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In this paper, several results and theorems about the high-order strongly generalized Hukuhara diferentiability of function
defned via the fuzzy Riemann improper integral (in the sense of Wu) have been established. Ten, some properties dealing with
the partial derivatives of fuzzy Laplace transform for a fuzzy function of two real variables have been proved. Afterwards, an
algorithm of fuzzy Laplace transform for solving second-order fuzzy partial diferential equations has been proposed. Finally, two
numerical examples, including the heat equation under fuzzy initial conditions, have been studied to justify the efciency of
the algorithm.

1. Introduction

Partial diferential equations (PDEs) are extremely useful for
the modeling of a variety of natural, physical, and biological
phenomena. Tey have several engineering applications and
intervene in many domains of science. Many researchers
have investigated fuzzy diferential equations (FDEs) and
fuzzy partial diferential equations (FPDEs) using the rig-
orous tool of the fuzzy Laplace transform. For example,
Allahviranloo et al., Eljaoui et al., and Salahshour et al. have
extended this method to solve diferent kinds of fuzzy dif-
ferential problems: FDEs of frst or second order, FPDEs,
and fuzzy integral diferential equations [1–5].

In this vein, we have studied the improper fuzzy Rie-
mann integrals by establishing some important results about
the continuity and diferentiability of a fuzzy improper
integral depending on a given crisp parameter in [6]. Tese
results have been then employed to prove some fuzzy
Laplace transform properties, which we have used to solve
linear FPDEs of frst order, under generalized Hukuhara
diferentiability.

For recent works about partial diferential equations,
their theory, and necessary materials, one can see [7–9] and
the references therein.

Te main purpose of this article is to present a fuzzy
Laplace transform method for solving FPDEs of second
order. To achieve this goal, we begin by developing some
results about high-order Hukuhara diferentiability of a
function defned by a fuzzy improper integral.

Te remainder of this work is organized as follows.
Section 2 is reserved for preliminaries and recalls some
important results about the continuity and diferentia-
bility of fuzzy improper integrals that we will need in the
sequel. In Section 3, the main results about the high-order
diferentiability of fuzzy improper integral are studied and
new properties of fuzzy Laplace transform are proved.
Ten, in Section 4, the procedure for solving FPDEs of
second order by the fuzzy Laplace transform is proposed.
Section 5 deals with numerical examples. Section 6 is
reserved for the discussion of the obtained results. In the
last section, we present conclusion and further research
topic.
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2. Preliminaries

Now we recall some basic results which are useful through
the rest of this paper.

2.1. Fuzzy Numbers and Functions. A fuzzy number is a
function u: R⟶ [0, 1] verifying the following four
assumptions:

(1) u is normal, i.e., ∃t0 ∈ R for which u(t0) � 1
(2) u is fuzzy convex
(3) u is upper semicontinuous
(4) Te closure of its support supp(u) � t ∈ R|u(t)> 0{ }

is compact (see [10])

Denote E as the space of all fuzzy numbers.
For 0< α≤ 1, let [u]α � t ∈ R|u(t)≥ α{ } be the α-level set

of u ∈ E. Ten, [u]α is a nonempty compact interval of R.
For all u, u1, u2 ∈ E, k ∈ R, 0≤ α≤ 1, we have

u1 + u2􏼂 􏼃
α

� u1􏼂 􏼃
α

+ u2􏼂 􏼃
α
,

[ku]
α

� k[u]
α
.

(1)

Defne the Hausdorf distance on E by
D(u1, u2) � sup0≤α≤1 max |uα

1 − uα
2 |, |uα

1 − uα
2 |}􏼈 .

Ten, (E, D) is a complete metric space (for more details,
see [11]).

Defnition 1 (see [1]). We defne a fuzzy number u in
parametric form as a couple (u, u) of mappings u(α), u(α),
0≤ α≤ 1, verifying the following properties:

(1) u(α) is bounded increasing, left continuous in [0, 1],
and right continuous at 0

(2) u(α) is bounded decreasing, left continuous in [0, 1],
and right continuous at 0

(3) u(α)≤ u(α), for all 0≤ α≤ 1

Te length of u ∈ E is level-wise given by len(u, α) �

u(α) − u(α)≥ 0.

Theorem 1 (see [12]). Let f(x) � (f(x, α), f(x, α)) be a
fuzzy function defned on [a,∞. Suppose that for all
α ∈ [0, 1], the maps f(x, α), f(x, α) are integrable on [a, b],
and ∃K(α), K(α)> 0: 􏽒

b

a
| f(x, α)|dx ≤ K(α) and

􏽒
b

a
|f(x, α)|dx≤K(α), for every b≥ a. Ten, f is fuzzy

Riemann integrable on [a,∞, 􏽒
∞
a

f(x)dx ∈ E and we have

􏽚
∞

a
f(x)dx � 􏽚

∞

a
f(x, α)dx, 􏽚

∞

a
f(x, α)dx􏼒 􏼓. (2)

For u1, u2 ∈ E, if there exists an element u3 in E such that
u1 � u2 + u3, then u3 is called the Hukuhara diference of u1
and u2, which we denote by u1 ⊖ u2.

Defnition 2 (see [1]). A mapping f: (a, b)⟶ E is said to
be strongly generalized diferentiable at x ∈ (a, b), if there
exists f′(x) ∈ E such that for all h> 0 very small, there exist
the H-diferences

(i) f(x + h)⊖f(x); f(x)⊖f(x − h) and the limits
limh⟶0+ f(x + h) ⊖f(x)/h � limh⟶0+ f(x)⊖f

(x − h)/h � f′(x)

(ii) f(x)⊖f(x + h); f(x − h)⊖f(x) and the limits
limh⟶0+ f(x)⊖f(x + h)/(− h) � limh⟶0+ f(x − h)

⊖f(x)/(− h) � f′(x)

(iii) f(x + h)⊖f(x); f(x − h)⊖f(x) and the limits
limh⟶0+ f(x + h)⊖f(x)/h � limh⟶0+ f(x − h)⊖f

(x)/(− h) � f′(x)

(iv) f(x)⊖f(x + h); f(x)⊖f(x − h) and the limits
limh⟶0+ f(x)⊖f(x + h)/(− h) � limh⟶0+ f(x)⊖
f(x − h)/h � f′(x)

Theorem 2 (see [10]). If f: (a, b)⟶ E is a strongly gen-
eralized diferentiable function on (a, b) in the sense of
Defnition 2, (iii) or (iv), then f′(x) ∈ R, for each x ∈ (a, b).

So, we can consider only Case (i) or (ii) of Defnition 2
almost everywhere in (a, b).

Theorem 3 (see [13]). Let f(x) � (f(x, α), f(x, α)) be a
fuzzy strongly generalized diferentiable function on (a, b);
then, f(x, α) and f(x, α) are diferentiable. Moreover,

(1) If f is (i)-diferentiable, then f′(x) � (f ′
(x, α), f′(x, α)).

(2) If f is (ii)-diferentiable, then f′(x) � (f′(x, α),

f ′(x, α)).

