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Interval Type-2 Fuzzy VIseKriterijumska Optimizacija I Kompromisno Resenje (IT2FVIKOR) technique is one of the techniques
of Interval Type-2 Fuzzy Multi-Criteria Decision Making (IT2FMCDM), which was developed to solve problems involving
conficting andmultiple objectives. Most of the IT2FVIKORmethods are created from linguistic variables based on Interval Type-
2 Fuzzy Set (IT2FS) and its generalization, such as Interval Type-2 Fuzzy Numbers (IT2FNs). Recent literature suggests that
equitable linguistic scales can ofer a better alternative, particularly when IT2FSs have some limitations in handling uncertainty
and imbalance. Tis paper proposes the extended IT2FVIKOR with an equitable linguistic scale and Z-Numbers, where its
linguistic scale introduces an equitable balance of positive and negative scales added to the restriction and reliability approach.
Diferent from the typical IT2FVIKOR, which directly utilizes IT2FNs with a positive membership, the proposed method in-
troduces positive and negative membership where each side considers a restriction and reliability approach. Besides, this paper
also ofers objective weights using fuzzy entropy-based IT2FS to calculate the weights of the extended IT2FVIKOR. Te obtained
solutions would help decision makers (DMs) identify the best solution to enhance water security projects in terms of fnding the
best strategies for water supply security in Malaysia.

1. Introduction

Fuzzy Multi-Criteria Decision Making (FMCDM) is an
extension of Multi-Criteria Decision Making (MCDM),
where it is the study of evaluating typically multiple con-
ficting criteria with the added of uncertainty issues using the
concept of Type-1 Fuzzy Sets (T1FSs). In this approach, the
decision makers (DMs) should provide subjective and ob-
jective measurements in order to verify the performance of

each alternative based on the specifc criteria for each
problem. Various research works have discussed FMCDM
such as (1) Fuzzy Analytic Hierarchy Process (FAHP) [1], in
which a pair-wise comparison was applied to estimate the
relative magnitudes of factors based on DMs preferences; (2)
Fuzzy Techniques for Order Preference by Similarity to Ideal
Solution (FTOPSIS) [2] used DM decision information
about weights and values of attributes to identify the utmost
required alternatives from an array of n feasible alternatives;
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(3) a structured communication technique using fuzzy
Delphi [3] was originally developed as an interactive, sys-
tematic forecasting method which relies on DMs; (4) Fuzzy
ELimination and Choice Expressing REality (FELECTRE)
[4] was introduced in order to overcome uncertainty in
linguistic judgment, the assertion was developed that a
concordance of attributes was present in favour of the
proclamation that an alternative was just as good as another,
and that strong discordance was detected amongst the score
values, thereby refuting the previous statement that did not
exist; (5) Fuzzy Decision-Making Trial and Evaluation
Laboratory (FDEMATEL) [5] was developed to visualize and
construct interrelations between criteria and subcriteria.
Fuzzy VIseKriterijumska Optimizacija I Kompromisno
Resenje (FVIKOR), which is the method chosen in this
study, is developed based on the initial (given) weights, then
determines a compromise ranking list for decision problems
with conficting criteria, and next determines a compromise
solution with such a ranking list [6]. FVIKOR seems to have
an ability to solve uncertainty issues due to its ability to
combine the solution into a maximum group utility and a
minimum individual regret of the opponent. Besides,
FVIKORwould discover the best solution and a compromise
solution, by prioritizing important factors [7]. However,
FVIKOR still used T1FS. Interval Type-2 Fuzzy Sets (IT2FSs)
[8, 9] were developed to overcome the lack of defning the
level of uncertainty in T1FS.

Interval Type-2 Fuzzy VIKOR (IT2FVIKOR) was frst
created by Qin et al. [10]. IT2FVIKOR seeks to discover a
compromise solution that can result in an agreement of
mutual concessions, which is the nearest to the ideal solu-
tion. A further beneft of this approach is that it incorporates
the DM’s behaviour preference into the MCDM, which will
allow for more realistic results that refect both their pref-
erence and actual needs. Moreover, the IT2FVIKORmethod
requires the parameter m, which in this context can be
observed as a quantity of the DM’s behaviour preference, so
that the DM can adjust m to achieve a compromise with
respect to his/her preferences. Due to many benefts from
IT2FVIKOR, many studies have discussed this method with
diferent extended methods and in various applications. Gul
et al. [11] enhanced the Fine–Kinney occupational risk
evaluationmethod with IT2FVIKOR.Ten, they applied this
technique to solve occupational health and safety risk
evaluation. Qin and Liu [12] developed IT2FVIKOR based
on the prospect theory. Ten, they applied their proposed
method to solve the high-tech investment evaluation. Wu
et al. [13] proposed IT2FVIKOR with the extended Fuzzy
Best-Worst Method (FBWM) to apply it in the green supply
selection. Next, Liu et al. [14] combined Interval Type-2
Fuzzy Analytical Network Process (IT2FANP) with IT2F-
VIKOR to fgure out the supplier selection issue in Sus-
tainable Supplier Chain Management (SSCM). Soner et al.
[15] integrated IT2FAHP with IT2FVIKOR to solve MCDM
problems in the maritime transportation industry.

However, up to now, the preference scale in IT2FVIKOR
has received little attention. Te previous ITFVIKOR only
used general preference scales generated from Interval Type-
2 Fuzzy Number (IT2FN) linguistic scales. Existing

IT2FVIKOR methods do not consider the equitable lin-
guistic scale of DMs’ behaviour preferences, thus exhibiting
a common shortcoming [16]. Besides, they also lack in
considering the reliability of preference information [16, 17].
A DM’s behaviour portrays a major role in the fnal decision
result in many real-life decision conditions. Te equitable
linguistic scale is useful to cope with the subjective judg-
ments of DMs, where both the lowest and highest scale
members are equally strong, where it proposes an equitable
positive and negative scale [16, 18]. Inspired by the theory of
the equilibrium concept (i.e., the balance between two sides
of a matter), an equitable linguistic scale is proposed where
positive and negative scales share equilibrium. Te low and
high scores of this linguistic variable are equally strong in
relation to subjective judgments from the DMs. Further-
more, all correctly classifed examples are represented by
positive data, while all negative examples are represented by
negative data. In this study, negative data are not indicative
of faulty or corrupt data.Tere is a hypothesis that makes the
negative data well separated [19]. Te positive and negative
are relative, and it is equitable.

Moreover, this study also considers restriction and re-
liability. Te concept of restriction and reliability comes
from the idea of Z-Numbers proposed by Zadeh [17].
Trough Z-Numbers, DMs are able to incorporate their
reasonable evaluations into the language used to represent
answers. It aids in the resolution of some issues and would
undoubtedly make for intriguing research on information
capture and interpretation, as a guide for the expertise’s
interest [20]. Additionally, because Z-Numbers take reli-
ability and constraint into account, they provide us more
latitude to depict the fuzziness and ambiguity of real-world
circumstances [20]. We therefore construct an expanded
IT2FVIKOR technique based on the equitable linguistic
scale and the Z-Numbers to handle MCDM within IT2FSs,
prompted by the idea of the IT2FVIKOR method, equitable
linguistic scale, and the Z-Numbers. Apart from the lin-
guistic scale, this study also assigns entropy weight to obtain
the weight of the decision matrix. Besides, we employed the
idea of objective weight to establish weight for criteria and
alternatives in decision-making situations. Because of this,
our suggested method can ofer substantial objective weights
to confrm that the evaluation outcome is not impacted by
the interdependence of criteria and inconsistent subjective
weights [21]. Additionally, it can confrm objectivity while
avoiding subjectivity due to the DM’s personal bias.
Terefore, using an entropy weight for our extended
IT2FVIKOR is more adaptable and efective since it accepts
superior fexibility in the presentation of uncertainties.

Te enhanced IT2FVIKOR could be used in a variety of
real-world FMCDM applications. Using a practical appli-
cation to fnd the best ways to improve the security of
Malaysia’s water supply, the methods and viability of the
suggestions are demonstrated. Six alternatives with fve
criteria are constructed to evaluate fve diferent backgrounds
of DMs. To check its efciency of this proposed method with
a real application, sensitivity analysis is applied in this study.
Sensitivity analysis is a good platform for the extended
IT2FVIKOR method to check how sensitive this method is
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towards the diferent weights’ value. Te remainder of this
paper is structured as follows. Section 2 describes the related
work of the study. Section 3 discusses the theoretical
background of this study. Section 4 elaborates the proposed
IT2FVIKOR including the construction of a new linguistic
scale and weighting process. Section 5 applies the real ap-
plication of water security towards the proposed method.
Section 6 makes some analysis and comparison between the
proposed method with the previous method. Lastly, the
conclusion is drawn in Section 7.

2. Related Work

Most of the FMCDM methods can be separated into four
main phases which are rating phase, weighting phase [22],
aggregating phase [23], and ranking phase [22]. Te rating
phase focuses on constructing a decision matrix, where the
preference scale with Fuzzy Numbers (FNs) is used to
measure rating alternatives towards attributes. Te
weighting phase focuses on constructing the weighting
matrix. FNs are used for rating the weight of each alternative.
Te weight can be used as a parameter for ranking the al-
ternatives to the problem and lead the experts in making
choices. In the aggregating phase, the ranking values are
calculated to achieve crisp numbers. Te ranking phase
calculates the distance between each alternative to fnd the
best relative degree. Lastly, it sorts the values for all
alternatives.

Due to these diferent phases, numerous publications
have emerged in FMCDM to discuss each of these phases.
For example, for the rating phase, Keshavarz-Ghorabaee
et al. [24] proposed a new technique of Evaluation by an
Area-based Method of Ranking Interval Type-2 Fuzzy Sets
(EAMRIT-2F) for ranking IT2FSs based on the area under
the upper and lower memberships. Ten, they applied
EAMRIT-2F to select the facility location. Results of the
EAMRIT-2F showed consistency and were comparable
with fve other methods. Chen et al. [25] encoded Pro-
portional Hesitant Fuzzy Linguistic Term Sets (PHFLTSs)
based on the idea of a Proportional Interval Type-2 Hes-
itant Fuzzy Set (PIT2 HFS). Based on Archimedean
t-norms and s-norms, fundamental operations fulflling the
closure property were identifed for PIT2 HFSs. By using a
second-generation fuzzy logic technique based on IT2FSs
to convey linguistic phrases in numbers, a process known
as computing with words, Hong et al. [26] concentrated on
transforming linguistic graded qualitative risk matrices.
Tis converting linguistic was later applied to support risk
management decision making. Liu et al. [27] extended
Hesitant Fuzzy Linguistic Term Sets (EHFLTSs) to over-
come the inadequacy of Multi-Criteria Group Decision
Making (MCGDM) to decrease information loss in com-
puting with words.Teir proposed method was applied in a
cross-border e-commerce selection situation. Sajjad et al.
[28] proposed a formula for the correlation coefcient
based on intuitionistic 2-tuple fuzzy linguistic (I2TFL)
using the best-worst method (BWM). Ten, illustrated
IT2L BWM using two numerical examples. Ten, they
illustrated it using two numerical examples.

