeh [12]. In 1975, he introduced the type-2 fuzzy set,
in which its membership function was a fuzzy number [13].
A complex fuzzy set was presented by Ramot et al. [14]. In
recent years, big data has become a growing research
concern. High and low data have often been associated with
fluctuations and uncertainty. Uncertainty may be because of
factors such as corruption or loss of data components, and a
cyclical and repetitive pattern may cause fluctuations in data.
For example, there is more temperature in summer and less
in winter or more traffic during rush hours. Fuzzy sets have
been recently used for ranking the fuzzy numbers with many
applications in numerous sectors of production, industry,
and management. Some applications of fuzzy sets in in-
dustry and management include flow workshop scheduling
(FSS), interactive fuzzy solution method, self-adapting ar-
tificial fish swarm algorithm (SAAFSA) [15], hybrid fuzzy
and data-driven robust optimization for resilience and
sustainable health care supply chain [16], viable medical
waste chain network design [17], two-level solid planning for
the location of renewable energy in conditions of uncertainty
[18], sustainable supply chain network design [19], a robust
optimization model for sustainable and resilient closed-loop
supply chain network design [20], a robust time-cost-
quality-energy-environment trade-off with resource-con-
strained due to uncertainty [21], Viable Supply Chain
Network Design by considering Blockchain Technology and
Cryptocurrency [22], robust optimization of risk-aware,
resilient and sustainable closed-loop supply chain network
design [23], an extended robust mathematical model to
project the course of COVID-19 epidemic in Iran [24], linear
programming of complex integers (CILP) to handle location
decisions [25], developing a sustainable operational man-
agement system [26], a Covering Tour Approach for Disaster
Relief Locating and Routing with Fuzzy Demand [27], a
parallel machine sequence-dependent group scheduling
problem with the goal of minimizing total weighted [28],
hybrid artificial intelligence and robust optimization [55],
and Location Improved Harmony Search Algorithm [29].
However, despite their many applications, prioritizing the
existing options was not considered in ranking the complex
fuzzy numbers.)erefore, in the present paper, we examined
the available options for ranking complex fuzzy numbers by
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the TOPSIS decision method in polar conditions while
considering the periodicity of these numbers.

)e recent complex fuzzy sets are innovative with the
increasing number of applications. Among the applications of
complex fuzzy sets is the analysis of solar activity based on the
number of recorded sunspots [14], signal processing [14], stock
trading in the New York Stock Exchange [30], voter turnout
forecast [30], multiperiodic factor prediction [31], prediction of
voter turnout in elections [32], complex fuzzy logic systems
[30, 33–37], image restoration [38], an integrated approach
based on artificial intelligence, and novel metaheuristic algo-
rithms to predict demand for dairy products [39].

)e complex fuzzy set modifies the fuzzy membership
function’s initial premise. In certain instances, however, it is
argued that a second dimensionmust be added to the concept
of membership function. )e fundamental principle of the
phase is unaffected by the second characteristic of mem-
bership. In both the ordinary and the complex fuzzy sets, the
membership function is the same fuzzy function. In the
apparent dimension of the membership function, the novelty
of complex fuzzy sets is the membership function, the power
factor, or the fuzzy period. According to the definition of a
complex fuzzy set, each grade of membership is defined by an
amplitude term and a phase term. )erefore, the difference
between the two complex fuzzy sets can be simply calculated
by combining the difference between the amplitude terms
and the phase terms. In this regard, Zhang et al. [40] pro-
posed a distance measure to determine the equality of
complex fuzzy sets. Alkouri and Salleh [41] introduced
several distance measures for complex fuzzy sets. None-
theless, in the distance measure determined by Zhang et al.
[40, 41], the periodicity of the phase term of a complex fuzzy
set as a function was disregarded.)e cyclic representation of
the complex membership in a complex fuzzy set is ignored.
We modified the distance measure for complex fuzzy sets.

In this research, we defined and presented a new strategy
for prioritizing a model of decision-making, in which
complex fuzzy numbers play a role. A rating algorithm was
constructed based on the central point index and the
TOPSIS-oriented technique. We also employ linguistic
terminology to analyze possibilities. In this study, we labeled
this method, the so-called CP-TOPSIS. For ranking and
picking the best options based on complex fuzzy data, a
complex fuzzy technique is developed. )ese options may
have many applications, including analyzing wave functions
in quantum mechanics and many physical quantities. )is
paper presents a new rating method through a central point
index based on the center of mass in complex fuzzy numbers
used in the TOPSIS method.)emodified distance function,
which is applicable for the complex fuzzy numbers based on
the complex membership function, is described in the
TOPSIS method and is also shown with a practical instance
in the TOPSIS complex method.

3. Problem Statement

Definition 1. Let U be a universe of discourse. A complex
fuzzy set A on U with a membership function μ(x) for every
x ∈ U specifies that each element is assigned a complex

membership degree in the complex set of numbers C. )e
complex fuzzy set A can be represented as a set of ordered
pairs

A � x, μA(x)( 􏼁: x ∈ U􏼈 􏼉, (1)

where the membership function has a complex form
μA(x) � rA(x).eiωA(x), the amplitude term rA(x) and the
phase term wA(x) are both real-valued, and rA(x) ∈
[0, 1], i �

���
−1

√
. )e function μA(x) maps U into unit disk of

the complex plane, and the function eiωA(x) is a periodic
function with periodicity 2π.