Defnition 3. We say that a mapping f: (a, b)⟶ E is
strongly generalized diferentiable of the n-th order at
x0 ∈ (a, b) if there exists f(k)(x0) ∈ E, for all k ∈ 1, 2, . . . , n{ },
such that for all h> 0 very small, there exist the H-diferences

(i) f(k− 1)(x0 + h)⊖f(k− 1)(x0), f(k− 1)(x0)⊖f(k− 1)

(x0 − h) and the limits
limh⟶0+ f(k− 1)(x0 + h)⊖f(k− 1)(x0)/h � limh⟶0+

f(k− 1)(x0)⊖f(k− 1)(x0 − h)/h � f(k)(x0)

(ii) f(k− 1)(x0)⊖f(k− 1)(x0 + h), f(k− 1)(x0− h)⊖f(k− 1)

(x0) and the limits
limh⟶0+ f(k− 1)(x0)⊖f(k− 1) (x0 + h)/(− h) �

limh⟶0+ f(k− 1)(x0 − h)⊖f(k− 1)(x0)/ (− h) � f(k)

(x0)

(iii) f(k− 1)(x0 + h)⊖f(k− 1)(x0), f(k− 1)(x0 − h)⊖f(k− 1)

(x0) and the limits
limh⟶0+ f(k− 1)(x0 + h)⊖f(k− 1)(x0)/h � limh⟶0+

f(k− 1)(x0 − h)⊖f(k− 1)(x0)/(− h) � f(k)(x0)

(iv) f(k− 1)(x0)⊖f(k− 1)(x0 + h), f(k− 1)(x0)⊖f(k− 1)

(x0 − h) and the limits
limh⟶0+ f(k− 1)(x0)⊖f(k− 1)(x0 + h)/(− h) �

limh⟶0+ f(k− 1)(x0)⊖f(k− 1)(x0 − h)/h � f(k)(x0)

Defnition 4 (see [1]). If f: [0,∞[⟶ E is a continuous
mapping such that e− sxf(x) is fuzzy Riemann integrable on
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[0,∞, then L[f(x)] � 􏽒
∞
0 e− sxf(x)dx is called the fuzzy

Laplace transform of f. Notice that L[f(x)] �

(L(f(x, α)),L(f(x, α))), where L(k(x)) is the Laplace
transform of a crisp function k(x).

Theorem 4 (see [1, 2]). Let f: [0,∞[⟶ E be a fuzzy-
valued function and f′ and f″ be its derivatives on [0,∞. If
f is (i)-diferentiable, then L[f′(x)] � sL[f(x)] ⊖f(0), or if
f is (ii)-diferentiable, then L[f′(x)] � (− f(0))⊖ (− s)

L[f(x)].

Moreover, if f and f′ are (i)-diferentiable, then
L[f″(x)] � p2L[f(x)] ⊖pf(0)􏼈 􏼉⊖f′(0). If f is (i)-dif-
ferentiable and f′ is (ii)-diferentiable, then

L[f″(x)] � (− f′(0))⊖ − p
2L[f(x)]⊖ (− pf(0))􏽮 􏽯. (3)

If f is (ii)-diferentiable and f′ is (i)-diferentiable, then

L f
″
(x)􏼔 􏼕 � (− pf(0))⊖ − p

2L[f(x)]􏽮 􏽯⊖f′(0). (4)

If f and f′ are (ii)-diferentiable, then
L[f′′(x)] � (− f′(0))⊖ pf(0)⊖p2L[f(x)]􏼈 􏼉.

2.2. Continuity and Diferentiability of Fuzzy Improper
Integral. In the sequel, I denotes one of the intervals − ∞, b]

or [b,∞ or − ∞,∞, where b ∈ R, J denotes another interval,
and A is a nonempty subset of R.

Let us recall the properties of continuity and diferen-
tiability of a function defned by a fuzzy improper integral
that we had established and proved in [6].

Theorem 5 (see [6]). Let F(x, t): A × I⟶ E satisfying the
following conditions:

(i) (H1) For all x ∈ A, t⟼F(x, t) is continuous on I

(ii) (H2) For each t ∈ I, x⟼F(x, t) is continuous on
A ⊂ R

(iii) (H3) For all α ∈ [0, 1], there exist a couple of
nonnegative, continuous crisp functions φα(t) and
ψα(t), which are integrable on I verifying, for all
x ∈ A, t ∈ I:

F(x, t, α)
􏼌􏼌􏼌

􏼌􏼌􏼌≤φα(t) and |F(x, t, α)|≤ψα(t). (5)

Terefore, the fuzzy mapping ϕ(x) � 􏽒
I
F(x, t)dt is

continuous on A.

Theorem 6 (see [6]). Let F(x, t): J × I⟶ E verifying the
following assumptions:

(i) (A1) For all x ∈ J, t⟼F(x, t) is continuous and
fuzzy Riemann integrable on I

(ii) (A2) For all t ∈ I, x⟼F(x, t) is (i)-diferentiable
on the interval J

(iii) (A3) For all x ∈ J, t⟼ zF/zx(x, t) is continuous
on I

(iv) (A4) For all t ∈ I, x⟼ zF/zx(x, t) is continuous
on J

(v) (A5) For all α ∈ [0, 1], there exist a couple of con-
tinuous crisp functions φα(t) and ψα(t), which are
integrable on I verifying, for all x ∈ J, t ∈ I:

z F

zx
(x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤φα(t),

zF

zx
(x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ψα(t).

(6)

Terefore, the fuzzy mapping ϕ(x) � 􏽒
I
F(x, t)dt is (i)-

diferentiable on J and

ϕ′(x) � 􏽚
I

zF

zx
(x, t)dt, ∀x ∈ J. (7)

Moreover, if we replace the assumption (A2) by the
alternative condition

(i) (A2′) For all t ∈ I, x⟼F(x, t) is (ii)-diferentiable on
J

then the fuzzy function ϕ(x) is (ii)-diferentiable on J and
equation (7) remains true.

Theorem 7 (see [6]). Let u(ξ, τ): 0,∞ × 0,∞⟶ E be a
fuzzy function such that F(ξ, τ) � e− sτu(ξ, τ) satisfes the
assumptions (A1) − (A5) above, for all s≥ s0 > 0.

Let Lτ[u(ξ, τ)] or L[u(ξ, τ)] (for short) denote the fuzzy
Laplace transform of u(ξ, τ) with respect to the time variable τ.
Ten,

Lτ uξ(ξ, τ)􏽨 􏽩 �
z

zξ
Lτ[u(ξ, τ)]( 􏼁. (8)

Theorem 8 (see [6]). Let u(ξ, τ) be a fuzzy-valued function
on 0,∞× 0,∞ into E. Suppose that the mappings
τ⟼F(ξ, τ) � e− sτu(ξ, τ) and τ⟼G(ξ, τ) � e− sτuτ(ξ, τ)

are fuzzy Riemann integrable on 0,∞, for all s≥ s0 for some
s0 > 0.