Later, for the weighting phase, Keshavarz-Ghorabaee
et al. [29] suggested an expanded Stepwise Weight As-
sessment Ratio Analysis (SWARA) with symmetric IT2FSs
to estimate the weights of criteria based on the views of a
group of DMs. Te value of rational capital measurements
and components in a corporation was then assessed using
the suggested method. Teir fndings demonstrated how
efective the suggested method was at capturing the infor-
mation ambiguity and defning the subjective weights of
criteria. Based on novel entropy and evidential reasoning,
Yuan and Luo [30] proposed a novel intuitionistic fuzzy
entropy (IFE) method.Te proposed method should next be
put to the test using actual cases in Beijing to show its
superiority and efcacy. By utilizing a newly developed
divergence-based cross entropy measure of Atanassov’s
intuitionistic fuzzy sets, Song et al. [31] introduced uncer-
tainty metrics (AIFSs). To identify attribute weights in
Multi-Attribute Group Decision-Making (MAGDM) issues,
they then used the cross entropy and uncertainty mea-
surements into an optimal model. Two MCDM techniques
were proposed by Keshavarz-Ghorabaee et al. [32]: Simul-
taneous Evaluation of Criteria and Alternatives (SECA)-
based IT2FSs and Weighted Aggregated Sum Product As-
sessment (WASPAS). Tey then employed the suggested
method to assess sustainable manufacturing strategies, and
the results revealed that the devised model’s efectiveness
was based on “Eco-efciency.” Te removal efects of cri-
teria-based intuitionistic fuzzy method (Intuitionistic Fuzzy
MEREC) and ranking sum (RS) were studied by Hezam et al.
[33] to evaluate the objective and subjective weighting values
of numerous parameters for alternative fuel cars (AFV).
Teir fndings indicated that societal benefts, fueling/
charging infrastructure, and fnancial incentives, in that
order, are the most important factors for AFV appraisal. For
the best of the FCH supplier, Alipour et al. [34] combined a
strategy based on entropy, Stepwise Weight Assessment
Ratio Analysis (SWARA), and Complex Proportional As-
sessment (COPRAS) methodologies in a Pythagorean fuzzy
environment. Tis includes integrating the subjective
weights from the SWARAmethod with the objective weights
established by the entropy-based technique to create criteria
weights.

For the aggregating phase, Keshavarz-Ghorabaee et al.
[35] recommended EDAS (Evaluation based on Distance
from Average Solution) and IT2FSs for assessing providers
with regard to environmental criteria. Tey then used their
integrated model to evaluate suppliers and allocate orders
while considering economic and environmental factors.
Teir fndings demonstrated how efective and practical
their suggested model was for solving real-world issues. To
defne the weights of criterion, Tian et al. [36] suggested a
mathematical programming model based on the Shapley
fuzzy measure. Te weighted picture fuzzy power Choquet
ordered geometric (WPFPSCOG) operator was then used to
aggregate the evaluation value of each alternative. To de-
termine the best breed of horsegram, Janani et al. [37]
developed aggregation operators called the complex Py-
thagorean fuzzy Einstein ordered weighted arithmetic ag-
gregating operator (CPFEOWA), complex Pythagorean
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fuzzy Einstein weighted arithmetic aggregating operator
(CPFEWA), complex Pythagorean fuzzy Einstein weighted
ordered geometric aggregating operator (CPFEOWG), and
complex Pythagorean fuzzy Einstein weighted geometric
aggregating operator (CPFEWG) to select the best breed of
horsegram. Jia and Wang [38] enhanced the Choquet in-
tegral-based intuitionistic fuzzy arithmetic aggregation
(CIIFAA) operator used in MCDM approaches to pick the
best option(s) in an intuitionistic fuzzy environment. Taking
into account both the lowest distance from the positive ideal
point and the greatest distance from the negative ideal point,
Shang et al. [39] incorporated fuzzy Shannon entropy, fuzzy
MULTIMOORA, and BWM in 2022. Teir suggested
method’s viability and efcacy were confrmed in an de-
scriptive application at Company L, a renowned Chinese
forklift truck manufacturer on a global scale.

Finally, to achieve more convincing and useful weights
for the criteria, Keshavarz-Ghorabaee et al. [35] combined
the subjective weights conveyed by DMs with the objective
weights computed using the deviation-based method for the
ranking phase. Tis new method used IT2FSs based on
Fuzzy Ranking and Aggregated Weights (AFRAW). Addi-
tionally, their suggested solution made use of the aggregated
weights. Tey then showed how their suggested strategy
might evaluate vendors in a supply chain. Te interval-
valued intuitionistic hesitant fuzzy entropy and interval-
valued intuitionistic hesitant fuzzy VIKOR methods for
ranking the alternatives and the importance of the criteria,
respectively, were proposed by Narayanamoorthy et al. [40].
Teir suggested approach was then used to choose industrial
robots. In order to rank the eight Supply Chain Analytics
(SCA) tool alternatives from various companies,
Büyüközkan and Güler [41] proposed Hesitant Fuzzy Lin-
guistic Multi-Objective Optimization by Ratio Analysis,
where the Full Multiplicative (HFL MULTIMOORA)
method is combined with the fuzzy envelope technique.
Tey then used a case study of a logistics company to apply
their suggested methodology. Fuzzy-Combined Compro-
mise Solution (Fuzzy-CoCoSo), developed by Alao et al.
[42], is a method for choosing the best prime movers (PMs)
for situations involving combined heat and power (CHP).
Teir fndings showed that the greatest and least important
factors for selecting PMs were, respectively, the main f-
nancing cost in the economic group and the social imprint.

Our suggested approach is mostly concerned with the rating
phase and weighting phase.

3. Theoretical Background

Tis section briefy overviews of the main concepts and basic
relations on Type-2 Fuzzy Sets (T2FSs), Interval Type-2
Fuzzy Sets (IT2FSs), Arithmetic operations between trape-
zoidal IT2FSs, Z-Numbers, and entropy weight. Tese
defnitions can be used in subsequent sections.

3.1. Type-2 Fuzzy Sets (T2FSs)

Defnition 1 (see [43]). Let X be the universe of discourse,
and a type-2 set (T2FS) 􏽥B can be illustrated as B� {((y, d), μ􏽥B
(y, d))|∀x ∈X, ∀d ∈Ky⊆ [0, 1]}, where y is the primary
variable, d is the secondary variable, and Ky ∈ [0, 1] is the
primary membership function of y.

Te T2FS can be equivalently rewritten as 􏽥B �

􏽒
y∈X 􏽒 u ∈ Kyμ􏽥B(y, d)/y, d � 􏽒

x∈X(􏽒 d ∈ Kyu􏽥B(y, d)/dy),
where 􏽒

​
d ∈ Kyu􏽥B(y, d)/d is the secondmembership function

at y, and the sign denotes the traversal of all y and d.

Defnition 2 (see [44]). Consider 􏽥􏽥B as a T2FS in the reference
set Y corresponding to the type-2 membership function μ􏽥􏽥B

.
􏽥􏽥B could be called as an IT2FS, if all μ􏽥􏽥B

(Y, d) � 1. As a special
case of a T2FS, the IT2FS 􏽥􏽥B can be written as follows:

􏽥􏽥B � B 1
(Y, D)

�
􏽒 􏽒(1/D)􏽨 􏽩

y
, (1)

where y is the primary variable and Ky is the primary
membership of y specifed as an interval in [0, 1]. Addi-
tionally, the secondary membership function (MF) at y is
represented by 􏽒 1/D and the secondary variable is indicated
by d.

3.2. Interval Type-2 Fuzzy Sets (IT2FSs). Tis section briefy
analyzes some descriptions of T2FSs and IT2FSs from
Mendel et al. [44].

Defnition 3 (see [44]). A T2FS 􏽥􏽥B in the universe of discourse
Y can be presented by a type-2 membership function μ􏽥􏽥B

,
displayed as follows:

􏽥􏽥B � (y, d), μ􏽥􏽥B
(y, d)􏼒 􏼓|∀y ∈ Y, ∀d ∈ Ky⊆[0, 1], 0≤ μ􏽥􏽥B

(y, d)≤ 1􏼚 􏼛, (2)

where Jx indicates an interval in [0, 1]. Moreover, the T2FS
􏽥􏽥A also can be characterized as follows:

􏽥􏽥B � 􏽚
y∈Y

􏽚
μ∈Jy

μ􏽥􏽥B
(y, d)

(y, d)
, (3)

where Ky⊆[0, 1] and 􏽒􏽒 indicates the union over all ad-
missible y and d.

Defnition 4 (see [44]). Let 􏽥􏽥B be a T2FS in the universe of
discourse Y characterized by the type-2 membership func-
tion μ􏽥􏽥B

. If all μ􏽥􏽥B
� 1, then B is called an IT2FS. An IT2FS 􏽥􏽥B

can be regarded as a special case of a T2FS, represented as
follows:

􏽥􏽥B � 􏽚
y∈Y

􏽚
μ∈Jy

1
(y, d)

, (4)
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where Jy⊆[0, 1].

3.3. Arithmetic Operations between Trapezoidal IT2FSs.
Te evaluations of arithmetic operations between trape-
zoidal IT2FS are defned in Lee and Chen [45].

Figure 1 shows a trapezoidal IT2FS
􏽥􏽥Bi � (􏽥B

U

i , 􏽥B
L

i ) � ((bU
i1, bU

i2, bU
i3, bU

i4; G1(
􏽥B

U

i ), G2 (􏽥B
U

i )), (bL
i1,

bL
i2, bL

i3, bL
i4; G1(

􏽥B
L

i ), G2(
􏽥B

L

i ))) [45], where 􏽥B
U

i and 􏽥B
L

i are
T1FSs, bU

i1, bU
i2, bU

i3, bU
i4, bL

i1, bL
i2, bL

i3, and bL
i4 are the reference

points of the T1FS 􏽥􏽥BI, Gk(􏽥B
U

i ) indicates the membership
value of the element bU

i(k+1) in the upper trapezoidal

membership function 􏽥B
U

i , 1≤ k≤ 2, Gk(􏽥B
L

i ) indicates the
membership value of the element bL

i(k+1) in the lower
trapezoidal membership function 􏽥B

L

i ,
1≤ k≤ 2, G1(

􏽥B
U

i ) ∈ [0, 1], G2
(􏽥B

U

i ) ∈ [0, 1], G1(
􏽥B

L

i ) ∈ [0, 1],G2(BL
i ) ∈ [0, 1], and 1≤ i≤ n.