ArgA(x) � ωA(x) + 2kπ,

k � 0, ± 1, ± 2, . . . ,
(2)

in which 0≤ωA(x)< 2π is the main argument of the
function. Consider distance measure for complex fuzzy sets:

d(A, B) �
1
2

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦

+
1
2π

􏽘

n

i�1
ωA xi( 􏼁 − ωB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩,

(3)

where

A � x, μA(x)( 􏼁: x ∈ U, μA(x) � rA(x).e
iωA(x)

􏽮 􏽯,

B � x, μB(x)( 􏼁: x ∈ UμB � rB(x).e
iωB(x)

􏽮 􏽯.
(4)

Complex fuzzy sets are a generalization of ordinary fuzzy
sets. Any ordinary fuzzy set can be represented as a complex
fuzzy set by simply setting the argument component of the
membership function for each element, ω(x), to zero. As a
result, the membership function argument is the distinction
between ordinary and complex fuzzy sets. Indeed, without
an argument for the membership function, the complex
fuzzy set becomes a regular fuzzy set, and the membership
function range is [0, 1].

Example 1. Let A � −1, 0, 1, 2{ } and its complex member-
ship function are

A �
0.6e

i1.2π

−1
+
1.0e

i2π

0
+
0.8e

i1.6π

1
+
0.5e

iπ

2
. (5)

Definition 2. Let A, B be two complex fuzzy sets on universal
set U with membership function μA(x) � rA(x)eiωA(x) and
μB(x) � rB(x)eiωB(x), and then,

(i) μA∪B(x) � rA∪B(x)eiωA∪B(x) �

max (rA(x), rB(x))􏼈 􏼉eimax ωA(x),ωB(x){ }

(ii) μ
A

(x) � r
A

(x)eiω
A

(x) � (1 − rA(x))ei(2π−ωA(x))

(iii) μA∪B(x) � rA∪B(x)eiωA∪B(x) �

min (rA(x), rB(x))􏼈 􏼉eimin ωA(x),ωB(x){ }

(iv) μA∘B(x) � rA∘B(x)eiωA∘B(x) � (rA(x).rB(x))}

ei2π(ωA(x)/2π.ωB(x)/2π), complex fuzzy product
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(v) μ
A􏽢+B

� r
A􏽢+B

(x)e
iω

A􏽢+B � (rA(x) + rB(x) − rA(x)rB

(x))ei2π(ωA(x)/2π+ωA(x)/2π−ωA(x)/2π.ωA(x)/2π). , complex
fuzzy sum.

Zhang et al. [40] defined the distance function as follows:

Definition 3. Let U � x1, x2, · · · , xn􏼈 􏼉 and A, B be two
complex fuzzy numbers:

A � x, μA(x)( 􏼁: x ∈ U􏼈 􏼉,

B � x, μB(x)( 􏼁: x ∈ U􏼈 􏼉,
(6)

where the membership functions are

μA(x) � rA(x).e
iωA (x)and μB(x) � rB(x).e

iωB (x), (7)

where rA(x)rB(x),ωA(x),ωB(x) are real-valued and
i �

���
−1

√
. Let dz: U × U⟶ R be distance the function such

that

dz(A, B) � max sup
x∈U

rA(x) − rB(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,
1
2π

sup
x∈U

ωA(x) − ωB(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼠 􏼡.

(8)

)e following is a counterexample of distance measure 2:

Example 2. Let A � ei0.2π , B � ei2.3π, C � ei1.7π , and then, by
using relation 2, we have

d(A, B) � 0.525 d(A, C) � 0.375. (9)

So, d(A, B)>d(A, C). Based on Figure 1 (the coordi-
nates of points A, B, and C are obtained using the polar form
of complex numbers), we have

d(A, B)>d(A, C). (10)

As shown in Figure 1, this inequality is not correct [42].
)erefore, we can use the following definition to correct

the inaccuracy of relations 2 and 3.

Definition 4. Let A be a complex fuzzy number with a
membership function μA(x) � rA(x).eiωA(x), and then, we
have

ωr
A(x) �

ωA xi( 􏼁, if ωA xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2π,

ωA xi( 􏼁MOD(2π), if ωA xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 2π,

⎧⎨

⎩ (11)

ωA(xi)MOD(2π) is the residue modulo 2π. )us, the
modified distance functions 2 and 3 for complex fuzzy sets
are as follows:

d(A, B) �
1
2

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦

+
1
2π

􏽘

n

i�1
ωr

A xi( 􏼁 − ωr
B xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦,

(12)

dz(A, B) � max sup
x∈U

rA(x) − rB(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,􏼠

1
2π

sup
x∈U

ωr
A(x) − ωr

B(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼡.

(13)

Also, the normalized form 5 is as follows:

dn(A, B) �
1
2n

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦

+
1
2π

􏽘

n

i�1
ωr

A xi( 􏼁 − ωr
B xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦.

(14)

)en, the function of the normalized Euclidean distance
is

dnE(A, B) �
1
2n

􏽘

n

i�1
rA( xi( 􏼁 − rB xi( 􏼁

2⎡⎣

+
1
4π2

ωr
A( xi( 􏼁 − ωr

B xi( 􏼁􏼁
2
􏼑􏼕

1/2
,

(15)

so, we have

0≤dn(A, B)≤ 1,

0≤dz(A, B)≤ 1,

0≤dnE(A, B)≤ 1.

(16)

3.1. Distances for Complex Fuzzy Sets. Let U � x1, x2,􏼈

. . . , xn} be a universe of discourse, and the complex fuzzy set
A may be represented as the set of ordered pairs:

A � x, Î1/4A (x)􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌x ∈ U􏼚 􏼛, (17)

where the membership function Î1/4A (x) is of the form
rA(x)Â · eiωA(x), i �

���
−1

√
, and the amplitude term rA(x) and

the phase term ωA(x) are both real-valued. We know that
the complex exponential function eiωA(x) is a periodic

B

A

C

Figure 1
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function with periodicity 2π. )erefore, we consider
ωA(x) ∈ [0, 2π); otherwise, we take the residue modulo 2π
into account.