(a) If u(ξ, τ) is (i)-diferentiable with respect to τ, then

Lτ uτ(ξ, τ)􏼂 􏼃 � sLτ[u(ξ, τ)]⊖ u(ξ, 0). (9)

(b) If u(x, τ) is (ii)-diferentiable with respect to τ, then

Lτ uτ(ξ, τ)􏼂 􏼃 � (− u(ξ, 0))⊖ (− s)Lτ[u(ξ, τ)]. (10)

3. High-Order Differentiability of Fuzzy
Improper Integral

Theorem 9. We consider a fuzzy-valued function
F(x, t): J × I⟶ E, verifying the following assumptions:

(i) (B1) For all x ∈ J, t⟼F(x, t) is continuous and
fuzzy Riemann integrable on I

Advances in Fuzzy Systems 3



(ii) (B2) For all t ∈ I, x⟼F(x, t) is strongly general-
ized diferentiable of the second order on the
interval J

(iii) (B3) For all x ∈ J, t⟼ zF/zx(x, t) and
t⟼ z2F/zx2(x, t) are continuous on I

(iv) (B4) For all t ∈ I, x⟼ zF/zx(x, t) and
x⟼ z2F/zx2(x, t) are continuous on J

(v) (B5) For all α ∈ [0, 1], there exist four continuous
crisp functions φα(t),ψα(t), ηα(t), and θα(t), which
are integrable on I verifying, for all x ∈ J, t ∈ I:

z F

zx
(x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤φα(t),

zF

zx
(x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ψα(t),

z
2

F

zx
2 (x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ηα(t),

z
2
F

zx
2 (x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ θα(t).

(11)

Terefore, the fuzzy mapping ϕ(x) � 􏽒
I
F(x, t)dt is

strongly generalized diferentiable of the second order on J

and

ϕ′′(x) � 􏽚
I

z
2
F

zx
2(x, t)dt, ∀x ∈ J. (12)

Proof. Using Teorem 6 and since F verifes assumptions
(A1) − (A5), then the fuzzy mapping ϕ(x) is strongly
generalized diferentiable on J and

ϕ′(x) � 􏽚
I

zF

zx
(x, t)dt, ∀x ∈ J. (13)

Ten, from the assumptions (B1) − (B5), the function
zF/zx satisfes the conditions (A1) − (A5). Hence, and by
Teorem 6, ϕ′(x) is strongly diferentiable on J and for all
x ∈ J, we have

ϕ′′(x) � (ϕ′)′(x) � 􏽚
I

z

zx

zF

zx
􏼠 􏼡(x, t)dt � 􏽚

I

z
2
F

zx
2(x, t)dt.

(14)
□

Theorem 1 . Let u: 0,∞ × 0,∞⟶ E be a fuzzy function.
Suppose that the mapping F(x, t) � e− stu(x, t) satisfes the
assumptions (B1) − (B5) above, for all s≥ s0 for some s0 > 0. Let
Lt[u(x, t)] or L[u(x, t)] (for short) denote the fuzzy Laplace
transform of u(x, t) with respect to the time variable t. Ten,

Lt

z
2
u

zx
2 (x, t)􏼢 􏼣 �

z
2

zx
2 Lt[u(x, t)]( 􏼁. (15)

Proof. For fxed s≥ s0, then using Teorem 9, we have

Lt

z
2
u

zx
2 (x, t)􏼢 􏼣 � 􏽚

∞

0
e

− st z
2
u

zx
2 (x, t)dt

� 􏽚
∞

0

z
2
F

zx
2(x, t)dt,

Lt

z
2
u

zx
2 (x, t)􏼢 􏼣 �

z
2

zx
2 􏽚
∞

0
F(x, t)dt􏼒 􏼓

�
z
2

zx
2 Lt[u(x, t)]( 􏼁.

(16)

□

Theorem 11. Let u(x, t) be a fuzzy-valued function on
0,∞×0,∞ into E. Suppose that the mappings t⟼F(x, t) �

e− stu(x, t), t⟼G(x, t) � e− stut(x, t), and t⟼H(x, t) �

e− stutt(x, t) are fuzzy Riemann integrable on 0,∞, for all
s≥ s0 for some s0 > 0.

(a) If u(x, t) and ut(x, t) are (i)-diferentiable with re-
spect to t, then

Lt[z2u(x, t)/zt2] � s2Lt[u(x, t)]⊖ su(x, 0)􏼈 􏼉⊖ ut(x, 0).

(b) If u(x, t) is (i)-diferentiable and ut(x, t) is (ii)-dif-
ferentiable with respect to t, then
Lt[z2u(x, t)/zt2] �

− ut(x, 0)⊖ − s2Lt[u(x, t)]⊖ (− su􏼈 (x, 0))}.

(c) If u(x, t) is (ii)-diferentiable and ut(x, t) is (i)-dif-
ferentiable with respect to t, then
Lt[z2u(x, t)/zt2] � − su(x, 0)⊖ (− s2Lt[u(x, t)])􏼈 􏼉 �

⊖ ut(x, 0).

(d) If u(x, t) and ut(x, t) are (ii)-diferentiable with re-
spect to t, then
Lt[z2u/zt2(x, t)] �

− ut(x, 0)⊖ su(x, 0)⊖ s2Lt[u(x, t)]􏼈 􏼉.

Proof. Tis obviously results fromTeorem 4, by fxing x≥ 0
and taking the Laplace transforms and derivations with
respect to the variable t. □

Theorem 12. We consider a fuzzy-valued function
F(x, t): J × I⟶ E, verifying the following assumptions:

(i) (H1) For all x ∈ J, t⟼F(x, t) is continuous and
fuzzy Riemann integrable on I

(ii) (H2) For all t ∈ I, x⟼F(x, t) is strongly gener-
alized diferentiable of the n-th order on J

(iii) (H3) For all k ∈ 0, 1, . . . , n{ } and for each
x ∈ J, t⟼ zkF/zxk(x, t) is continuous on I

(iv) (H4) For all k ∈ 0, 1, . . . , n{ } and for each
t ∈ I, x⟼ zkF/zxk(x, t) is continuous on J

(v) (H5) For all α ∈ [0, 1] and for all k ∈ 0, 1, . . . , n{ },
there exist a couple of continuous and integrable crisp
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functions φα,k(t),ψα,k(t) on I verifying, for all
x ∈ J, t ∈ I:

z
k

F

zx
k

(x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤φα,k(t),

z
k
F

zx
k

(x, t, α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ψα,k(t).

(17)

Terefore, the fuzzy mapping ϕ(x) � 􏽒
I
F(x, t)dt is

strongly generalized diferentiable of the n-th order on J and
we have

ϕ(n)
(x) � 􏽚

I

z
n
F

zx
n(x, t)dt, ∀x ∈ J. (18)

Proof. According toTeorem 6, the result holds true for n �

1. Also, by induction, assume that the result is true to the
(n − 1)-th order. In addition, let a function
F(x, t): J × I⟶ E, satisfying the conditions (H1) − (H5).
Ten, ϕ(x) � 􏽒

I
F(x, t)dt is strongly generalized diferen-

tiable of the n-th order on J and

ϕ(n− 1)
(x) � 􏽚

I

z
n− 1

F

zx
n− 1(x, t)dt, ∀x ∈ J. (19)

From the assumptions (H1) − (H5) and using Teorem
6 and since zn− 1F/zxn− 1 verifes assumptions (A1) − (A5),
then the fuzzy mapping ϕ(n− 1)(x) is strongly generalized
diferentiable on J, that is, ϕ(x) is strongly generalized
diferentiable to the n-th order on J and we have

ϕ(n)
(x) �

d
dx

ϕ(n− 1)
􏼐 􏼑(x) � 􏽚

I

z

zx

z
n− 1

F

zx
n− 1􏼠 􏼡(x, t)dt

� 􏽚
I

z
n
F

zx
n(x, t)dt, ∀x ∈ J.