Defnition 5 (see [45]). Te addition operation between the
trapezoidal IT2FSs 􏽥􏽥B1 � (􏽥B

U

1 , 􏽥B
L

1) � ((bU
11, bU

12, bU
13,

bU
14; G1(

􏽥B
U

1 ), G2(
􏽥B

U

1 )), (bL
11, bL

12, bL
13, bL

14; G1(
􏽥B

L

1), G2(
􏽥B

L

1)))

and 􏽥􏽥B2 � (􏽥B
U

2 , 􏽥B
L

2) � ((bU
21, bU

22, bU
23, bU

24; G1 (􏽥B
U

2 ), G2(
􏽥B

U

2 )),

(bL
21, bL

22, bL
23, aL

24; G1(
􏽥B

L

2), G2(
􏽥B

L

2))) is defned as follows:

􏽥􏽥B1 ⊕
􏽥􏽥B2 � 􏽥B

U

1 , 􏽥B
L

1􏼒 􏼓⊕ 􏽥B
U

2 , 􏽥B
L

2􏼒 􏼓

b
U
11 + b

U
21, b

U
12 + b

U
22, b

U
13 + b

U
23, b

U
14 + b

U
24; min G1

􏽥B
U

1􏼒 􏼓, G1
􏽥B

U

2􏼒 􏼓􏼒 􏼓, min G2
􏽥B

U

1􏼒 􏼓, G2
􏽥B

U

2􏼒 􏼓􏼒 􏼓􏼒 􏼓,

b
L
11 + b

L
21, b

L
12 + b

L
22, b

L
13 + b

L
23, b

L
14 + b

L
24; min G1

􏽥B
L

1􏼒 􏼓, G1
􏽥B

L

2􏼒 􏼓􏼒 􏼓, min G2
􏽥B

L

1􏼒 􏼓, G2
􏽥B

L

2􏼒 􏼓􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

Defnition 6 (see [45]). Te arithmetic operation between
the trapezoidal IT2FS 􏽥􏽥B1 � (􏽥B

U

1 , 􏽥B
L

1) � ((bU
11, bU

12,

bU
13, bU

14; G1(
􏽥B

U

1 ), G2(
􏽥B

U

1 )), bL
11, bL

12, bL
13, bL

14; G1(
􏽥B

L

1), G2(
􏽥B

L

1))

and the crisp value t is specifed as follows:

t􏽥􏽥B1 �

1
t

× b
U
11,

1
t

× b
U
12,

1
t

× b
U
13,

1
t

× b
U
14; G1

􏽥B
U

1􏼒 􏼓, G2
􏽥B

U

1􏼒 􏼓􏼒 􏼓,

1
t

× b
L
11,

1
t

× b
L
12,

1
t

× b
L
13,

1
t

× b
L
14; G1

􏽥B
L

1􏼒 􏼓, G2
􏽥B

L

1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

􏽥􏽥B1

t
�

1
t

× b
U
11,

1
t

× b
U
12,

1
t

× b
U
13,

1
t

× b
U
14; G1

􏽥B
U

1􏼒 􏼓, G2
􏽥B

U

1􏼒 􏼓􏼒 􏼓,

1
t

× b
L
11,

1
t

× b
L
12,

1
t

× b
L
13,

1
t

× b
L
14; G1

􏽥B
L

1􏼒 􏼓, G2
􏽥B

L

1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(6)

where k> 0.

3.4. Z-Numbers

Defnition 7 (see [17]). It is sufcient to formalise infor-
mation from the real-world using Z-Numbers, which should
be approximately weighed in terms of reliability. Te major
problem is that the accuracy of the information is not
properly considered. A novel idea called Z-Numbers has
been developed by Zadeh to better capture the ambiguity.
Z-Numbers demand reliability and moderation. Compared
to the traditional fuzzy number, Z-Numbers are better able
to describe the actual information that humans have [46].
One of the Z-Numbers’ primary objectives is to generate
fuzzily confdent numbers so as to know the true infor-
mation.Te knowledge of humans can be better represented
by the Z-Numbers [47].

A Z-Number Z � (􏽥A, 􏽥R) is generated from fuzzy
number in an ordered pair. Te fuzzy restriction is a real-
valued uncertain variable of x and signifed as 􏽥A. Te
fuzzy reliability is a measure of the second component of
􏽥R. 􏽥R signifes the idea of certainty or other related con-
cepts, like certainty, confdence, true intensity, proba-
bility, or measure of capability to the frst component
[48].

3.5. Entropy Weight

Defnition 8 (see [49]).Te term “entropy weight” refers to a
parameter that quantifes how closely various options are
related to one another. On the other hand, a system with low
information entropy is one that is well ordered. In infor-
mation theory, the entropy value can be determined as the
equation below:
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H p1, p2, . . . , pn( 􏼁 � − 􏽘
n

j�1
pj ln pj, (7)

where H is the level of entropy and pj is the probability of
event occurrence.

Defnition 9 (see [50]). In their paper, they suggested en-
tropy as a ratio of distances between (L, Lnear) and (L, Lfar).
Te statement is provided as follows:

ESK(L) �
L, Lnear( 􏼁

L, Lfar( 􏼁
, (8)

where (L, Lnear) is the distance from L to the nearer point
Lnear, and (L, Lfar) is the distance from L to the farther point
Lfar. De Luca and Termini [51] have already suggested the
axioms of entropy for FSs.

Tese preliminaries are being used in shaping a new
rating of IT2E FVIKOR with Z-Numbers and weighting of
the IT2FVIKOR.

4. The Extended IT2FVIKOR

To be completely operationalized, the enhanced IT2FVI-
KOR with equitable language scales and Z-Number requires
a newly identifed linguistic scale, weighting value, and rank
values. Before proposing the new approach, this part is
intentionally separated into three subdivisions to describe
the predetermined rating phases: linguistic scale, weighting
phase using weighting values, and ranking phase using rank
values. Te creation of linguistic scales using Z-Number-
based IT2FS and equitable linguistic scales is discussed in the
frst subsection. Te enhanced IT2FVIKOR technique,
which incorporates rank and entropy weight weighting
values, is presented in the subsection that follows.

4.1. Construction of a New Linguistic Scale. Te term lin-
guistic variable refers to a condition that has an inherent
value inherent to the language phase and is not adequately
described by a conventional quantitative expression due to
the complexity of the situation [52]. It is a variable whose

values are either natural or artifcial language words or
phrases rather than numbers [8]. In the IT2FS context, the
earlier IT2FVIKOR-based IT2FMCDM was seen as a
compromise option with maximum group utility and
minimal regret of specialists with incommensurable and
contradictory qualities [53]. Its linguistic scale disregards
the idea of equilibrium, which considers both the positive
and the negative aspects of a situation under the theory of
equitable linguistics [16]. Besides, it also neglected the
concept of restriction and reliability-based Z-Numbers
[17].

As a result, the proposed language for the enlarged
IT2FVIKOR takes into account both the good and negative
aspects, as well as the implementation of the ideas of re-
striction and reliability. In this case, we have used seven
scales of the new linguistic scales, where Very Poor is the
lowest scale at the lowest negative scale and Very Good is the
highest scale at the highest positive scales for restriction
(Table 1 and Figure 2). Additionally, we used seven scales of
new language scales for dependability, with Strongly Un-
likely characterized as the lowest scale at the lowest negative
scale and Strongly Likely defned as the highest scale at the
highest positive scale (Table 2 and Figure 3).

For detailed explanation on these linguistic scales, let us
take one example of the linguistic scale with restriction for
Very Poor, Medium, and Very Good. Very Poor value can be

stated as 􏽥􏽥B1 � (􏽥􏽥B
U

1 , 􏽥􏽥B
L

1) � ((− bU
11, − bU

12, − bU
13, − bU

14; G1(
􏽥􏽥B

U

1 ),

G2 (􏽥􏽥B
U

1 )), (− bL
11, − bL

12, − bL
13, − bL

14; G1(
􏽥􏽥B

L

1), G2(
􏽥􏽥B

L

1))), where
􏽥􏽥B

U

i and 􏽥􏽥B
L

i are positive and negative equitable linguistic
scales, − bU

i1, − bU
i2, − bU

i3, − bU
i4, − bL

i1, − bL
i2, − bL

i3, and − bL
i4 are the

reference points of 􏽥􏽥Bi, Gk(􏽥􏽥B
U

i ) indicates the membership
value of the element − bU

i(j+1) in the upper trapezoidal

membership function 􏽥􏽥B
U

i , 1≤ k≤ 2, Gk(􏽥􏽥B
L

i ) indicates the
membership value of the element − bL

i(k+1) in the lower

trapezoidal membership function 􏽥􏽥B
L

i , 1≤ k≤ 2, , G1(
􏽥􏽥B

U

i ) ∈

[0, 1], G2(
􏽥􏽥B

U

i ) ∈ [0, 1], G1(
􏽥􏽥B

L

i ) ∈ [0, 1], G2(
􏽥􏽥A

L

i ) ∈ [0, 1], and
1≤ i≤ n.