Let A, B be two complex fuzzy sets in U and let p be a
parameter satisfying 1≤p≤∞. )e Minkowski distances
[43]:

dp(A, B) �
1
2

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+
1
πp

min
ωA xi( 􏼁 − ωB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

2π − ωA xi( 􏼁 − ωB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎛⎜⎝ ⎞⎟⎠

p

⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

1/p

. (18)

)e normalized Minkowski distances [43]:

lp(A, B) �
1
2

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p

+
1
πp

min
ωA xi( 􏼁 − ωB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

2π − ωA xi( 􏼁 − ωB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎛⎜⎝ ⎞⎟⎠

p

⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

1/p

. (19)

If p � 1, then d is called the Hamming distance of
complex fuzzy sets [43]:

d1(A, B) �
1
2

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
π

min
ωA xi( 􏼁 − ωB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

2π − ωA xi( 􏼁 − ωB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (20)

and the normalizedHamming distance of complex fuzzy sets
is [43]

l1(A, B) �
1
2n

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1
π

min
ωA xi( 􏼁 − ωB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

2π − ωA xi( 􏼁 − ωB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (21)

If p � 2, then d is termed the Euclidean distance of
complex fuzzy sets:

d2(A, B) �
1
2

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
1
π2

min
ωA xi( 􏼁 − ωB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

2π − ωA xi( 􏼁 − ωB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎛⎜⎝ ⎞⎟⎠

2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/2

, (22)

and the normalized Euclidean distance of complex fuzzy sets
is [43]

l2(A, B) �
1
2n

􏽘

n

i�1
rA xi( 􏼁 − rB xi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+
1
π2 min

ωA xi( 􏼁 − ωB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

2π − ωA xi( 􏼁 − ωB xi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

⎛⎜⎝ ⎞⎟⎠

2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1/2

. (23)
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3.2. Centroid-Index Ranking Method of Complex Fuzzy
Numbers. )e ranking of fuzzy numbers has been a concern
in fuzzy Multiple Attribute Decision-Making (MADM)
since its inception. More than 20 fuzzy ranking indices have
been proposed since 1976. Various techniques are applied to
compare the fuzzy numbers. )e fuzzy number ranking,
including complex fuzzy numbers to choose the best option
from different options, is completely based on ranking or
comparing the data. Various fuzzy ranking methods have
been proposed ranging from one to several fuzzy number
properties. In ranking fuzzy numbers with a center point
index, the geometric center of a fuzzy number is found. Each
geometric center has two components (􏽥x, 􏽥y), where 􏽥x is on
the horizontal axis, and 􏽥y is on the vertical coordinate axis.

Ranking fuzzy numbers are considered either by values 􏽥x

alone or with the values 􏽥x and 􏽥y. Several methods have been
proposed in this regard, including Yager’s method to rank
fuzzy numbers based on􏽥x. Yager [44] proposed a centroid-
index ranking method to calculate the value 􏽥x for a fuzzy
number A as follows:

􏽥x � 􏽒
1
0 w(x)fA(x)dx 􏽒

1
0 fA(x)dx, (24)

where w(x) is a weighting function measuring the impor-
tance of the value x, and fA denotes the membership
function of the fuzzy number A and fA: X⟶ [0, 1].
Murakami et al. (1983) proposed a centroid-index ranking
method for calculating the center of gravity (COG) point
(x⋇, y⋇) for each fuzzy number. )e larger the value of x⋇,
the better the ranking of fuzzy numbers. We proposed a
centroid-index ranking method to calculate the centroid
point of complex fuzzy numbers. Since any complex fuzzy
number contains a polar representation, in polar coordinates
R and θ, respectively, the directional distance is used from
the pole and the angle between this half-line and the polar
axis. )erefore, we consider ranking based on both com-
ponents. In polar coordinates, the relationship between
Cartesian (x, y) and polar (R, θ) coordinates is as follows:

x � Rcos(θ),

y � Rsin(θ).
(25)

Consider a segment with the radius of R and polar angle
of θ, given that the center of mass is located 2/3R from the
pole, as depicted below. )e area of a polar sector with a
radius R and the polar angle θ equals A � 1/2R2θ. )us, the
element area is equal to dA � 1/2R2dθ. In the triangle, the
centroid is located 2/3 of the distance from the vertex.
Hence, the centroid of this segment is at 2/3 of the distance
from the pole. Considering the coordinates of the center of
mass (xc, yc), we can calculate the centroid of this element
(Figure 2):

xc �
2
3

Rcos(θ),

yc �
2
3

Rsin(θ).

(26)

As a result, the center of mass of the whole sector with
radius R and angle θ is

􏽥x � 􏽒
θ
0 xdA􏽒

θ
0 dA � 􏽒

θ
0(2/3)R cos(θ)1/2R

2dθ􏽒
θ
0(1/2)R

2dθ,

�
1/3R

3
􏽒
θ
0 cos(θ)dθ

1/2R
2
􏽒
θ
0 dθ

�
1/3R

3sin(θ)

1/2R
2θ

� 2/3R
sin(θ)

θ
.

(27)

Also,

􏽥y � 􏽒
θ
0 y dA 􏽒

θ
0 dA,

� 􏽒
θ
0 2/3Rsin(θ)1/2R

2
dθ 􏽒

θ
0 1/2R

2
dθ,

�
1/3R

3
􏽒
θ
0 sin(θ)dθ

1/2R
2

􏽒
θ
0 dθ

,

�
1/3R

3
[−cos(θ)]

θ
0

1/2R
2θ

�
2
3

R
1 − cos(θ)

θ
.