(20)

□

4. Fuzzy Laplace Transform for Second-Order
Fuzzy Linear Partial Differential Equations

Our aim now is to solve the following second-order linear
FPDE using the fuzzy Laplace transform method:

uxx(x, t) + a(x)uxt(x, t) + b(x)utt(x, t) + c1(x)ux(x, t),

+c2(x)ut(x, t) + d(x)u(x, t) � f(x, t), x≥ 0, t≥ 0,

u(x, 0) � g(x), u(0, t) � h(t), and ut(x, 0) � k(x),

⎧⎪⎪⎨

⎪⎪⎩
(21)

where u(x, t) is a fuzzy strongly diferentiable function of
second order, with continuous partial derivatives. a, b, c1, c2,
and d are real continuous functions, and f(x, t), g(x), h(t),
and k(x) are continuous fuzzy functions. Without loss of
generality, assume that the mappings a, b, c1, c2 are all
positive.

4.1. Resolution of Equation (21) by Fuzzy Laplace Transform
Method. By using fuzzy Laplace transform with respect to t,
we get

z
2Lt

zx
2 [u(x, t)] + a(x)s

zLt

zx
[u(x, t)] − a(x)g′(x)

+ b(x)s
2Lt[u(x, t)] − b(x)sg(x) − b(x)k(x)

+ c1(x)
zLt

zx
ux(x, t)􏼂 􏼃 + c2(x)sLt ut(x, t)􏼂 􏼃 − c2(x)g(x)

+ d(x)Lt[u(x, t)] � Lt[f(x, t)].

(22)

Terefore, we have to distinguish the following 32 cases
for solving this last equation.

(a) If u is (i)-diferentiable with respect to x and t, ux is
(i)-diferentiable with respect to x and t, and ut is (i)-
diferentiable with respect to t, then using Teorems
10 and 11, we get

z
2
Lt

zx
2 u(x, t, α)􏼂 􏼃 + a(x)s

zLt

zx
u(x, t, α)􏼂 􏼃 − a(x)g′(x, α)

+ b(x)s
2
Lt u(x, t, α)􏼂 􏼃 − b(x)sg(x, α)

+ c1(x)
zLt

zx
u(x, t, α)􏼂 􏼃 + c2(x)sLt ut(x, t, α)􏼂 􏼃

− c2(x)g(x, α) + d(x)Lt u(x, t, α)􏼂 􏼃 � Lt f(x, t, α)􏽨 􏽩,

z
2
Lt

zx
2 u(x, t, α)􏼂 􏼃 + a(x)s

zLt

zx
u(x, t, α)􏼂 􏼃 − a(x) g ′(x, α)

+ b(x)s
2
Lt u(x, t, α)􏼂 􏼃 − b(x)s g(x, α) − b(x) k(x, α)

+ c1(x)
zLt

zx
u(x, t, α)􏼂 􏼃 + c2(x)sLt ut(x, t, α)􏼂 􏼃

− c2(x) g(x, α) + d(x)Lt u(x, t, α)􏼂 􏼃 � Lt f(x, t, α)􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Denote U(x, s) � Lt[u(x, t)] and
F(x, s) � Lt[f(x, t)]. Ten,
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z
2

U

zx
2 (x, s, α) + a(x)s + c1(x)( 􏼁

z U

zx
(x, s, α)

+ b(x)s
2

+ c2(x)s + d(x)􏼐 􏼑 U(x, s, α) � a(x)g
′
(x, α)

+ b(x)k(x, α) +b(x)s + c2(x)􏼐 􏼑g(x, α) + F(x, s, α),

z
2
U

zx
2 (x, s, α) + a(x)s + c1(x)( 􏼁

zU

zx
(x, s, α)

+ b(x)s
2

+ c2(x)s + d(x)􏼐 􏼑U(x, s, α) � a(x) g ′(x, α)

+ b(x) k(x, α) + b(x)s + c2(x)( 􏼁 g(x, α) + F(x, s, α),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

satisfying the following initial conditions:

U(0, s, α) � L u(0, t, α)􏼂 􏼃 � L h(t, α)􏼂 􏼃,

U(0, s, α) � L[u(0, t, α)] � L[h(t, α)].
􏼨 (25)

Assume that this leads to

L u(x, t, α)􏼂 􏼃 � H1(x, s, α),

L[u(x, t, α)] � K1(x, s, α),
􏼨 (26)

where (H1(x, s, α), K1(x, s, α)) is the solution of
system (24) under (25).
By the inverse Laplace transform, we obtain

u(x, t, α) � L
− 1

H1(x, s, α)􏼂 􏼃,

u(x, t, α) � L
− 1

K1(x, s, α)􏼂 􏼃.

⎧⎨

⎩ (27)

(b) If u is (i)-diferentiable with respect to x and t, ux is
(i)-diferentiable with respect to t and (ii)-diferen-
tiable with respect to x, and ut is (i)-diferentiable
with respect to t, then we obtain

z
2
Lt

zx
2 [u(x, t, α)] + a(x)s

zLt

zx
Lt[u(x, t, α)] − a(x)g′(x, α)

+ b(x)s
2
Lt[u(x, t, α)] − b(x)k(x, α) − b(x)sg(x, α)

+ c1(x)
zLt

zx
[u(x, t, α)] + c2(x)sLt ut(x, t, α)􏼂 􏼃 − c2(x)g(x, α)

+ d(x)Lt[u(x, t, α)] � Lt f(x, t, α)􏽨 􏽩,

z
2
Lt

zx
2 [u(x, t, α)] + a(x)s

zLt

zx
[u(x, t, α)] − a(x) g ′(x, α)

+ b(x)s
2
Lt[u(x, t, α)] − b(x) k(x, α) − b(x)s g(x, α)

+ c1(x)
zLt

zx
[u(x, t, α)] + c2(x)sLt ut(x, t, α)􏼂 􏼃 − c2(x) g(x, α)

+ d(x)Lt[u(x, t, α)] � Lt f(x, t, α)􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Tus,
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z
2
U(x, s, α)

zx
2 + a(x)s + c1(x)( 􏼁

z U(x, s, α)

zx
+ b(x)s

2
+c2(x)s + d(x)􏼐 􏼑 U(x, s, α) � a(x)g′(x, α) + b(x)k(x, α)

+ b(x)s + c2(x)( 􏼁g(x, α) + F(x, s, α),

z
2

U(x, s, α)

zx
2 + a(x)s + c1(x)( 􏼁

zU(x, s, α)

zx
+ b(x)s

2
+c2(x)s + d(x)􏼐 􏼑U(x, s, α) � a(x) g ′(x, α) + b(x) k(x, α)

+ b(x)s + c2(x)( 􏼁 g(x, α) + F(x, s, α).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Assume that this leads to

L u(x, t, α)􏼂 􏼃 � H2(x, s, α),

L[u(x, t, α)] � K2(x, t, α),
􏼨 (30)

where (H2(x, s, α), K2(x, s, α)) is the solution of
system (29) under (25).
By the inverse Laplace transform, we get

u(x, s, α) � L
− 1

H2(x, s, α)􏼂 􏼃,

u(x, s, α) � L
− 1

K2(x, s, α)􏼂 􏼃.