0 bUi1 bUi2 bUi3 bUi4bLi1 bLi2 bLi3

BLi
G2 (BLi )

G2 (BLi )

G2 (BUi )

G1 (BUi )
BUi

bLi4 X

~

~

~

~

~

~

Figure 1: Te upper trapezoidal membership function 􏽥B
U

i and the lower trapezoidal membership function 􏽥B
L

i of the T1FS 􏽥􏽥Bi.
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Medium value can be stated as
􏽥􏽥B1 � (􏽥􏽥B

U

1 , 􏽥􏽥B
L

1) � ((− bU
11, − bU

12, bU
13, bU

14; G1(
􏽥􏽥B

U

1 ), G2(
􏽥􏽥B

U

1 )),

(− bL
11, − bL

12, bL
13, bL

14; G1(
􏽥􏽥B

L

1), G2(
􏽥􏽥B

L

1))), where 􏽥􏽥B
U

i and 􏽥􏽥B
L

1 are
positive and negative equitable linguistic scales, − bU

i1, − bU
i2, bU

i3,

bU
i4, − bL

i1, − bL
i2, b

L
i3, and bL

i4 are the reference points of
􏽥􏽥Bi,Gk(􏽥􏽥B

U

i )

implies the membership value of the element
− bU

11, − bU
12, bU

13, bU
14 in the upper trapezoidal membership

function 􏽥􏽥B
U

i , 1≤ k≤ 2, Gk(􏽥􏽥B
L

i ) implies the membership value
of the element − bL

11, − bL
12, bL

13, bL
14 in the lower trapezoidal

membership function 􏽥􏽥B
L

i , 1≤ k≤ 2, , G1(
􏽥􏽥B

U

i ) ∈ [0, 1], G2

(􏽥􏽥B
U

i ) ∈ [0, 1], G1(
􏽥􏽥B

L

i ) ∈ [0, 1], G2(
􏽥􏽥A

L

i ) ∈ [0, 1], and 1≤ i≤ n.
Lastly, Very Good value can be stated as 􏽥􏽥Bi � (􏽥􏽥B

U

i , 􏽥􏽥B
L

i ) �

((bU
i1, bU

i2, bU
i3, bU

i4; G1 (􏽥􏽥B
U

i ), G2(
􏽥􏽥B

U

i )), (bL
i1, bL

i2, bL
i3, bL

i4; G1(
􏽥􏽥B

L

i ),

G2(
􏽥􏽥B

L

i ))), where 􏽥􏽥B
U

i and 􏽥􏽥B
L

i are positive and negative eq-
uitable linguistic scales, bU

i1, b
U
i2, b

U
i3, b

U
i4, bL

i1, b
L
i2, b

L
i3, and bL

i4 are

the reference points of 􏽥􏽥Bi, Gk(􏽥􏽥B
U

i ) indicates the membership
value of the element bU

i(k+1) in the upper trapezoidal

membership function 􏽥􏽥B
U

i , 1≤ k≤ 2, Gk(􏽥􏽥B
L

i ) indicates the
membership value of the element bL

i(k+1) in the lower

trapezoidal membership function 􏽥􏽥B
L

i , 1≤ k≤ 2, ,

G1(
􏽥􏽥B

U

i ) ∈ [0, 1], G2 (􏽥􏽥B
U

i ) ∈ [0, 1], G1(
􏽥􏽥B

L

i ) ∈ [0, 1], G2(
􏽥􏽥A

L

i )

∈ [0, 1], and 1≤ i≤ n.
Next, the arithmetic operations for diferent types of

linguistic scales are described as follows.
Te addition operation between the linguistic scales 􏽥􏽥B1 �

(􏽥􏽥B
U

1 , 􏽥􏽥B
L

1) � ((− bU
11, − bU

12, − bU
13, − bU

14; G1 (􏽥􏽥B
U

1 ), G2(
􏽥􏽥B

U

1 )), (− bL
11,

− bL
12, − bL

13, − bL
14; G1(

􏽥􏽥B
L

1), G2(
􏽥􏽥B

L

1))) and 􏽥􏽥B2 � (􏽥􏽥B
U

2 , 􏽥􏽥B
L

2) �

((− bU
21, − bU

22, − bU
23, − bU

24; G1(
􏽥􏽥B

U

2 ), G2(
􏽥􏽥B

U

2 )), (− bL
21, − bL

22, − bL
23,

− bL
24; G1(

􏽥􏽥B
L

2), G2(
􏽥􏽥B

L

2))) is defned as follows:

􏽥􏽥B1⊕
􏽥􏽥B2 � 􏽥􏽥B

U

1 , 􏽥􏽥B
L

1􏼒 􏼓⊕ 􏽥􏽥B
U

2 , 􏽥􏽥B
L

2􏼒 􏼓

�

− b
U
11􏼐 􏼑 + − b

U
21􏼐 􏼑, − b

U
12􏼐 􏼑 + − b

U
22􏼐 􏼑, − b

U
13􏼐 􏼑 + − b

U
23􏼐 􏼑, − b

U
14􏼐 􏼑 + − b

U
24􏼐 􏼑;

min G1
􏽥􏽥B

U

1􏼒 􏼓, G1
􏽥􏽥B

U

2􏼒 􏼓􏼒 􏼓, min G2
􏽥􏽥B

U

1􏼒 􏼓, G2
􏽥􏽥B

U

2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠,

− b
L
11􏼐 􏼑 + − b

L
21􏼐 􏼑, − b

L
12􏼐 􏼑 + − b

L
22􏼐 􏼑, − b

L
13􏼐 􏼑 + − b

L
23􏼐 􏼑, − b

L
14􏼐 􏼑 + − b

L
24􏼐 􏼑;

min G1
􏽥􏽥B

L

1􏼒 􏼓, G1
􏽥􏽥B

L

2􏼒 􏼓􏼒 􏼓, min G2
􏽥􏽥B

L

1􏼒 􏼓, G2
􏽥􏽥B

L

2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9)

Table 1: Linguistic scale of restriction for the extended IT2FVIKOR.

Linguistic terms Linguistic scale
Very Poor (VP) ((− 1.0, − 0.9, − 0.8, − 0.7; 0.8, 0.8), (− 1.0, − 1.0, − 0.8, − 0.6; 1, 1))
Poor (P) ((− 0.8, − 0.7, − 0.5, − 0.4; 0.8, 0.8), (− 0.9, − 0.7, − 0.5, − 0.3; 1, 1))
Medium Poor (MP) ((− 0.5, − 0.4, − 0.2, − 0.1; 0.8, 0.8), (− 0.6, − 0.4, − 0.2, 0; 1, 1))
Medium (M) ((− 0.2, − 0.1, 0.1, 0.2; 0.8, 0.8), (− 0.3, − 0.2, 0.2, 0.3; 1, 1))
Medium Good (MG) ((0.1, 0.2, 0.4, 0.5; 0.8, 0.8), (0, 0.2, 0.4, 0.6; 1, 1))
Good (G) ((0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1))
Very Good (VG) ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))
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Te subtraction operation between the linguistic scales
􏽥􏽥B1 � (􏽥􏽥B

U

1 , 􏽥􏽥B
L

1) � ((bU
11, bU

12, bU
13, bU

14; G1(
􏽥􏽥B

U

1 ), G2(
􏽥􏽥B

U

1 )), (bL
11,

bL
12, bL

13, bL
14; G1(

􏽥􏽥B
L

1), G2(
􏽥􏽥B

L

1))) and 􏽥􏽥B2 � (􏽥􏽥B
U

2 , 􏽥􏽥B
L

2) �

((− bU
21, − bU

22, − bU
23, − bU

24; G1 (􏽥􏽥B
U

2 ), G2(
􏽥􏽥B

U

2 )), (− bL
21, − bL

22, − bL
23,

− bL
24; G1(

􏽥􏽥B
L

2), G2(
􏽥􏽥B

L

2))) is defned as follows:

􏽥􏽥B1⊖
􏽥􏽥B2 � 􏽥􏽥B

U

1 , 􏽥􏽥B
L

1􏼒 􏼓⊖ 􏽥􏽥B
U

2 , 􏽥􏽥B
L

2􏼒 􏼓

�

b
U
11 − − b

U
21􏼐 􏼑, b

U
12 − − b

U
22􏼐 􏼑, b

U
13 − − b

U
23􏼐 􏼑, b

U
14 − − b

U
24􏼐 􏼑;

min G1
􏽥􏽥B

U

1􏼒 􏼓, G1
􏽥􏽥B

U

2􏼒 􏼓􏼒 􏼓, min G2
􏽥􏽥B

U

1􏼒 􏼓, G2
􏽥􏽥B

U

2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

b
L
11 − − b

L
21􏼐 􏼑, b

L
12 − − b

L
22􏼐 􏼑, b

L
13 − − b

L
23􏼐 􏼑, b

L
14 − − b

L
24􏼐 􏼑;

min G1
􏽥􏽥B

L

1􏼒 􏼓, G1
􏽥􏽥B

L

2􏼒 􏼓􏼒 􏼓, min G2
􏽥􏽥B

L

1􏼒 􏼓, G2
􏽥􏽥B

L

2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

Te multiplication operation between the linguistic
scales 􏽥􏽥B1 � (􏽥􏽥B

U

1 ,

􏽥􏽥B
L

1) �
((− b

U
11), (− b

U
12), b

U
13, b

U
14; G1(

􏽥􏽥B
U

1 ), G2(
􏽥􏽥B

U

1 )),

((− b
L
11), (− b

L
12), b

L
13, b

L
14; G1(

􏽥􏽥B
L

1), G2(
􏽥􏽥B

L

1))

⎛⎝ ⎞⎠and

􏽥􏽥B2 � (􏽥􏽥B
U

2 , 􏽥􏽥B
L

2) �

((− b
U
21), (− b

U
22), b

U
23, b

U
24; G1(

􏽥􏽥B
U

2 ), G2(
􏽥􏽥B

U

2 )),

((− b
L
21), (− b

L
22), b

L
23, b

L
24; G1(

􏽥􏽥B
L

2), G2(
􏽥􏽥B

L

2))

⎛⎝ ⎞⎠is defned as

follows:

􏽥􏽥B1 ⊗
􏽥􏽥B2 � 􏽥􏽥B

U

1 , 􏽥􏽥B
L

1􏼒 􏼓⊗ 􏽥􏽥B
U

2 , 􏽥􏽥B
L

2􏼒 􏼓

�

− b
U
11􏼐 􏼑 × − b

U
21􏼐 􏼑, − b

U
12􏼐 􏼑 × − b

U
22􏼐 􏼑, b

U
13 × b

U
23, b

U
14 × b

U
24;

min G1
􏽥􏽥B

U

1􏼒 􏼓, G1
􏽥􏽥B

U

2􏼒 􏼓􏼒 􏼓, min G2
􏽥􏽥B

U

1􏼒 􏼓, G2
􏽥􏽥B

U

2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

− b
L
11􏼐 􏼑 × − b

L
21􏼐 􏼑, − b

L
12􏼐 􏼑 × − b

L
22􏼐 􏼑, b

L
13 × b

L
23, b

L
14 × b

L
24;

min G1
􏽥􏽥B

L

1􏼒 􏼓, G1
􏽥􏽥B

L

2􏼒 􏼓􏼒 􏼓, min G2
􏽥􏽥B

L

1􏼒 􏼓, G2
􏽥􏽥B

L

2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

Te arithmetic operation between the linguistic scale

􏽥􏽥B1 � (􏽥􏽥B
U

1 , 􏽥􏽥B
L

1) �

(− b
U
11, − b

U
12, − b

U
13, − b

U
14; G1(

􏽥􏽥B
U

1 ), G2(
􏽥􏽥B

U

1 )),

(− b
L
11, − b

L
12, − b

L
13, − b

L
14; G1(

􏽥􏽥B
L

1), G2(
􏽥􏽥B

L

1))