(28)

So,

􏽥x �
2
3

R
sin(θ)

θ
, 􏽥y �

2
3

R
1 − cos(θ)

θ
. (29)

To rank complex fuzzy numbers, we can use the distance
function between the center points (􏽥x, 􏽥y) and the origin as
shown in Table 1:

D(A) �

������

􏽥x
2

+ 􏽥y
2

􏽱

. (30)

Let A1, A2, · · · , An be complex numbers then for every
Ai, Aj, and then, we have

(i) If D(Ai)<D(Aj), 1≤ i≤ n, 1≤ j≤ n then Ai <Aj

(ii) If D(Ai) � D(Aj), 1≤ i≤ n, 1≤ j≤ n then Ai � Aj

Table 1

Complex number Centroid point (􏽥xi, 􏽥yi)
Distance

D(A) �

������

􏽥x2 + 􏽥y2
􏽱

A1 (−0.0623, 0.1919) 0.2018
A2 (0, 0) 0
A3 (−0.1009, 0.0733) 0.1247
A4 (0, 0.2122) 0.2122

(xc , yc)

dA

dθθ

Figure 2
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(iii) If D(Ai)>D(Aj), 1≤ i≤ n, 1≤ j≤ n then Ai >Aj.

Example 3. Let A1 � 0.6ei1.2π/−1, A2 � 1.0ei2π/0, A3 �

0.8ei1.6π/1, A4 � 0.5eiπ/2, and then

3.3. Linguistic Variable of Complex Fuzzy Sets. An original
element in human knowledge representation is the linguistic
variables, which is important when using indicators to
measure variables and get numbers. Besides, when we asked
human experts to describe these variables, they gave us
words such as good, slightly, more, or less to describe the
variables.

Definition 5. Let A be a complex fuzzy set in U, and then,
very A, very-very A, indeed A, a little A, slightly A, more or
less A, and extremely A are defined as a complex fuzzy set in
U with membership functions [41]:

(i)
veryA � (x, μveryA(x)􏽮 􏽯, μveryA(x) � [rA(x)]2ei2ωA(x)

(ii) very − veryA �

(x, μvery−veryA(x))􏽮 􏽯, μvery−veryA(x) � [rA(x)]4ei4ωA(x)

(iii) indeedA � (x, μindeedA(x))􏼈 􏼉 where

μindeedA(x) �
2 μA(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
e

iωA(x)
, 0≤ μA(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 0.5,

1 − 2 1 − μA(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽨 􏽩
2
e

iωA(x)
, 0.5≤ μA(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1,

⎧⎪⎨

⎪⎩

(31)

(iv) alittleA � (x, μalittleA(x))􏼈 􏼉, μalittleA(x) � [rA(x)]1.3

ei1.3ωA(x)

(v) slightlyA � (x, μslightlyA(x))􏽮 􏽯,μslightlyA(x) �

[rA(x)]1.7 ei1.7ωA(x)

(vi) extremelyA � (x, μextremlyA(x))􏽮 􏽯, μextremlyA(x) �

[rA(x)]3ei3ωA(x)

(vii) moreorlessA � (x, μmoreorlessA(x))􏼈 􏼉, μmoreorlessA(x)

� [rA(x)]1/2ei1/2ωA(x)

By representing the relative performance using the
expressed complex fuzzy numbers, the fuzzy quantity set will
be considered Worst,VL, L, M, H,VH,Best{ }. )e complex
fuzzy rankings for the language variables are presented in
Table 2.

3.4. CP-TOPSISMethod. We proposed a systematic method
for ranking complex fuzzy numbers based on TOPSIS in this
section after briefly discussing the underlying ideal of
TOPSIS. )is is termed the developed CP-TOPSIS method.
Geometrically speaking, the rank of the option selected as
the best from a set of multiple alternatives should have the
lowest distance from the ideal solution and the greatest
distance from the negative ideal solution, according to the
TOPSIS algorithm’s fundamental principle. )e TOPSIS
method evaluates the following decisionmatrix, which refers
to m alternatives based on n criteria (Table 3).

(i) Let there be K decision-makers D1, D2, · · · , DK

responsible for evaluating m alternatives (Ai, i �

1, 2, . . . , m) under n qualitative criteria (Cj, j �

1, 2, . . . , n).

(a) A1, A2, · · · , Am , m possible alternatives for
decision-makers.

(b) C1, C2, · · · , Cn , n criteria for measuring the
effectiveness of options.

(c) Let
zk

ij, i � 1, 2, · · · m, j � 1, 2, . . . , n1, k � 1, 2, · · · ,

K , be the rating assigned to alternative Ai

under criterion Cj by decision-maker Dk.

To show the importance of each criterion, we used
the weight vectors Wk � [wk

1, wk
2, · · · , wk

n] assigned
by the decision-maker Dk to criterion Cj such that

w
k
1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + w
k
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + · · · + w
k
n

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � 1. (32)

Now, we calculate the real and imaginary parts of
these components.

(ii) Let Zk
ij � (xk

ij,y
k
ij), i � 1, · · · ,m,j � 1, · · · ,n,k � 1, · · · ,

K be a rank assigned to Ai under Cj by decision-
maker Dk. Linguistic variables and their corre-
sponding complex fuzzy numbers are given in
Definition 5. )e overall rating of Zij � (xij,yij) is
as follows:

Zij �
1
K
∘ Z

1
ij

􏽢+Z
2
ij

􏽢+ · · · 􏽢+Z
K
ij),􏼐 (33)

where

xij � 􏽘
K

k�1

x
k
ij

k
,

yij � 􏽘
K

k�1

y
k
ij

k
.