⎧⎨

⎩ (31)

(c) If u is (i)-diferentiable with respect to x and (ii)-
diferentiable with respect to t, ux is (i)-diferentiable
with respect to x and t, and ut is (i)-diferentiable
with respect to t, then

z
2

U(x, s, α)

zx
2 + a(x)s

zU(x, s, α)

zx
+ c1(x)

z U(x, s, α)

zx

+ b(x)s
2

+ c2(x)s + d(x)􏼐 􏼑U(x, s, α) � a(x)g′(x, α)

+ b(x)k(x, α) + b(x)s + c2(x)( 􏼁g(x, α) + F(x, s, α),

z
2
U(x, s, α)

zx
2 + a(x)s

z U(x, s, α)

zx
+ c1(x)

zU(x, s, α)

zx

+ b(x)s
2

+ c2(x)s + d(x)􏼐 􏼑 U(x, s, α) � a(x) g ′(x, α)

+ b(x) k(x, α) + b(x)s + c2(x)( 􏼁 g(x, α) + F(x, s, α).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Assume that this leads to

L[u(x, t, α)] � H3(x, s, α),

L[u(x, t, α)] � aK3(x, s, α),
􏼨 (33)

where (H3(x, s, α), K3(x, s, α)) is the solution of
system (32) under (25).
By the inverse Laplace transform, we obtain

u(x, t, α) � L
− 1

H3(x, s, α)􏼂 􏼃,

u(x, t, α) � L
− 1

K3(x, s, α)􏼂 􏼃.

⎧⎨

⎩ (34)

(d) For the p-th case from the 29 remaining cases, with
p ∈ 4, 5, . . . , 32{ }, we get a diferential system similar
to one of the previous systems (24) and (29).

Assume that this leads to

L u(x, t, α)􏼂 􏼃 � Hp(x, s, α),

L[u(x, t, α)] � Kp(x, s, α),

⎧⎨

⎩ (35)

where (Hp(x, s, α), Kp(x, s, α)) is the solution of the latter
system under initial condition (25).

By the inverse Laplace transform, we have

u(x, t, α) � L
− 1

Hp(x, s, α)􏽨 􏽩,

u(x, t, α) � L
− 1

Kp(x, s, α)􏽨 􏽩.

⎧⎪⎨

⎪⎩
(36)

4.2. Algorithm of Fuzzy Laplace Transform. Te steps of the
proposed algorithm are as follows:

(i) Choose a case from the 32 possible ones according
to the diferentiability’s type of each from the
functions u, ux, ux, and ut with respect to x and t,
respectively.

(ii) Replace these functions by their parametric forms to
transform equation (21) into an equivalent classical
diferential system of two linear equations with
unknown u(x, t, α), u(x, t, α), for 0≤ α≤ 1.

(iii) Solve this diferential system under the given initial
and boundary conditions.

(iv) Calculate the length of the mappings
u, ux, ux, ut, uxx, uxt, and utt.

(v) Deduce the domain of defnition for the solution
u(x, t, α) using the nonnegativity of calculated
lengths.

5. Numerical Examples

Example 1. We consider the heat equation with fuzzy initial
and boundary conditions:

ut(x, t) � auxx(x, t),

u(0, t, α) � u(π, t, α) � (0, 0), α ∈ [0, 1],

u(x, 0, α) � sin x.(α, 2 − α), x≥ 0, t≥ 0,

⎧⎪⎪⎨

⎪⎪⎩
(37)
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where a is a positive real number. Here, we have to dis-
tinguish only 8 cases.

(a) If u is (i)-diferentiable with respect to x and t and ux

is (i)-diferentiable with respect to x, then

sLt u(x, t, α)􏼂 􏼃 − u(x, 0, α) � a
z
2
Lt u(x, t, α)􏼂 􏼃( 􏼁

zx
2 ,

sLt u(x, t, α)􏼂 􏼃 − u(x, 0, α) � a
z
2
Lt u(x, t, α)􏼂 􏼃( 􏼁

zx
2 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(38)

Using the conditions u(x, 0, α) � α sin x, u

(x, 0, α) � (2 − α)sin x leads to

sLt u(x, t, α)􏼂 􏼃 � a
z
2

zx
2 Lt u(x, t, α)􏼂 􏼃( 􏼁 + α sin x,

sLt[u(x, t, α)] � a
z
2

zx
2 Lt[u(x, t, α)]( 􏼁 + (2 − α)sin x.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

Solving (39), we get

Lt u(x, t, α)􏼂 􏼃 � A1(s)e
−

��
s/a

√
x

+ B1(s)e
��
s/a

√
x

+
α sin x

s + a
,

Lt u(x, t, α)􏼂 􏼃 � C1(s)e
−

��
s/a

√
x

+ D1(s)e
��
s/a

√
x

+
(2 − α)sin x

s + a
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(40)

Since Lt[u(0, t, α)] � Lt[u(π, t, α)] � Lt[u(π,

t, α)] � Lt[u(0, t, α)] � 0, then
A1(s) � B1(s) � C1(s) � D1(s) � 0. Tus,

Lt u(x, t, α)􏼂 􏼃 �
α sin x

s + a
,

Lt[u(x, t, α)] �
(2 − α)sin x

s + a
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(41)

By the inverse Laplace transform, we deduce

u(x, t, α) � αe
− at sin x,

u(x, t, α) � (2 − α)e
− at sin x.

⎧⎨

⎩ (42)

Te lengths of u, ux, ut, and uxx are, respectively,
given by

len(u(x, t, α)) � 2(1 − α)e
− at sin x,

len ux(x, t, α)( 􏼁 � 2(1 − α)e
− at cos x,

len ut(x, t, α)( 􏼁 � − 2a(1 − α)e
− at sin x,

len uxx(x, t, α)( 􏼁 � − 2(1 − α)e
− at sin x.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

Hence, this solution is invalid because
len(u(x, t, α)) × len(uxx(x, t, α))≤ 0.

(b) If u is (i)-diferentiable with respect to x and t and ux

is (ii)-diferentiable with respect to x, then

sLt u(x, t, α)􏼂 􏼃 − α sin x � a
z
2
Lt[u(x, t, α)]( 􏼁

zx
2 ,

sLt[u(x, t, α)] − (2 − α)sin x � a
z
2
Lt u(x, t, α)􏼂 􏼃( 􏼁

zx
2 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(44)

Solving (44), we get

Lt u(x, t, α)􏼂 􏼃 � A2(s)e
−

��
s

a

􏽲

x

+ B2(s)e

��
s

a

􏽲

x

+ C2(s)cos(
���
s/a

√
x) + D2(s)sin(

���
s/a

√
x)

+
(2s − sα − aα)

s
2

− a
2 sin x,

Lt[u(x, t, α)] � A2(s)e
−

��
s/a

√
x

+ B2(s)e
��
s/a

√
x

− C2(s)cos(
���
s/a

√
x) − D2(s)sin(

���
s/a

√
x)

+
(sα − 2a + aα)

s
2

− a
2 sin x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

Since Lt[u(0, t, α)] � Lt[u(0, t, α)] � Lt[u(π,

t, α)] � Lt[u(π, t, α)] � 0, then
A2(s) � B2(s) � C2(s) � D2(s) � 0. Hence,

Lt u(x, t, α)􏼂 􏼃 �
(sα − 2a + aα)

s
2

− a
2 sin x,

Lt[u(x, t, α)] �
(2s − sα − aα)

s
2

− a
2 sin x.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(46)

By the inverse Laplace transform, we obtain

u(x, t, α) � e
− at

+ (α − 1)e
at

􏽨 􏽩sin x,

u(x, t, α) � e
− at

+ (1 − α)e
at

􏽨 􏽩sin x.