⎛⎝ ⎞⎠ and the crisp

value t is described as follows:

t􏽥􏽥B1 �

t × − b
U
11􏼐 􏼑, t × − b

U
12􏼐 􏼑, t × − b

U
13􏼐 􏼑, t × − b

U
14􏼐 􏼑; G1

􏽥􏽥B
U

1􏼒 􏼓, G2
􏽥􏽥B

U

1􏼒 􏼓􏼒 􏼓

t × − b
L
11􏼐 􏼑, t × − b

L
12􏼐 􏼑, t × − b

L
13􏼐 􏼑, t × − b

L
14􏼐 􏼑; G1

􏽥􏽥B
L

1􏼒 􏼓, G2
􏽥􏽥B

L

1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

􏽥􏽥B1

t
�

1
t

× − b
U
11􏼐 􏼑,

1
t

× − b
U
12􏼐 􏼑,

1
t

× − b
U
13􏼐 􏼑,

1
t

× − b
U
14􏼐 􏼑; G1

􏽥􏽥B
U

1􏼒 􏼓, G2
􏽥􏽥B

U

1􏼒 􏼓􏼒 􏼓

1
t

× − b
L
11􏼐 􏼑,

1
t

× − b
L
12􏼐 􏼑,

1
t

× − b
U
13􏼐 􏼑,

1
t

× − b
U
14􏼐 􏼑; G1

􏽥􏽥B
L

1􏼒 􏼓, G2
􏽥􏽥B

L

1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(12)
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where t> 0.
Te arithmetic operation between the linguistic scale

􏽥􏽥B1 � (􏽥􏽥B
U

1 , 􏽥􏽥B
L

1) �

((− b
U
11), (− b

U
12), b

U
13, b

U
14; G1(

􏽥􏽥B
U

1 ), G2(
􏽥􏽥B

U

1 )),

((− b
L
11), (− b

L
12), b

L
13, b

L
14; G1(

􏽥􏽥B
L

1), G2(
􏽥􏽥B

L

1))

⎛⎝ ⎞⎠ and the crisp

value t is described as follows:

t􏽥􏽥B1 �

t × − b
U
11􏼐 􏼑, t × − b

U
12􏼐 􏼑, t × b

U
13, t × b

U
14; G1

􏽥􏽥B
U

1􏼒 􏼓, G2
􏽥􏽥B

U

1􏼒 􏼓􏼒 􏼓

t × − b
L
11􏼐 􏼑, t × − b

L
12􏼐 􏼑, t × b

L
13, t × b

L
14; G1

􏽥􏽥B
L

1􏼒 􏼓, G2
􏽥􏽥B

L

1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

􏽥􏽥B1

t
�

1
t

× − b
U
11􏼐 􏼑,

1
t

× − b
U
12􏼐 􏼑,

1
t

× b
U
13,

1
t

× b
U
14; G1

􏽥􏽥B
U

1􏼒 􏼓, G2
􏽥􏽥B

U

1􏼒 􏼓􏼒 􏼓

1
t

× − b
L
11􏼐 􏼑,

1
t

× − b
L
12􏼐 􏼑,

1
t

× b
L
13,

1
t

× b
L
14; G1

􏽥􏽥B
L

1􏼒 􏼓, G2
􏽥􏽥B

L

1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(13)

where t> 0.
Tese linguistic scales are considered an analogous

concept of the extended IT2FVIKOR with equitable lin-
guistic and Z-Number methods. Te enhanced IT2FVIKOR
method’s weighting phase, which employs fuzzy entropy-
based IT2FS to capture the linguistic scale, is described in the
following section.

4.2. Te Extended IT2FVIKOR Procedures. A method for
resolving the IT2FMCDM problem using the extended
IT2FVIKOR is proposed based on the preceding theoretical
study. Te IT2FVIKOR with equitable linguistic scale and
Z-Number approach is designed to attain a higher level of
rational, systematic decisionmaking through which onemay

identify the ideal answer and a workable compromise that
takes into account both sides of the scale. Te extended
IT2FVIKOR procedure is explained step by step as follows.

Suppose that there is a fnite set X of alternatives, where
X � x1, x2, . . . , xn􏼈 􏼉, and suppose that there is a fnite set of F
attributes, where F � f1, f2, . . . , fm􏼈 􏼉. Suppose that there
are kDMsDM1, DM2, . . . , andDMk.Te proposedmethod
is now displayed as follows:

Step 1. Construct a hierarchical diagram of
IT2FMCDM problem.
Structure the decision matrix Yp of the pth DM and
create the average decision matrix Y , respectively,
presented as follows:

Yp �
􏽥􏽥f

p

ij􏼔 􏼕
m×n

� x1, x2 · · · xn

f1

f2

⋮

fm

f
≈p−
11 f
≈p+
11􏼐 􏼑 Z

≈p−
11 ; Z

≈p+
11􏼐 􏼑􏼐 􏼑 f

≈p−
12 f
≈p+
12􏼐 􏼑 Z

≈p−
12 ; Z

≈p+
12􏼐 􏼑􏼐 􏼑 · · · f

≈p−
1n f
≈p+
1n􏼐 􏼑 Z

≈p−
1n ; Z

≈p+
1n􏼐 􏼑􏼐 􏼑

f
≈p−
21 f
≈p+
21􏼐 􏼑; Z

≈p−
21 ; Z

≈p+
21􏼐 􏼑􏼐 􏼑 f

≈p−
22 f
≈p+
22􏼐 􏼑 Z

≈p−
22 ; Z

≈p+
22􏼐 􏼑􏼐 􏼑 · · · f

≈p−
2n f
≈p+
2n􏼐 􏼑 Z

≈p−
2n ; Z

≈p+
2n􏼐 􏼑􏼐 􏼑

⋮ ⋮ ⋮ ⋮

f
≈p−
m1 f
≈p+
m1􏼐 􏼑; Z

≈p−
m1 ; Z

≈p+
m1􏼐 􏼑􏼐 􏼑 f

≈p−
m2 f
≈p+
m2􏼐 􏼑 Z

≈p−
m2 ; Z

≈p+
m2􏼐 􏼑􏼐 􏼑 · · · f

≈p−
mn f
≈p+
mn( 􏼁 Z

≈p−
mn ; Z

≈p+
mn( 􏼁( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �
􏽥􏽥fij􏼔 􏼕

m×n
,

(14)
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where fij � (
􏽥􏽥f
1

ij⊕
􏽥􏽥f
2

ij⊕ · · ·⊕􏽥􏽥f
k

ij/k), (
􏽥􏽥f

p+

ij ,
􏽥􏽥f

p+

ij )) is the
linguistic scale of restriction of the extended IT2FVI-
KOR using equitable linguistic scales and Z-Numbers
and (􏽥􏽥z

p−

ij , 􏽥􏽥z
p+

ij ) is the linguistic scale of reliability of the
extended IT2FVIKOR using equitable linguistic scales
and Z-Numbers, 1≤ i≤m, 1≤ j≤ n, 1≤p≤ k, and k
represents the number of DMs.

Step 2. Construct the weighted DMs’ matrix.
Te proposed entropy weight method based on IT2FSs
is defned as follows.
Assign 􏽥􏽥fij � ((

􏽥􏽥f
L

ij,
􏽥􏽥f

U

ij); (􏽥􏽥z
L

ij,
􏽥􏽥z

U

ij)).
Tus,

E 􏽥􏽥B
L

ij􏼒 􏼓 �

����������������������������

􏽐
​ n
i�1

􏽥􏽥f
−

ij,
􏽥􏽥f

+

ij􏼒 􏼓
near

−
􏽥􏽥f

−

ij,
􏽥􏽥f

+

ij􏼒 􏼓
L

􏼢 􏼣

􏽳

���������������������������

􏽐
​ n
i�1

􏽥􏽥f
−

ij ,
􏽥􏽥f

+

ij􏼒 􏼓
far

−
􏽥􏽥f

−

ij ,
􏽥􏽥f

+

ij􏼒 􏼓
L

􏼢 􏼣

􏽳 ,

E 􏽥􏽥B
U

ij􏼒 􏼓 �

����������������������������

􏽐
​ n
i�1

􏽥􏽥f
−

ij,
􏽥􏽥f

+

ij􏼒 􏼓
near

−
􏽥􏽥f

−

ij,
􏽥􏽥f

+

ij􏼒 􏼓
U

􏼢 􏼣

􏽳

���������������������������

􏽐
​ n
i�1

􏽥􏽥f
−

ij ,
􏽥􏽥f

+

ij􏼒 􏼓
far

−
􏽥􏽥f

−

ij ,
􏽥􏽥f

+

ij􏼒 􏼓
U

􏼢 􏼣

􏽳 ,

zE z􏽥􏽥B
L

ij􏼒 􏼓 �

�������������������������

􏽐
​ n
i�1

􏽥􏽥z
−

ij,
􏽥􏽥z

+

ij􏼐 􏼑
near

− 􏽥􏽥z
−

ij,
􏽥􏽥z

+

ij􏼐 􏼑
L

􏼔 􏼕

􏽲

������������������������

􏽐
​ n
i�1

􏽥􏽥z
−

ij , 􏽥􏽥z
+

ij􏼐 􏼑
far

− 􏽥􏽥z
−

ij , 􏽥􏽥z
+

ij􏼐 􏼑
L

􏼔 􏼕

􏽲 ,

zE 􏽥􏽥B
U

ij􏼒 􏼓 �

�������������������������

􏽐
​ n
i�1

􏽥􏽥z
−

ij,
􏽥􏽥z

+

ij􏼐 􏼑
near

− 􏽥􏽥z
−

ij,
􏽥􏽥z

+

ij􏼐 􏼑
U

􏼔 􏼕

􏽲

�������������������������

􏽐
​ n
i�1

􏽥􏽥z
−

ij , 􏽥􏽥z
+

ij􏼐 􏼑
far

− 􏽥􏽥z
−

ij , 􏽥􏽥z
+

ij􏼐 􏼑
U

􏼔 􏼕

􏽲 ,

(15)

where E(􏽥􏽥Bij) � [E(􏽥􏽥B
L

ij), E(􏽥􏽥B
U

ij)], [zE(z􏽥􏽥B
L

ij), zE(􏽥􏽥B
U

ij)].
Step 3. Divide by the maximal entropy value.
Ten, all entropy values are divided by the maximal
entropy value and the value of ij, h is employed to
characterize the outcomes of the maximal entropy
value. Terefore, it can be described as follows:
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􏽥􏽥hij �
1

FOU 􏽥􏽥hij􏼒 􏼓

�
􏽥􏽥h

L

ij,
􏽥􏽥h

U

ij􏼒 􏼓;
􏽥􏽥zh

L

ij,
􏽥􏽥zh

U

ij􏼒 􏼓􏼔 􏼕,

􏽥􏽥hi1 �
E 􏽥􏽥B

L

i1􏼒 􏼓

max E 􏽥􏽥B
L

i1􏼒 􏼓􏼒 􏼓

,
E 􏽥􏽥B

U

i1􏼒 􏼓

max E 􏽥􏽥B
U

i1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠;

zE z􏽥􏽥B
L

i1􏼒 􏼓

max zE z􏽥􏽥B
L

i1􏼒 􏼓􏼒 􏼓

,
zE z􏽥􏽥B

U

i1􏼒 􏼓

max zE z􏽥􏽥B
U

i1􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥􏽥hi2 �
E 􏽥􏽥B

L

i2􏼒 􏼓

max E 􏽥􏽥B
L

i2􏼒 􏼓􏼒 􏼓

,
E 􏽥􏽥B

U

i2􏼒 􏼓

max E 􏽥􏽥B
U

i2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠;

zE z􏽥􏽥B
L

i2􏼒 􏼓

max zE z􏽥􏽥B
L

i2􏼒 􏼓􏼒 􏼓

,
zE z􏽥􏽥B

U

i2􏼒 􏼓

max zE z􏽥􏽥B
U

i2􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, . . .