(34)

(iii) Let wk
j(uk

j , vk
j), j � 1 . . . , k, k � 1, . . . , K be the

important weights assigned by the decision-maker

Table 2: )e complex fuzzy rankings for linguistic variables.

Fuzzy numbers Option evaluation Weights
(μvery−very) Very − Very(V − V) Worst(W)

(μextremly) extremly(ext) verylow(VL)

(μvery) Very(V) low(L)

μindeed indeed(ind) medium(M)

(μslightly) slightly(S) high(H)

(μalittle) alittle(alit) veryhigh(VH)

(μmoreorless) moreorless(mol) Best(B)

Table 3

C1 C2 Cn

A1 zk
11 zk

12 · · · zk
12

A2 zk
21 zk

22 · · · zk
2n

⋮ · · · · · · · · · ⋱
Am zk

m1 zk
m2 · · · zk

mn
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Dk to criterion Cj. )e importance weights are
quantified by linguistic values represented by
complex fuzzy numbers, as stated in Definition 5.
)e averaged weight of each criterion wj � (uj, vj)

can be evaluated as

wj �
1
K
∘ w

1
j
􏽢+w

2
j
􏽢+ · · · 􏽢+w

k
j),􏼐 (35)

where uj � 􏽐
K
k�1 uk

j /k, vj � 􏽐
K
k�1 vk

j /k, j � 1, · · · n.
Moreover, we converted wk

j to its polar state.
(iv) We normalized the decision matrix by the fol-

lowing equations. Let Zij � (xij, yij) be the deci-
sion matrix components ordered in pairs. We
obtained the maximum and minimum of each
column for each component and normalized them
using the following equations. )e components 􏽥xij

and 􏽥yij are obtained as follows:

􏽥xij �
xij − min

i
xij􏽮 􏽯

max
i

xij􏽮 􏽯 − min
i

xij􏽮 􏽯
,

􏽥xij �
xij − min

i
xij􏽮 􏽯

max
i

xij􏽮 􏽯 − min
i

xij􏽮 􏽯
,

􏽥yij �
yij − min

i
yij􏽮 􏽯

max
i

yij􏽮 􏽯 − min
i

yij􏽮 􏽯
.

(36)

)us, the normalized components are
􏽥Zij � (􏽥xij, 􏽥yij). )en, the complex form of the
normalized ranking matrix was calculated. )e
weighted normalized decision matrix was denoted
as follows (by Definition 2):

􏽥Qij � 􏽥Zij ∘wj,

i � 1, 2, . . . , m,

j � 1, 2, . . . , n.

(37)

where Qij s are weighted normalized values.
(v) Here, in the centroid method proposed by 4, the

complex fuzzy weighted ratings of alternatives
were defuzzified because formulas of the defuz-
zification procedure could improve the execution
of decision-making. Let Qij be the complex fuz-
zified value of 􏽥Qij with the real and imaginary
components pij and qij by the centroid using
equations (29) and (30):

Qij � pij, qij􏼐 􏼑,

pij �
2
3

R
sin(θ)

θ
,

qij �
2
3

R
1 − cos(θ)

θ
.

(38)

Now, we display a complex fuzzy form of a matrix
to calculate the values of Q+

j , Q−
j .

It should be noted that, in each step, we used the
following equations to convert the polar coordi-
nates of complex numbers to a regular pair of that
numbers:
When

z � re
iθthenx � rcosθ,

y � rsinθ.
(39)

But, when z � (x, y), then

θ � arg(z) �

arctan
y

x
􏼒 􏼓 + π if x> 0, y≥ 0,

arctan
y

x
􏼒 􏼓 + π if x< 0, y≥ 0,

arctan
y

x
􏼒 􏼓 − π if x< 0, y< 0,

π
2

if x � 0, y> 0,

−
π
2

if x � 0, y< 0,

∞ if x � 0, y � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r � |z| �

������

x
2

+ y
2

􏽱

.

(40)

Now z � reiθ.
(vi) )e positive ideal solution (PIS), A+, and negative

ideal solution (NIS), A− , can be obtained as fol-
lows. To obtain these answers, we used the polar
area of the factor Qij. For this purpose, suppose
Qij � rije

iwij , and then, the polar area is obtained
from the following formula:

AQij
� 􏽚

ωij

0

1
2
r
2dθ. (41)

If ωij is negative, we change the boundary of in-
tegral. )e positive ideal solution is as follows:

A
+

� Q
+
1 , Q

+
2 , · · · , Q

+
n( 􏼁

� max
i

AQij
|j ∈ I􏼒 􏼓, min

i
AQij

|j ∈ J􏼒 􏼓􏼒 􏼓,
(42)

)e negative ideal solution is as follows:

A
−

� Q
−
1 , Q

−
2 , · · · , Q

−
n( 􏼁

� min
i

AQij
|j ∈ I􏼒 􏼓, max

i
AQij

|j ∈ J􏼒 􏼓􏼒 􏼓,
(43)
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(vii) )e distance of each alternative from (PIS) is as
follows:

d
+
i �

���������������

􏽘

n

j�1
D Qij − Q

+
j􏼐 􏼑􏼐 􏼑

2

􏽶
􏽴

,

i � 1, 2, . . . , m.

(44)

)e distance of each alternative from (NIS) is as
follows:

d
−
i �

����������������

􏽘

n

j�1
D Qij − Q

−
j􏼐 􏼑􏼐 􏼑

2

􏽶
􏽴

,

i � 1, 2, . . . , m.