⎧⎪⎨

⎪⎩
(47)

Te lengths of u, ux, ut, and uxx are, respectively,
given by

len(u(x, t, α)) � 2(1 − α)e
at sin x,

len ux(x, t, α)( 􏼁 � 2(1 − α)e
at cos x,

len ut(x, t, α)( 􏼁 � 2a(1 − α)e
at sin x,

len uxx(x, t, α)( 􏼁 � 2(1 − α)e
at sin x.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(48)

So, this solution (called solution 1) is valid over
[2kπ, π/2 + 2kπ] × R+, where k ∈ Z (see
Figures 1–4).
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(c) If u and ux are (i)-diferentiable with respect to x and
u is (ii)-diferentiable with respect to t, then

sLt u(x, t, α)􏼂 􏼃 � a
z
2
Lt[u(x, t, α)]( 􏼁

zx
2 + α sin x,

sLt[u(x, t, α)] �
x
2

2
z
2
Lt u(x, t, α)􏼂 􏼃( 􏼁

zx
2 + (2 − α)sin x.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(49)

Solving (49), we obtain

Lt u(x, t, α)􏼂 􏼃 � A3(s)e
−

��
s/a

√
x

+ B3(s)e
��
s/a

√
x

+ C3(s)cos(
���
s/a

√
x) + D3(s)sin(

���
s/a

√
x)

+
(sα − 2a + aα)

s
2

− a
2 sin x,

Lt[u(x, t, α)] � A3(s)e
−

��
s/a

√
x

+ B3(s)e
��
s/a

√
x

− C3(s)cos(
���
s/a

√
x) − D3(s)sin(

���
s/a

√
x)

+
(2s − sα − aα)

s
2

− a
2 sin x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

Similarly and as in Case 2, we obtain
A3(s) � B3(s) � C3(s) � D3(s) � 0. So,

Lt u(x, t, α)􏼂 􏼃 �
(sα − 2a + aα)

s
2

− a
2 sin x,

Lt[u(x, t, α)] �
(2s − sα + α)

s
2

− a
2 sin x.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(51)

By the inverse Laplace transform, we deduce

u(x, t, α) � e
− at

+ (α − 1)e
at

􏽨 􏽩sin x,

u(x, t, α) � e
− at

+ (1 − α)e
at

􏽨 􏽩sin x.

⎧⎪⎨

⎪⎩
(52)

Hence, this solution is invalid because
len(u(x, t, α)) × len(uxx(x, t, α))≤ 0.

(d) If u is (i)-diferentiable and ux is (ii)-diferentiable
with respect to x and u is (ii)-diferentiable with
respect to t, then

sLt u(x, t, α)􏼂 􏼃 �
az

2
Lt u(x, t, α)􏼂 􏼃( 􏼁

zx
2 + α sin x,

sLt[u(x, t, α)] �
az

2
Lt[u(x, t, α)]( 􏼁

zx
2 + (2 − α)sin x.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(53)

Solving (53), we get

Lt u(x, t, α)􏼂 􏼃 � A4(s)e
−

��
s/a

√
x

+ B4(s)e
��
s/a

√
x

+
α sin x

s + a
,

Lt[u(x, t, α)] � C4(s)e
−

��
s/a

√
x

+ D4(s)e
��
s/a

√
x

+
(2 − α)sin x

s + a
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(54)

As in Case 1, we get A4(s) � B4(s) �

C4(s) � D4(s) � 0.
Also, by the inverse Laplace transform,

u(x, t, α) � αe
− at sin x,

u(x, t, α) � (2 − α)e
− at sin x.

⎧⎨

⎩ (55)

Tus, this solution (called solution 2) is valid over
[2kπ, π/2 + 2kπ], where k ∈ Z (see Figures 5–8).

(e) If u is (ii)-diferentiable and ux is (i)-diferentiable
with respect to x and is u (i)-diferentiable with
respect to t, then

sLt u(x, t, α)􏼂 􏼃 � a
z
2

zx
2 Lt[u(x, t, α)]( 􏼁 + α sin x,

sLt[u(x, t, α)] � a
z
2

zx
2 Lt u(x, t, α)􏼂 􏼃( 􏼁 + (2 − α)sin x.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(56)

Solving (56), we get

Lt u(x, t, α)􏼂 􏼃 � A5(s)e
−

��
s/a

√
x

+ B5(s)e
��
s/a

√
x

+ C5(s)cos(
���
s/a

√
x) + D5(s)sin(

���
s/a

√
x)

+
(sα − 2a + aα)

s
2

− a
2 sin x,

Lt[u(x, t, α)] � A5(s)e
−

��
s/a

√
x

+ B5(s)e
��
s/a

√
x

− C5(s)cos(
���
s/a

√
x) − D5(s)sin(

���
s/a

√
x)

+
(2s − sα − aα)

s
2

− a
2 sin x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

As in Case 2, we get A5(s) � B5(s) �

C5(s) � D5(s) � 0.
By the inverse Laplace transform,

u(x, t, α) � e
− at

+ (α − 1)e
at

􏽨 􏽩sin x,

u(x, t, α) � e
− at

+ (1 − α)e
at

􏽨 􏽩sin x.

⎧⎪⎨

⎪⎩
(58)

Tus, this solution (called solution 2) is valid over
[π/2 + 2kπ, π + 2kπ], where k ∈ Z (see Figures 5–8).
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(f ) If u and ux are (ii)-diferentiable with respect to x

and u is (i)-diferentiable with respect to t, then

sLt u(x, t, α)􏼂 􏼃 � a
z
2

zx
2 Lt u(x, t, α)􏼂 􏼃( 􏼁 + α sin x,

sLt[u(x, t, α)] � a
z
2

zx
2 Lt[u(x, t, α)]( 􏼁 + (2 − α)sin x.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(59)

Solving (59), we get

Lt u(x, t, α)􏼂 􏼃 � A6(s)e
−

��
s/a

√
x

+ B6(s)e
��
s/a

√
x

+
α sin x

s + a
,

Lt[u(x, t, α)] � C6(s)e
−

��
s/a

√
x

+ D6(s)e
��
s/a

√
x
.

+
(2 − α)sin x

s + a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

As in Case 1, we have A6(s) � B6(s) � C6(s)

� D6(s) � 0. Also, by the inverse Laplace transform,

u(x, t, α) � αe
− at sin x,

u(x, t, α) � (2 − α)e
− at sin x.

⎧⎨

⎩ (61)

Terefore, this solution is invalid because
len(u(x, t, α)) × len(uxx(x, t, α))≤ 0.

(g) If u is (ii)-diferentiable and ux is (i)-diferentiable
with respect to x and u is (ii)-diferentiable with
respect to t, then

sLt u(x, t, α)􏼂 􏼃 �
az

2
Lt u(x, t, α)􏼂 􏼃( 􏼁

zx
2 + α sin x,

sLt[u(x, t, α)] �
az

2
Lt[u(x, t, α)]( 􏼁

zx
2 + (2 − α)sin x.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(62)

Solving (62), we get

Lt u(x, t, α)􏼂 􏼃 � A7(s)e
−

��
s/a

√
x

+ B7(s)e
��
s/a

√
x

+
α sin x

s + a
,

Lt[u(x, t, α)] � C7(s)e
−

��
s/a

√
x

+ D7(s)e
��
s/a

√
x

+
(2 − α)sin x

s + a
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(63)

As in Case 1, we getA7(s) � B7(s) � C7(s) � D7(s) �

0.
Also, by the inverse Laplace transform,

u(x, t, α) � αe
− at sin x,

u(x, t, α) � (2 − α)e
− at sin x.