􏽥􏽥hin �
E 􏽥􏽥B

L

in􏼒 􏼓

max E 􏽥􏽥B
L

in􏼒 􏼓􏼒 􏼓

,
E 􏽥􏽥B

U

in􏼒 􏼓

max E 􏽥􏽥B
U

in􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠;

zE z􏽥􏽥B
L

in􏼒 􏼓

max zE z􏽥􏽥B
L

in􏼒 􏼓􏼒 􏼓

,
zE z􏽥􏽥B

U

in􏼒 􏼓

max zE z􏽥􏽥B
U

in􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(16)

Ten, the decision matrixD can be conveyed as follows:

D �

􏽥􏽥h11
􏽥􏽥h12 · · ·

􏽥􏽥h1n

􏽥􏽥h21
􏽥􏽥h22 · · ·

􏽥􏽥h2n

⋮ ⋮ ⋱ ⋮
􏽥􏽥hm1

􏽥􏽥hm2 · · ·
􏽥􏽥hmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Step 4. Weight of criteria.
Compute the weight of criteria by using the fuzzy
entropy weight-based IT2FS formula. Wj is used to
present the outcome of the weight value of criteria j.
Tus, it can be described as

􏽥􏽥wj �
1

F 􏽥􏽥wj􏼐 􏼑

� 􏽥􏽥w
L

j , 􏽥􏽥w
U

j􏼒 􏼓; 􏽦􏽦zw
L

j , 􏽦􏽦zw
U

j􏼒 􏼓􏼔 􏼕,

(18)

􏽥􏽥w
L

j , 􏽥􏽥w
U

j􏼒 􏼓; 􏽦􏽦zw
L

j , 􏽦􏽦zw
U

j􏼒 􏼓􏼔 􏼕 �
1 − 􏽥􏽥a

L

j

􏽥􏽥T
L

,
1 − 􏽥􏽥a

U

j

􏽥􏽥T
U

⎛⎝ ⎞⎠,
1 − z􏽥􏽥a

L

j

z􏽥􏽥T
L

,
1 − 􏽥􏽥za

U

j

z􏽥􏽥T
U

⎛⎜⎜⎝ ⎞⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (19)

where (
􏽥􏽥bj,

􏽥􏽥zbj) � (
􏽥􏽥hi1 +

􏽥􏽥hi2 + · · · +
􏽥􏽥hin/n;

􏽥􏽥zhi1 +
􏽥􏽥zhi2

+ · · · +
􏽥􏽥zhin/n).

( 􏽥􏽥T,􏽦zT) �
􏽥􏽥hi1 +

􏽥􏽥hi2 + · · · +
􏽥􏽥hin;

􏽥􏽥zhi1 +
􏽥􏽥zhi2 + · · · +

􏽥􏽥zhin), 1≤ j≤ n.􏼒 (20)

Step 5. Construct the weighted value of decision matrix.
Construct the weighted decision matrix
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x1, x2 · · · xn

Yw � 􏽥􏽥vij􏽨 􏽩
m×n

�

f1

f2

⋮

f1

􏽥􏽥v11;
􏽥􏽥zv11􏼒 􏼓 􏽥􏽥v12;

􏽥􏽥zv12􏼒 􏼓 · · · 􏽥􏽥v1n; 􏽥􏽥zv1n􏼒 􏼓

􏽥􏽥v21;
􏽥􏽥zv21􏼒 􏼓 􏽥􏽥v22;

􏽥􏽥zv22􏼒 􏼓 · · · 􏽥􏽥v2n; 􏽥􏽥zv2n􏼒 􏼓

⋮ ⋮ ⋱ ⋮

􏽥􏽥vm1;
􏽥􏽥zvm1􏼒 􏼓 􏽥􏽥vm2;

􏽥􏽥zvm2􏼒 􏼓 · · · 􏽥􏽥vmn; 􏽥􏽥zvmn􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

where 􏽥􏽥vij � 􏽥􏽥wj⊕
􏽥􏽥fij, 1≤ i≤m, and 1≤ j≤ n.

Step 6. Construct the fuzzy best value (FBV) and fuzzy
worst value (FWV).
Choose the FBV and FWV values using the following
equations:

􏽥f
∗
j � max

i

􏽥􏽥vij,

􏽥f
−

j � min
i

􏽥􏽥vij, i � 1, 2, . . . , m; j � 1, 2, . . . , n,
(22)

where 􏽥f
∗
j refers to FBV and 􏽥f

−

j refers to FWV. Ten,
defuzzify the value.
Step 7. Calculate the separation measures and
defuzzifcation.
Compute the following values:

Wi
􏽥f
∗
i − 􏽥􏽥vij􏼐 􏼑

􏽥f
∗
i − 􏽥f

−

i

,

􏽥Mi � 􏽘
k

i�1

􏽥wi
􏽥f
∗
i − 􏽥􏽥vij􏼐 􏼑

􏽥f
∗
i − 􏽥f

−

i

,

􏽥Ni �

max

j

􏽥wi
􏽥f
∗
i − 􏽥􏽥vij􏼐 􏼑

􏽥f
∗
i − 􏽥f

−

i

⎡⎢⎣ ⎤⎥⎦,

(23)

where 􏽥M indicates the utility measure and 􏽥N indicates
the regret measure, respectively. 􏽥Mi and 􏽥Ni can be
computed using the sum of the FBV distance for all
criteria.
Step 8. Defuzzify the utility measure value
( 􏽥Mi) and regretmeasure value ( 􏽥Ni).
Defuzzify the utility measure value ( 􏽥Mi) and regret
measure value ( 􏽥Ni) using the following formula.

Defuzzified �
uU − lU( 􏼁 + βU.m1U − lU( 􏼁 + ∝ U.m2U − lU( 􏼁/4􏼂 􏼃 + lU􏼂 􏼃 + uL − lL( 􏼁 + βL.m1L − lL( 􏼁 + ∝ L.m2L − lL( 􏼁/4􏼂 􏼃 + lL􏼂 􏼃

2
.

(24)

Step 9. Rank the alternatives.

Compute the subsequent values:

􏽥M
∗

�
min

i
􏽥M,

􏽥M
−

�
max

i
􏽥M,

(25)
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where 􏽥M
∗ is the value for the maximum group of utility and

􏽥M
− is the minimum value for the maximum group of utility.

Then 􏽥N
∗

�
min

i
􏽥N,

􏽥N
−

�
max

i
􏽥N,

(26)

where 􏽥N
∗ is the value of minimum individual regret of the

opponent and 􏽥N
− is the minimum value.

Next 􏽥Pi � v
􏽥Mj − 􏽥M

∗
􏼐 􏼑

􏽥M
−

− 􏽥M
∗

􏼐 􏼑
+(1 − v)

􏽥Nj − 􏽥N
∗

􏼐 􏼑

􏽥N
−

− 􏽥N
∗

􏼐 􏼑
, (27)

where 􏽥Pi is the index for both 􏽥M
∗ and 􏽥N

∗, whereas v is the
weight of the strategy to be used in the maximum group of
utility, v > 0.5 refers to the maximummajority of rule, and v

≤ 0.5 refers to the individual regret of the opponent. Te
normal value is when v is 0.5.

Lastly, 􏽥M
∗, 􏽥N
∗, and 􏽥Pi are arranged and rated in de-

creasing order. Decreasing order improves to decrease the
gaps in the criteria, and the most excellent one is chosen
based on the lowest rank value.

Figure 4 shows the entire fundamental process involved
in the proposed method. Generally, the conceptual
framework can be split into three diferent phases. Phase 1
(Ranking Phase) focuses on achieving the preference scale.
Ten, Phase 2 (Weighting Phase) identifes weight for all
the criteria. Phase 3 (Ranking Phase) ranks all the
alternatives.

5. Application of Water Security in Malaysia

A real application on searching for the best strategies to
enhance water supply security in Malaysia is utilized to
demonstrate the processes and feasibility of the extended
IT2FVIKOR. Six alternatives
(AL1, AL2, AL3, AL4, AL5, AL6) such as strengthening the
protection of water source areas (AL1), improving infra-
structure to safeguard urban and rural water security (AL2),
developing water-saving system (AL3), fully implementing
the river chief system (AL4), reinforcing groundwater
monitoring and protection (AL5), and strengthening the
policy on water security (AL6) are proposed as feasible al-
ternatives to be assessed by fve decision makers
(DM1, DM2, DM3, DM4, DM5) corresponding to fve cri-
teria such as household water security (CR1), economic
water security (CR2), urban water security (CR3), environ-
mental water security (CR4), and resilience to water-related
disasters (CR5) to select the most suitable alternative for
enhancing water security.

Step 1. Construct a hierarchical structure of weight
factors associated with the strategies to enhance water
supply security.
Te hierarchical structure of evaluating the best
strategies to enhance water supply security in Malaysia
is given in Figure 5.
Te comparison results involve six strategies as alter-
natives and fve criteria based on water supply security.
Te rating of each alternative for each criterion is
presented in Table 3.

VP P MP M MG G VG

X
10-1

Y

Figure 2: Te positive and negative restrictions for the extended IT2FVIKOR.

Table 2: Linguistic scale of reliability for the extended IT2FVIKOR.