(45)

(viii) )e ranking order of all alternatives from the
highest-ranking index to the lowest is determined
by calculating the closeness coefficients of alter-
natives by the following equation. However, as the
option Ai gets closer to A+ and the further away
from A− , the 􏽥Ri value tends to be 1.

Ri �
d

−
i

d
+
i + d

−
i

,

i � 1, 2, . . . , m.

(46)

Now, all the steps of this new ranking method are shown
in Figure 3.

Example 4. Let U � 1, 2, 3{ } and M, N be two complex fuzzy
sets:

M �
0.6e

i0.2π

1
+
0.4e

i0.5π

2
+
0.5e

i1.7π

3
,

N �
0.45e

i0.5π

4
+
0.66e

i1.3π

5
+
0.37e

i0.3π

6
.

(47)

)e set of decision makers is D � D1, D2􏼈 􏼉. )e fol-
lowing is a table of alternative ranking by Tables 4–16 de-
cision-maker D1:

)e following is a table of alternative ranking by deci-
sion-maker D2:

)e next table is the weighting of criteria by decision
makers:

)e following table shows the complex fuzzy values
assigned to the alternatives for D1:

)e following table shows the complex fuzzy values
assigned to the alternatives for D2:

Now, we get the real and imaginary parts of these
elements:

And, we show also the values of D2:
Now, we get the weighted values of the decision makers:
)e ordered form of weighted values is as follows:

According to 21, the complex form of weighted average
is equal to the following:

Now, by using 20, we get the ranking matrix as follows:
Now, normalize the ranking matrix using relations 22

and 23:
To normalize aggregated matrix, we require the polar

form of values because it is difficult to normalize complex

Table 4

DeceisionmakerD1

C1 C2 C3
A1 v alit ext
A2 alit ext mol
A3 s ind v

A4 mol v s

A5 v − v ext alit
A6 mol alit s

Determining the decision 
matrix and weights of the 
decision-makers for each 

criterion to formatting fuzzy 
decision matrix

Determine positive and negative criteria

Calculate the real and imaginary parts of components

Solve Equations 20 and 21 and obtain the polarity of the decision

Normalizing the fuzzy decision matrix (by 22 and 23)

Calculate the complex form of normalized components

Solve Equation 24

Solve Equation 25 and display a complex fuzzy form of a 
matrix in order to calculate the values of Qj

+ , Qj
–

Start

Solve Equation 26 and calculate the Equations 27, 28

Calculate Equations 29, 30, 31

Defining the obtained values and ranking the options

Finish

Figure 3: )e flow chart with steps of the proposed algorithm.
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Table 5

Deceision makerD2

C1 C2 C3
A1 v − v ind ext
A2 v s mol
A3 ind alit ext
A4 mol v − v alit
A5 s v v − v

A6 ind mol v

Table 6

D1 D2

C1 L W

C2 VL B

C3 H M

Table 7

C1 C2 C3

A1 (0.36ei0.4π) (0.51ei0.26π) (0.21ei0.6π)

A2 (0.30ei0.65π) (0.06ei1.5π) (0.63ei0.25π)

A3 (0.3ei2.89π) (0.5ei1.7π) (0.25ei3.4π)

A4 (0.67ei0.25π) (0.2eiπ) (0.25ei0.85π)

A5 (0.18ei5.2π) (0.28ei3.9π) (0.58ei1.69π)

A6 (0.6eiπ) (0.27ei2.6π) (0.18ei0.51π)

Table 8

C1 C2 C3

A1 (0.12ei0.8π) (0.68ei0.2π) (0.21ei0.6π)

A2 (0.16eiπ) (0.21ei0.85π) (0.63ei0.25π)

A3 (0.5ei1.7π) (0.4ei2.21π) (0.12ei5.1π)

A4 (0.67ei0.25π) (0.04ei2π) (0.35ei0.65π)

A5 (0.49ei2.21π) (0.43ei2.6π) (0.18ei5.2π)

A6 (0.27ei2π) (0.6eiπ) (0.13ei0.6π)

Table 9: Values of D1.

C1 C2 C3

A1 (0.1112, 0.3423) (0.3491, 0.3717) (−0.0648, 0.1997)

A2 −0.1361, 0.2673) (0.0, −0.06) (0.4454, 0.4454)

A3 (−0.2822, −0.1016) (0.2938, −0.4045) (−0.0772, −0.2377)

A4 (0.4737, 0.4737) (−0.2, 0.0) (−0.2022, 0.1469)

A5 (−0.1456, −0.1058) (0.2662, −0.0865) (0.3260, −0.4797)

A6 (−0.6, 0.0) (−0.0834, 0.2567) (−0.0056, −0.1799)

Table 10: Values of D2.

C1 C2 C3

A1 (−0.0970, 0.0705) (−0.3214, 0.5065) (−0.0648, 0.1997)

A2 (−0.16, 0.0) (−0.1871, 0.0953) (0.4454, 0.4454)

A3 (0.2938, −0.4045) (0.3160, 0.2451) (−0.1141, −0.0370)

A4 (0.4737, 0.4737) (0.04, 0.0) (−0.1588, 0.3118)

A5 (0.3871, 0.3003) (−0.1328, 0.4089) (−0.1456, −0.1058)

A6 (0.27, 0.0) (−0.6, 0.0) (−0.0401, 0.1236)

Table 11

D1 D2

C1 L � (0.0257i3.39π) W � (0.0006ei6.78π)

C2 VL � (0.0041ei5.08π) B � (0.4007ei0.84π)

C3 H � (0.0446ei2.88π) M � (0.0551ei1.69π)

Table 12

D1 D2

C1 (0.00870, −0.0241) (−0.00046, 0.00038)

C2 (0.0039, −0.0010) (−0.3511, 0.1930)

C3 (−0.0414, 0.0164) (0.0316, −0.0450)

Table 13

Complex form of weighted average
C1 (0.0262e− i1.32π)

C2 (0.4031ei3.78π)

C3 (0.0972ei2.13π)

Table 14: Ranking matrix.