⎧⎨

⎩ (64)

Hence, this solution (called solution 2) is valid over
[π/2 + 2kπ, π + 2kπ], where k ∈ Z (see Figures 5–8).

(h) If u and ux are (ii)-diferentiable with respect to x

and u is (ii)-diferentiable with respect to t, then

sLt u(x, t, α)􏼂 􏼃 �
az

2
Lt[u(x, t, α)]( 􏼁

zx
2 + α sin x,

sLt[u(x, t, α)] �
az

2
Lt u(x, t, α)􏼂 􏼃( 􏼁

zx
2 + (2 − α)sin x.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(65)

Solving (65), we get

Lt u(x, t, α)􏼂 􏼃 � A8(s)e
−

��
s/a

√
x

+ B8(s)e
��
s/a

√
x

+ C8(s)cos(
���
s/a

√
x) + D8(s)sin(

���
s/a

√
x)

+
(sα − 2a + aα)

s
2

− a
2 sin x,

Lt[u(x, t, α)] � A8(s)e
−

��
s/a

√
x

+ B8(s)e
��
s/a

√
x

− C8(s)cos(
���
s/a

√
x) − D8(s)sin(

���
s/a

√
x)

+
(2s − sα − aα)

s
2

− a
2 sin x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(66)

As inCase 2, we getA8(s) � B8(s) � C8(s) � D8(s) �

0.
Also, by the inverse Laplace transform,

u(x, t, α) � e
− at

+ (α − 1)e
at

􏽨 􏽩sin x,

u(x, t, α) � e
− at

+ (1 − α)e
at

􏽨 􏽩sin x.

⎧⎪⎨

⎪⎩
(67)

Terefore, this solution is invalid because
len(u(x, t, α)) × len(uxx(x, t, α))≤ 0.

Remark 1. Notice that in all cases, if we take α � 1, we fnd
the crisp solution u(x, t) � e− at sin x of the corresponding
classical heat equation

ut(x, t) � auxx(x, t), x≥ 0, t≥ 0,

u(0, t) � u(π, t) � 0, u(x, 0) � sin x.
􏼨 (68)

For the graph of the crisp solution, see Figures9 and 10.

Example 2. We consider the following FPDE:

uxt(x, t) � 􏽥0 � (α − 1, 1 − α),

u(0, t, α) � t
2
, α ∈ [0, 1],

u(x, 0, α) � x
2
, x≥ 0, t≥ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(69)
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Analogously, we obtain the solution’s expression by
distinguishing the following cases:

(a) If u (i)-diferentiable with respect to t and ut is (i)-
diferentiable with respect to x, then

u(x, t, α) � (α − 1)xt + x
2

+ t
2
,

u(x, t, α) � (1 − α)xt + x
2

+ t
2
.

⎧⎪⎨

⎪⎩
(70)

Terefore, this solution (called solution 3) is valid all
over (R+)2 (see Figures 11–14).

(b) If u (i)-diferentiable with respect to t and ut is (ii)-
diferentiable with respect to x, then

u(x, t, α) � (1 − α)xt + x
2

+ t
2
,

u(x, t, α) � (α − 1)xt + x
2

+ t
2
.

⎧⎨

⎩ (71)

Tus, this solution is invalid because len(u)≤ 0.
(c) If u (ii)-diferentiable with respect to t and ut is (i)-

diferentiable with respect to x, then

u(x, t, α) � (1 − α)xt + x
2

+ t
2
,

u(x, t, α) � (α − 1)xt + x
2

+ t
2
.

⎧⎨

⎩ (72)

Also, this solution is invalid because len(u)≤ 0.
(d) If u (ii)-diferentiable with respect to t and ut is (ii)-

diferentiable with respect to x, then

Lower solution 1 for alpha=0.5
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Figure 1: Lower part u(x, t, α) of solution 1 for equation (37), with
α � 0.5.
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Upper solution 1 for alpha=0.5
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Figure 2: Upper part u(x, t, α) of solution 1 for equation (37), with
α � 0.5.

Lower solution 1 for alpha=0.7
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Figure 3: Lower part u(x, t, α) of solution 1 for equation (37), with
α � 0.7.

Upper solution 1 for alpha=0.7
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Figure 4: Upper part u(x, t, α) of solution 1 for equation (37), with
α � 0.7.
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u(x, t, α) � (α − 1)xt + x
2

+ t
2
,

u(x, t, α) � (1 − α)xt + x
2

+ t
2
.

⎧⎨

⎩ (73)

So, this solution is invalid because u is not (ii)-difer-
entiable with respect to t.

Remark 2. Notice that in all cases, if we take α � 1, we fnd
the crisp solution u(x, t) � x2 + t2 of the corresponding
classical problem

uxt(x, t) � 0,

u(0, t) � t
2
, u(x, 0) � x

2
, x≥ 0, t≥ 0.

􏼨 (74)

6. Discussion

TeLaplace transformmethodwas used to compute the analytic
solutionu(x, t, α) of two linear FPDEs of second order. First, we
decomposed each FPDE into a system of two crisp PDEs with
the unknown (u(x, t, α), u(x, t, α)), for 0≤ α≤ 1, for which we
calculated the Laplace transforms using the properties proved in
Section 3. Ten, using the inverse Laplace transform, we ob-
tained the lower and upper solution’s parts u(x, t, α), u(x, t, α),
respectively. Finally, we determined the defnition’s domain of
these fuzzy solutions by utilizing the positivity of the length for
u(x, t, α) and its partial derivatives ux(x, t, α), ut(x, t, α),

uxt(x, t, α), uxx(x, t, α), and utt(x, t, α).
In both numerical examples studied, the fuzzy solution

u(x, t, α) of the second-order FPDE can be expressed as
follows:

Lower solution 2 for alpha=0.5
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Figure 5: Lower part u(x, t, α) of solution 2 for equation (37), with
α � 0.5.

Upper solution 2 for alpha=0.5
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Figure 6: Upper part u(x, t, α) of solution 2 for equation (37), with
α � 0.5.
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Figure 7: Lower part u(x, t, α) of solution 2 for equation (37), with
α � 0.7.

Upper solution 2 for alpha=0.7
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Figure 8: Upper part u(x, t, α) of solution 2 for equation (37), with
α � 0.7.
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u(x, t, α) � uc(x, t) + uF(x, t, α), (75)

where uc(x, t) is the crisp solution of the corresponding
classical second-order PDE, obtained by letting α � 1, and
uF(x, t, α) is an undesirable term, which represents the fuzzy
pure part of the fuzzy solution u(x, t, α).

Tis fuzzy pure component uF(x, t, α) results from the
modeling choices and steps using fuzzy tools and theory. It
also measures the uncertainty and vagueness in the adopted
model due to the imprecisions in the initial and boundary
conditions or in the fuzzy (respectively, real) second
member of the FPDE (respectively, PDE).

On the one hand, we get for Example 1:

u(x, t, α) � e
− at sin x +(α − 1)e

at sin x,

u(x, t, α) � e
− at sin x +(1 − α)e

at sin x,

⎧⎨

⎩ (76)

that is,

u(x, t, α) � e
− at sin x + e

at sin x.(α − 1, 1 − α), (77)

for solution 1 of (37), given in its parametric form. Hence,
we have

uc(x, t) � e
− at sin x,

uF(x, t, α) � e
at sin x.(α − 1, 1 − α).