Linguistic terms Linguistic scale
Strongly Unlikely (SU) ((− 1.0, − 0.9, − 0.8, − 0.7; 0.8, 0.8),(− 1.0, − 1.0, − 0.8, − 0.6; 1, 1))
Unlikely (U) ((− 0.8, − 0.7, − 0.5, − 0.4; 0.8, 0.8), (− 0.9, − 0.7, − 0.5, − 0.3; 1, 1))
Somewhat Unlikely (SWU) ((− 0.5, − 0.4, − 0.2, − 0.1; 0.8, 0.8), (− 0.6, − 0.4, − 0.2, 0; 1, 1))
Neutral (N) ((− 0.2, − 0.1, 0.1, 0.2; 0.8, 0.8), (− 0.3, − 0.2, 0.2, 0.3; 1, 1))
Somewhat Likely (SWL) ((0.1, 0.2, 0.4, 0.5; 0.8, 0.8), (0, 0.2, 0.4, 0.6; 1, 1))
Likely (L) ((0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1))
Strongly Likely (SLL) ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))
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Te data that refect negative and positive sides with
restriction and reliability and its transition (Tables 2
and 3) are described to create a matrix of attributes.

Terefore, let us take the example of calculating 􏽥􏽥f11.
Te average for 􏽥􏽥f11:

(VG, L) � ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))

((0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1)),

(G, SWL) � ((0.4, 0.5, 0.7, 0.8; 0.8, 0.8), (0.3, 0.5, 0.7, 0.9; 1, 1))

((0.1, 0.2, 0.4, 0.5; 0.8, 0.8), (0, 0.2, 0.4, 0.6; 1, 1)),

(VG, SLL) � ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))

((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)),

(VG, SLL) � ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))

((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)),

(VG, SLL) � ((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1))

((0.7, 0.8, 1.0, 1.0; 0.8, 0.8), (0.6, 0.8, 1.0, 1.0; 1, 1)).

(28)

Ten, the average for (VG, L), (G, SWL), (VG, SLL),
(VG, SLL), and (VG, SLL) is

((0.64, 0.74, 0.94, 0.96; 0.8, 0.8)(0.54, 0.74, 0.94, 0.98; 1, 1))

((0.52, 0.62, 0.82, 0.86; 0.8, 0.8)(0.42, 0.62, 0.82, 0.9; 1, 1)).
(29)

Apply the same calculation as 􏽥􏽥f11.Tus, the whole results
for the matrix of alternatives are summarized in Table 4.
Step 2. Construct the weighted DMs’ matrix.

Use the fuzzy entropy with IT2FS formula (15) to
compute each entropy value in the decision matrix.
Terefore, the entropy value for E(􏽥􏽥B11) is characterized
as follows:

SU U SWU N SWL L SLL

X
10-1

Y

Figure 3: Te positive and negative reliability for the extended IT2FVIKOR.
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E 􏽥􏽥B
L

11􏼒 􏼓 �

������������������������������������������

(1 − 0.64)
2

+ (1 − 0.74)
2

+ (1 − 0.94)
2

+ (1 − 0.96)
2

􏽱

�������������������������������������������

(0 − 0.64)
2

+ (0 − 0.74)
2

+ (0 − 0.94)
2

+ (0 − 0.96)
2

􏽱

� 0.27,

E 􏽥􏽥B
U

11􏼒 􏼓 �

������������������������������������������

(1 − 0.54)
2

+ (1 − 0.74)
2

+ (1 − 0.94)
2

+ (1 − 0.98)
2

􏽱

�������������������������������������������

(0 − 0.54)
2

+ (0 − 0.74)
2

+ (0 − 0.94)
2

+ (0 − 0.98)
2

􏽱

� 0.32,

zE 􏽦􏽦zB
L

11􏼒 􏼓 �

������������������������������������������

(1 − 0.52)
2

+ (1 − 0.62)
2

+ (1 − 0.82)
2

+ (1 − 0.86)
2

􏽱

�������������������������������������������

(0 − 0.52)
2

+ (0 − 0.62)
2

+ (0 − 0.82)
2

+ (0 − 0.86)
2

􏽱

� 0.45,

zE 􏽦􏽦zB
U

11􏼒 􏼓 �

�����������������������������������������

(0 − 0.42)
2

+ (1 − 0.62)
2

+ (1 − 0.82)
2

+ (1 − 0.9)
2

􏽱

������������������������������������������

(1 − 0.42)
2

+ (0 − 0.62)
2

+ (0 − 0.82)
2

+ (0 − 0.9)
2

􏽱

� 0.41,

E 􏽥􏽥B11􏼒 􏼓 � ((0.27; 0.8, 0.8)(0.32; 1, 1)), ((0.45; 0.8, 0.8)(0.41; 1, 1)).

(30)

A Process of an Extended IT2FVIKOR

Step 1: Construct a hierarchical diagram of IT2FMCDM
problem.

Step 5: Construct the weighted value of decision matrix

Step 6: Construct the Fuzzy Best Value (FBV) and Fuzzy
Worst Value (FWV).

Step 7: Compute the separation measures and
defuzzification.

Step 8: Defuzzified the utility measure value (Si) and
regret measure value (Ri)
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Step 9: Rank the alternatives.
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Step 2: Construct the weighted DMs’ matrix

Step 3: Divide by the maximal entropy value. 

Step 4: Weight of criteria. 

Figure 4: Te positive and negative reliability for the extended IT2FVIKOR.
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Strategies to enhance water supply security in
Malaysia

Household
water security

(CR1)

Economic
water

security
(CR2)

Urban
water

security
(CR3)

Environmental
water security

(CR4)

Resilience to
water-related

disasters
(CR5)

Strengthening
the Protection

of Water
Source Areas

(AL1)

Improving
Infrastructure to
Safeguard Urban
and Rural Water
Security (AL2)

Developing
water-
saving
system
(AL3)

Fully
Implement
the River

Chief System
(AL4)

Reinforcing
Groundwater

Monitoring and
Protection

(AL5)

Strengthening
the policy on
water security

(AL6)

Figure 5: Hierarchy structure of the most suitable alternative for water security.

Table 3: Te rating of each alternative under each criterion.

Decision makers Criteria
Alternatives

AL1 AL2 AL3 AL4 AL5 AL6

DM1

CR1 (VG, L) (G, SLL) (VG, SLL) (G, L) (VG, SLL) (VG, SLL)
CR2 (VG, L) (VG, L) (MG, L) (VG, L) (VG, SLL) (VG, SLL)
CR3 (VG, L) (VG, L) (MG, L) (VG, L) (VG, SLL) (VG, SLL)
CR4 (VG, L) (VG, L) (VG, L) (VG, L) (G, L) (VG, L)
CR5 (VG, L) (VG, L) (VG, L) (G, L) (G, L) (VG, L)

DM2

CR1 (G, SWL) (MG, SWU) (VG, L) (G, SWU) (VG, SLL) (VG, SLL)
CR2 (VG, SLL) (VG, SLL) (VG, SLL) (G, L) (VG, SLL) (VG, SLL)
CR3 (VG, SLL) (G, SWL) (VG, SLL) (MG, N) (VG, SLL) (VG, SLL)
CR4 (VG, L) (G, N) (G, SWL) (VG, L) (VG, SLL) (VG, SLL)
CR5 (MG,SWL) (G, L) (MG, N) (G, SWL) (VG, SLL) (VG, SLL)

DM3

CR1 (VG, SLL) (G, L) (MG,SWL) (G, SWL) (G, L) (MG,SWL)
CR2 (VG, SLL) (G, L) (VG, SLL) (G, L) (G, L) (G, L)
CR3 (VG, SLL) (VG, SLL) (VG, SLL) (MG,SWL) (MG,SWL) (MG,SWL)
CR4 (VG, SLL) (MG,SWL) (MG,SWL) (VG, SLL) (VG, SLL) (G, SWL)
CR5 (MG,SWL) (G, L) (F, N) (MG,SWL) (G, L) (VG, SLL)

DM4

CR1 (VG, SLL) (G, SLL) (VG, SLL) (F, SWU) (VG, SLL) (VG, SLL)
CR2 (VG, SLL) (VG, SLL) (VG, SLL) (VP, SLL) (VG, SLL) (VG, SLL)
CR3 (VG, SLL) (VG, SLL) (VG, SLL) (VP, SLL) (VG, SLL) (VG, SLL)
CR4 (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL)
CR5 (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL)

DM5

CR1 (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL)
CR2 (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL)
CR3 (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL)
CR4 (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL)
CR5 (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL) (VG, SLL)
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Using a similar calculation, the entropy value for other
attributes is calculated and recorded in Table 5.
Step 3. Divide by maximal entropy value.
All entropy values are divided by using the maximal
entropy value following equation (16). Let us take

E(􏽥􏽥B1j) as an example for calculating the maximal
entropy value as stated in Table 6.
Te maximal value for E(􏽥􏽥B1j) is

max E 􏽥􏽥B15􏼒 􏼓􏼒 􏼓 � ((0.53; 0.8, 0.8)(0.45; 1, 1)), ((0.58; 0.8, 0.8)(0.49; 1, 1)). (31)

Tus,

􏽥􏽥h11 �

􏽥􏽥E 􏽥􏽥B
L

11􏼒 􏼓

max 􏽥􏽥E 􏽥􏽥B
L

15􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

􏽥􏽥E 􏽥􏽥B
U

11􏼒 􏼓

max 􏽥􏽥E 􏽥􏽥B
U

15􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽥􏽥E 􏽥􏽥Z
L

11􏼒 􏼓

max 􏽥􏽥E 􏽥􏽥Z
L

15􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

􏽥􏽥E 􏽥􏽥Z
U

11􏼒 􏼓

max 􏽥􏽥E 􏽥􏽥Z
U

15􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

􏽥􏽥h11 �
0.27; 0.8, 0.8
0.53; 0.8, 0.8

􏼠 􏼡,
0.32; 1, 1
0.45; 1, 1

􏼠 􏼡􏼢 􏼣,
0.45; 0.8, 0.8
0.58; 0.8, 0.8

􏼠 􏼡,
0.41; 1, 1
0.49; 1, 1

􏼠 􏼡􏼢 􏼣,

􏽥􏽥h11 � ((0.52; 0.8, 0.8)(0.72; 1, 1)), ((0.79; 0.8, 0.8)(0.82; 1, 1)).

(32)

Table 4: Te judgment matrix.