Aggregated rankingmatrix
A1 (0.43ei1.04π) (0.84ei0.43π) (0.37e1.02π)

A2 (0.41ei1.3π) (0.25ei1.71π) (0.86ei1.06π)

A3 (0.65ei2.33π) (0.7ei2.03π) (0.34e− i0.17π)

A4 (0.89ei0.46π) (0.23ei2π) (0.51ei1.22π)

A5 (0.58ei1.66π) (0.58ei1.43π) (0.65ei0.7π)

A6 (0.7ei2π) (0.70ei2.3π) (0.28ei0.95π)

Table 15: )e aggregated matrix of D1 and D2 experts’ opinions.

A1 (0.0, 0.3266) (0.3761, 1.0000) (0.4180, 0.3547)

A2 (0.1648, 0.1269) (0.3397, 0.2659) (0.0, 0.1926)

A3 (0.6722, 0.7674) (1.0000, 0.4559) (1.0, 0.1786)

A4 (0.4776, 1.0000) (0.4330, 0.4084) (0.3972, 0.0)

A5 (0.6266, 0.0) (0.0, 0.0) (0.4068, 1.0)

A6 (1.000, 0.3653) (0.6533, 0.8171) (0.4996, 0.4334)

Table 16

complex formof normalized rankingmatrix
A1 (0.3266ei0.5π) (1.0683ei0.38π) (0.5482ei0.22π)

A2 (0.2079ei0.2π) (0.4313ei0.21π) (0.1926ei0.5π)

A3 (1.0201ei0.27π) (1.099ei0.13π) (1.0158ei0.05π)

A4 (1.1081ei0.35π) (0.5952ei0.24π) (0.3972ei0.0π)

A5 (0.6266ei0.0π) (0.0ei0.0π) (1.0795ei0.37π)

A6 (1.0646ei0.11π) (1.0461ei0.28π) (0.6613ei0.22π)

Table 17

􏽥Qij � 􏽥zij ∘wjnormalizedweightedmatrix

A1 (0.00855e− i0.33π) (0.4306ei0.71π) (0.0531ei0.23π)

A2 (0.0054e− i0.13π) (0.1738ei0.39π) (0.0186ei0.53π)

A3 (0.0267e− i0.17π) (0.4430ei0.24π) (0.0985ei0.05π)

A4 (0.0290e− i0.23π) (0.2399ei0.45π) (0.0385ei0.0π)

A5 (0.0164ei0.0π) (0.0ei0.0π) (0.1047ei0.39π)

A6 (0.0278e− i0.07π) (0.4216ei0.52π) (0.0641ei0.23π)
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forms directly. )us, we use the polar form and then nor-
malize values. In order to use 24, we obtain the complex
form of the normalized ranking matrix:

Now, we return to the complex form because we should
build the weighed matrix since we can easily multiply
complex numbers. Note that multiplication of the complex
numbers was defined in previous equations. We use the
complex form of the weights and construct a weighted
matrix using complex multiplication. )e weighted matrix
in Table 17 is in complex form by using 24, and we obtain the
normalized weighted matrix:

We determine positive and negative ideals. For this
purpose, we should perform a defuzzification process be-
cause it helps determine the maximum and minimum of
each column. Due to the difficulty of determining the
maximum and minimum values of complex numbers, we
use two formulas. First, data are written as ordered pairs, as
presented in Table 18. )is is the first defuzzification step,
which is not the main step. We do the phase defuzzification
process using centroid method 25:

In the second defuzzification step, we try to calculate the
polar area of factors. )erefore, we should transform Ta-
ble 18 into the complex form as presented in Table 19. Now,
we display complex fuzzy form of matrix in order to cal-
culate the values of Q+

j , Q−
j :

Table 19 is used to determine the polar area of the factors
after the matrices had been converted to polar form. Ac-
cordingly, Table 20 is obtained, which provides a criterion to
select positive and negative ideals in complex forms. )e
following areas are obtained in micro:

Now, (PIS) is as follows:

A
+

� 16.11∗ 10− 6
, 0.29514, 0.001280􏼐 􏼑, (48)

so, we have

Q
+
1 � 0.01849e

− i0.03π
,

Q
+
2 � 0.2317e

i0.35π
,

Q
+
3 � 0.0655e

i0.19π
.

(49)

(NIS) is as follows:

A
−

� (0.0, 0.0, 0.0), (50)

so, we have

Q
−
1 � 0.01093e

i0.0π
,

Q
−
2 � 0.0e

i0.0π
,

Q
−
3 � 0.02566e

i0.0π
.