⎧⎨

⎩ (78)

On the other hand, we obtain

u(x, t, α) � e
− at sin x +(α − 1)e

− at sin x,

u(x, t, α) � e
− at sin x +(1 − α)e

− at sin x,

⎧⎨

⎩ (79)

that is, u(x, t, α) � e− at sin x + e− at sin x.(α − 1, 1 − α), for
solution 2 of (37), written in its parametric form. So, we have

Crisp solution on [π/2, π]
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Figure 9: Crisp solution uc(x, t) over [π/2, π] for equation (37).
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Figure 10: Crisp solution uc(x, t) over [− π, π] for equation (37).

Lower solution 3 for alpha=0.5
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Figure 11: Lower part u(x, t, α) of solution 3 for equation (69),
with α � 0.5.

Upper solution 3 for alpha=0.5
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Figure 12: Upper part u(x, t, α) of solution 3 for equation (69),
with α � 0.5.
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uc(x, t) � e
− at sin x,

uF(x, t, α) � e
− at sin x.(α − 1, 1 − α).

⎧⎨

⎩ (80)

Te presence of the pure fuzzy parts in these two
solutions of the fuzzy heat equation can be explained by
some uncontrollable parameters or omitted inputs in the
modeling of the crisp problem. So, the fuzzy approach
is better and more efcient than the ordinary classical
way.

Furthermore, we have for Example 2:

u(x, t, α) � x
2

+ t
2

+(α − 1)xt,

u(x, t, α) � x
2

+ t
2

+(1 − α)xt,

⎧⎨

⎩ (81)

that is, u(x, t, α) � x2 + t2 + xt.(α − 1, 1 − α), for solution 3
of (69), given in its parametric form. Ten, we have

uc(x, t) � x
2

+ t
2
,

uF(x, t, α) � (α − 1)xt.

⎧⎨

⎩ (82)

In (37), the length of the fuzzy pure part
len(uF(x, t, α)) � 2(1 − α)eat sin x goes to infnity as
t⟶∞ for solution 2, while the length len(uF(x, t, α)) �

2(1 − α)e− at sin x converges to 0 as t⟶∞ for the fuzzy
pure part of solution 1.Tus, the frst solution is stable, whereas
the second solution is unstable. In other words, solution 2 is
most uncertain or vague than solution 1 for Example 1.

In Example 2, the crisp part of the solution 3 is uc(x, t) �

x2 + t2 and its fuzzy pure part is uF(x, t, α) � xt.(α − 1, 1 −

α), for which the length len(uF(x, t, α)) � 2(1 − α)xt di-
verges to the infnity as x⟶∞ (respectively, t⟶∞).
Hence, the uncertainty is increasing as the value of x or t

increases, and this solution is unstable.
In general, as α approaches 1, the fuzziness and un-

certainty become smaller and completely disappear, for α �

1, yielding the crisp solution of the classic real problem.
Moreover, note that the existence, form, and asymptotic

behavior of the solution depend on the choice of the kind of
each used fuzzy partial derivative. Indeed, solution 2 of Ex-
ample 1 is unstable, and it is obtained if we assume that u is (i)-
diferentiable with respect to x and it is (ii)-diferentiable with
respect to t and ux is (ii)-diferentiable with respect tox (see the
fourth case (d)), while solution 1 is stable and is obtained
provided that u is (i)-diferentiable with respect to x and t and
ux is (ii)-diferentiable with respect to x (see the second case
(b)). But, in the other cases, there is no valid fuzzy solution.

In Example 2, we note that solution 3 exists and is
unstable, and it is valid only if we assume that u is (i)-
diferentiable with respect to t and ut is (ii)-diferentiable
with respect to x.

Furthermore, the uniqueness of the solution is lost in
Example 1 (we have two (solutions 1 and 2)), although this
unicity is preserved in Example 2.

Consequently, the study of these examples demonstrates
that the type of fuzzy partial derivatives used infuences the
existence, uniqueness, and stability of the fuzzy solution(s)
for a second-order FPDE under the strong generalized
diferentiability assumption.

Now, we proceed to the graphic interpretation of
Figures 5–8. Firstly, in the solution 2 of (37), the lower and
upper parts of this solution are proportional to the crisp
solution of the corresponding classic equation, for all
α ∈ [0, 1]. Indeed, we have

u(x, t, α) � (α − 1)uc(x, t), u(x, t, α) � (1 − α)uc(x, t).

(83)

So, all the obtained graphs are in fact images of the crisp
solution’s graph (see Figures 9 and 10) by the dilation of
ratio equal to α − 1 for the graph of u(x, t, α) and equal to
1 − α for the graph of u(x, t, α).

Lower solution 3 for alpha=0.=0.999999
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Figure 13: Lower part u(x, t, α) of solution 3 for equation (69),
with α � 0.999999.

Upper solution 3 for alpha=0.999999
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Figure 14: Upper part u(x, t, α) of solution 3 for equation (69),
with α � 0.999999.
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Secondly, for each valid fuzzy solution (1, 2, and 3), in
both examples, the maximum value of the upper solution
u(x, t, α) is greater than the maximum value of the lower
solution u(x, t, α). For instance, we get the following results
for solution 2, a � 1, and α � 0.5:

max u(x, t, α)≃ 0.35; max u(x, t, α)≃0.9, (84)

and for solution 1 and α � 0.5, we have

max u(x, t, α)≃ 11; max u(x, t, α) � 0, (85)

while we get for solution 3 and α � 0.5:

max u(x, t, α)≃3500; max u(x, t, α)≃6000. (86)

Finally, the graphs of the solutions u(x, t, α) and
u(x, t, α) are almost equal and coincide with the crisp so-
lution’s graph for α close to 1, as it is shown in the graph of
solution 3 for α � 0.999999 (see Figures 13 and 14).

7. Conclusions

Teorems of high diferentiability for a fuzzy function de-
fned via a fuzzy improper integral have been investigated
and proved, which have been employed to prove some re-
sults related to the partial derivatives of the fuzzy Laplace
transform. Ten, using the Laplace transform method, the
solutions for linear FPDEs of second order have been given.
For future research, one can apply this method to solve
nonlinear FPDEs of frst or high order. Te infuence of the
choice of the kind of the fuzzy partial derivatives on the fuzzy
solutions and their existence, uniqueness, and asymptotic
behavior have been discussed.

Data Availability

Te graph data used to support the fndings of this study are
included within the supplementary information fle. Tis fle
contains programs developed by using the free Python
software to plot each of the fourteen fgures in the manu-
script. For more information and documentation about
Python, the readers can consult the website https://www.
python.org.
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Supplementary Materials

Here we give a concise description of the supplementary
material used in this article. All the fourteen Python pro-
grams that we developed are similar and can be summarized
as follows: Step 1: call the necessary Python libraries in the
heading—numpy, matplotlib.pyplot, mpl toolkits.mplot3d,

and sklearn.datasets. Step 2: set up the axes using “plt.axes”
and defne the mapping f(x, y) to plot using “def.” Step 3:
defne the intervals for the values of each of the variables x, y,
and z using “np.linspace.” Step 4: plot the function f(x, y)

using “ax.plot surface.” Step 5: set up the fgure’s title using
“ax.set title” and the axis labels using “ax.set xlabel” and
“ax.set ylabel.” (Supplementary Materials)
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