(51)

)e distance between each alternative and positive and
negative ideals should be calculated. Since the distance
formula is based on the complex form of numbers, and ideals
are complex as shown in Table 21, we use the table of
complex data and calculate the differences, as given in Ta-
bles 22 and 23. )e values of d+

i are as follows:
)e values of d−

i are as follows:
We get the closeness coefficients of each alternative

according to relation 31:
Ultimately, we use the closeness coefficient formula and

rank the alternatives, as presented in Table 24. So, the rating
alternatives are as follows:

4. Results

In this paper, by defining a new method, we presented a new
method to prioritize a model of decision-making, in which
data are of complex fuzzy numbers, and finally, a rating
algorithm was designed based on the central point index and
TOPSIS-oriented method. )is paper aims to establish a

Table 18

Qijdeffuzificationmatrix

A1 (0.00473, −0.00268) (0.10296, 0.20757) (0.03239, 0.01224)

A2 (0.00352, −0.00072) (0.08897, 0.06253) (0.00741, 0.00814)

A3 (0.01696, −0.00464) (0.26813, 0.10616) (0.06539, 0.00514)

A4 (0.01769, −0.00668) (0.11173, 0.09543) (0.02566, 0.0)

A5 (0.01093, 0.0) (0.0, 0.0) (0.05360, 0.03767)

A6 (0.01838, −0.00202) (0.17171, 0.18285) (0.03911, 0.01477)

Table 19

Qijpolarmatrix

A1 (0.00543e− i0.16π) (0.2317ei0.35π) (0.03462ei0.11π)

A2 (0.00359e− i0.06π) (0.10874ei0.19π) (0.011ei0.26π)

A3 (0.01758e− i0.08π) (0.2883ei0.11π) (0.0655ei0.02π)

A4 (0.0189− i0.011π) (0.14693ei0.22π) (0.02566ei0.0π)

A5 (0.01093ei0.0π) (0.0ei0.0π) (0.0655ei0.19π)

A6 (0.01849e− i0.03π) (0.2508ei0.25π) (0.0418ei0.11π)

Table 20

AQij
PolarArea

A1 (7.410 × 10− 6) (0.029514) (0.000207)

A2 (1.214 × 10− 6) (0.003529) (0.0000494)

A3 (38.83 × 10− 6) (0.014369) (0.000134)

A4 (61.72 × 10− 6) (0.00746) (0.0)

A5 (0.0 × 10− 6) (0.0) (0.00128)

A6 (16.11 × 10− 6) (0.024701) (0.000301)

Table 21

d+
1 d+

2 d+
3 d+

4 d+
5 d+

6

0.036416 0.157561 0.193840 0.119496 0.234398 0.078236

Table 22

d−
1 d−

2 d−
3 d−

4 d−
5 d−

6

0.232221 0.110817 0.291249 0.147244 0.046900 0.251748

Table 23

R1 R2 R3 R4 R5 R6

0.864441 0.412913 0.600403 0.552013 0.166727 0.762909

Advances in Fuzzy Systems 11



complex fuzzy technique for rating and choosing the best
options for the complex fuzzy data that have many uses
including analyzing wave functions in quantum mechanics
and a lot of physical quantities.

5. Managerial Insights

As the uncertainty conditions play a vital role in the deci-
sion-making process by managers, the complex fuzzy sets
have many utilizations in the industry, management, and
financial sector. Given the importance of this topic, this
paper will grade complex fuzzy options through CP-TOPSIS
developmental method. Recently, the complex fuzzy set
contains a range of values, in which its membership function
may be obtained. In contrast to the traditional fuzzy
membership function, this range is not limited [0, 1] because
it will be expanded into the unit circle on the complex page.
)erefore, the complex fuzzy set presents a mathematical
framework for describing a membership on the set in terms
of a complex number. )e possible applications, which
provide a new concept, include the complex fuzzy display,
solar activity (by measuring the number of sunspots), signal
process usage, problems in forecasting time series and
comparing two national economies, identifying and mea-
suring signals, analysis, wave functions within quantum
mechanics, and many physical quantities, through the
complex fuzzy relation. Today, there is no device such as
home appliances created based on its technical structure
without using the complex fuzzy sets. We often use and
enjoy the complex fuzzy logic in our routine life. Also, it can
be referred to as the motor systems (elevator), automotive
industry (design of ABS braking system), designing con-
trollers of home appliances (washing machine and refrig-
erator), and cameras, and artificial intelligence is one of the
most interesting applications in the computer games like
special cinematic sights.

6. Conclusions and Outlook

Grading the complex fuzzy numbers has a prominent role in
management, engineering, and industry. )e complex fuzzy
numbers are shown by a complex form membership
function. Due to the presence of real numbers that can be
arranged as linearity, the complex fuzzy numbers may have
overlapped each other. )erefore, it is difficult to grade all of
them. Currently, a novel CP-TOPSIS grading method is
proposed in this study that is related to the complex fuzzy
numbers. )e proposed fuzzy set is a new approach that can
complex the membership functions. It is vital to have a
profound understanding of the aspects of complex fuzzy sets
in order to make effective use of the possibilities those sets
offer. As a result, we allocated several sections for the
properties and features of the complex membership

function, such as complex subscription, multiplication, and
collection. One of the advantages of the new method, in
some cases, is the difficulty of identifying exact values of
properties, and we considered their values as the complex
fuzzy data. Accordingly, we proposed grading data based on
the central point index. In this regard, we explained the
distance functions for the complex fuzzy numbers based on
fuzzy period and domain. Finally, we introduced a devel-
opmental method, CT-TOPSIS for rating complex fuzzy
data. In this research, CT-TOPSIS is created as complex
fuzzy sets, and a method for determining the most desirable
choice is proposed. While the fuzzy data is complex, the best
and the most effective option is presented between all
possible options. )e fuzzy decision matrix is calculated
using the results` concept. In this method, despite the
distance considerations, an option is considered regarding
the solution of a fuzzy positive ideal and its distance, far from
the solution related to a fuzzy negative ideal. It means that
the lower the distance of an option evaluated through the
solution of a fuzzy positive ideal is, and themore the distance
from the solution of a fuzzy negative ideal is, the better the
ranking is. )is sort of ranking, which is introduced in this
study for the first time, corresponds to the complex fuzzy
numbers. We hope that a new way is paved for future works
upon the complex fuzzy data investigation due to many
applications in the industry, management, and financial
sectors.
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