CR1 CR2 CR3 CR4 CR5

AL1

((0.64, 0.74, 0.94, 0.96; 0.8,
0.8)(0.54, 0.74, 0.94, 0.98;
1, 1)), ((0.52, 0.62, 0.82,
0.86; 0.8, 0.8)(0.42, 0.62,

0.82, 0.90; 1, 1))

((0.70, 0.80, 1.00, 1.00;
0.8, 0.8)(0.60, 0.80, 1.00,
1.00; 1, 1)), ((0.64, 0.74,
0.94, 0.96; 0.8, 0.8)(0.54,
0.74, 0.94, 0.98; 1, 1))

((0.70, 0.80, 1.00, 1.00;
0.8, 0.8)(0.60, 0.80, 1.00,
1.00; 1, 1)), ((0.64, 0.74,
0.94, 0.96; 0.8, 0.8)(0.54,
0.74, 0.94, 0.98; 1, 1))

((0.70, 0.80, 1.00, 1.00;
0.8, 0.8)(0.60, 0.80, 1.00,
1.00; 1, 1)), ((0.58, 0.68,
0.88, 0.92; 0.8, 0.8)(0.48,
0.68, 0.88, 0.96; 1, 1))

((0.46, 0.56, 0.76, 0.80;
0.8, 0.8)(0.36, 0.56, 0.76,
0.84; 1, 1)), ((0.40, 0.50,
0.70, 0.76; 0.8, 0.8)(0.30,
0.50, 0.70, 0.82; 1, 1))

AL2

((0.40, 0.50, 0.70, 0.78; 0.8,
0.8)(0.30, 0.50, 0.70, 0.86;
1, 1)), ((0.40, 0.50, 0.70,
0.74; 0.8, 0.8)(0.30, 0.50,

0.70, 0.78; 1, 1))

((0.64, 0.74, 0.94, 0.96;
0.8, 0.8)(0.54, 0.74, 0.94,
0.98; 1, 1)), ((0.58, 0.68,
0.88, 0.92; 0.8, 0.8)(0.48,
0.68, 0.88, 0.96; 1, 1))

((0.64, 0.74, 0.94, 0.96;
0.8, 0.8)(0.54, 0.74, 0.94,
0.98; 1, 1)), ((0.52, 0.62,
0.82, 0.86; 0.8, 0.8)(0.42,
0.62, 0.82, 0.90; 1, 1))

((0.52, 0.62, 0.82, 0.86;
0.8, 0.8)(0.42, 0.62, 0.82,
0.90; 1, 1)), ((0.34, 0.44,
0.64, 0.70; 0.8, 0.8)(0.24,
0.42, 0.66, 0.76; 1, 1))

((0.58, 0.68, 0.88, 0.92;
0.8, 0.8)(0.48, 0.68, 0.88,
0.96; 1, 1)), ((0.52, 0.62,
0.82, 0.88; 0.8, 0.8)(0.42,
0.62, 0.82, 0.94; 1, 1))

AL3

((0.58, 0.68, 0.88, 0.90; 0.8,
0.8)(0.48, 0.68, 0.88, 0.92;
1, 1)), ((0.52, 0.62, 0.82,
0.86; 0.8, 0.8)(0.42, 0.62,

0.82, 0.90; 1, 1))

((0.58, 0.68, 0.88, 0.90;
0.8, 0.8)(0.48, 0.68, 0.88,
0.92; 1, 1)), ((0.64, 0.74,
0.94, 0.96; 0.8, 0.8)(0.54,
0.74, 0.94, 0.98; 1, 1))

((0.58, 0.68, 0.88, 0.90;
0.8, 0.8)(0.48, 0.68, 0.88,
0.92; 1, 1)), ((0.64, 0.74,
0.94, 0.96; 0.8, 0.8)(0.54,
0.74, 0.94, 0.98; 1, 1))

((0.52, 0.62, 0.82, 0.86;
0.8, 0.8)(0.42, 0.62, 0.82,
0.90; 1, 1)), ((0.40, 0.50,
0.70, 0.76; 0.8, 0.8)(0.30,
0.50, 0.70, 0.82; 1, 1))

((0.40, 0.50, 0.70, 0.74;
0.8, 0.8)(0.30, 0.48, 0.72,
0.78; 1, 1)), ((0.28, 0.38,
0.58, 0.64; 0.8, 0.8)(0.18,
0.34, 0.62, 0.70; 1, 1))

AL4

((0.34, 0.44, 0.64, 0.72; 0.8,
0.8)(0.24, 0.42, 0.66, 0.8; 1,
1)), ((0.04, 0.14, 0.34, 0.42;
0.8, 0.8)(− 0.06, 0.14, 0.34,

0.50; 1, 1))

((0.24, 0.34, 0.52, 0.58;
0.8, 0.8)(0.16, 0.32, 0.52,
0.64; 1, 1)), ((0.52, 0.62,
0.82, 0.88; 0.8, 0.8)(0.42,
0.62, 0.82, 0.94; 1, 1))

((0.12, 0.22, 0.40, 0.46;
0.8, 0.8)(0.04, 0.20, 0.40,
0.52; 1, 1)), ((0.34, 0.44,
0.64, 0.70; 0.8, 0.8)(0.24,
0.42, 0.66, 0.76; 1, 1))

((0.70, 0.80, 1.00, 1.00;
0.8, 0.8)(0.60, 0.80, 1.00,
1.00; 1, 1)), ((0.58, 0.68,
0.88, 0.92; 0.8, 0.8)(0.48,
0.68, 0.88, 0.96; 1, 1))

((0.46, 0.56, 0.76, 0.82;
0.8, 0.8)(0.36, 0.56, 0.76,
0.88; 1, 1)), ((0.40, 0.50,
0.70, 0.76; 0.8, 0.8)(0.30,
0.50, 0.70, 0.82; 1, 1))

AL5

((0.64, 0.72, 0.88, 0.88; 0.8,
0.8)(0.56, 0.72, 0.88, 0.88;
1, 1)), ((0.64, 0.72, 0.88,
0.88; 0.8, 0.8)(0.56, 0.72,

0.88, 0.88; 1, 1))

((0.64, 0.72, 0.88, 0.88;
0.8, 0.8)(0.56, 0.72, 0.88,
0.88; 1, 1)), ((0.64, 0.72,
0.88, 0.88; 0.8, 0.8)(0.56,
0.72, 0.88, 0.88; 1, 1))

((0.58, 0.68, 0.88, 0.90;
0.8, 0.8)(0.48, 0.68, 0.88,
0.92; 1, 1)), ((0.58, 0.68,
0.88, 0.90; 0.8, 0.8)(0.48,
0.68, 0.88, 0.92; 1, 1))

((0.64, 0.74, 0.94, 0.96;
0.8, 0.8)(0.54, 0.74, 0.94,
0.98; 1, 1)), ((0.64, 0.74,
0.94, 0.96; 0.8, 0.8)(0.54,
0.74, 0.94, 0.98; 1, 1))

((0.58, 0.68, 0.88, 0.92;
0.8, 0.8)(0.48, 0.68, 0.88,
0.96; 1, 1)), ((0.58, 0.68,
0.88, 0.92; 0.8, 0.8)(0.48,
0.68, 0.88, 0.96; 1, 1))

AL6

((0.58, 0.68, 0.88, 0.90; 0.8,
0.8)(0.48, 0.68, 0.88, 0.92;
1, 1)), ((0.58, 0.68, 0.88,
0.90; 0.8, 0.8)(0.48, 0.68,

0.88, 0.92; 1, 1))

((0.64, 0.74, 0.94, 0.96;
0.8, 0.8)(0.54, 0.74, 0.94,
0.98; 1, 1)), ((0.64, 0.74,
0.94, 0.96; 0.8, 0.8)(0.54,
0.74, 0.94, 0.98; 1, 1))

((0.58, 0.68, 0.88, 0.90;
0.8, 0.8)(0.48, 0.68, 0.88,
0.92; 1, 1)), ((0.58, 0.68,
0.88, 0.90; 0.8, 0.8)(0.48,
0.68, 0.88, 0.92; 1, 1))

((0.64, 0.74, 0.94, 0.96;
0.8, 0.8)(0.54, 0.74, 0.94,
0.98; 1, 1)), ((0.58, 0.68,
0.88, 0.90; 0.8, 0.8)(0.48,
0.68, 0.88, 0.92; 1, 1))

((0.70, 0.80, 1.00, 1.00;
0.8, 0.8)(0.60, 0.80, 1.00,
1.00; 1, 1)), ((0.70, 0.80,
1.00, 1.00; 0.8, 0.8)(0.60,
0.80, 1.00, 1.00; 1, 1))
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Using the same calculation, the maximal entropy value
is shown in Table 7.
Step 4. Weight of criteria.
Next, evaluate the weight of criteria by utilizing the
weight formula from equations (18) and (19).Tewhole
entropy-based weight is shown in Table 8.

Step 5. Construct the weighted value of decision
matrices.
Ten, construct the weighted value of DM's matrix with
respect to aggregated matrix comparison using equa-
tion (26).
For example, let the value of the weighted matrix for 􏽥􏽥v11
be

􏽥􏽥v11 �
􏽥􏽥f11 × 􏽥􏽥w1,

􏽥􏽥v11 � ((0.64, 0.74, 0.94, 0.96; 0.8, 0.8)(0.54, 0.74, 0.94, 0.98; 1, 1))

((0.52, 0.62, 0.82, 0.86; 0.8, 0.8)(0.42, 0.62, 0.82, 0.9; 1, 1))

×((0.04; 0.8, 0.8)(0.02; 1, 1)), ((0.03; 0.8, 0.8)(0.02; 1, 1))

� ((0.02, 0.03, 0.03, 0.04; 0.8, 0.8)(0.01, 0.02, 0.02, 0.02; 1; 1))

((0.02, 0.02, 0.02, 0.03; 0.8, 0.8)(0.08, 0.01, 0.02, 0.02; 1, 1)).

(33)

Tus, the remaining values of the weighted DM’s
matrix are presented in Table 9.
Step 6. Construct the fuzzy best value (FBV) and fuzzy
worst value (FWV).

Values for FBV and FWV are chosen using equation
(22) and combined in Table 10.
Step 7. Compute the separationmeasures anddefuzzifcation.
Te utility measure 􏽥Mi and regret measure 􏽥Ni are
calculated using the sum of the FBV distance with

Table 5: Te IT2 fuzzy entropy.

CR1 CR2 CR3 CR4 CR5

AL1
((0.27; 0.8, 0.8) (0.32; 1,
1)), ((0.45; 0.8, 0.8) (0.41;

1, 1))

((0.20; 0.8, 0.8) (0.26; 1,
1)), ((0.27; 0.8, 0.8) (0.32;

1, 1))

((0.20; 0.8, 0.8) (0.26; 1,
1)), ((0.27; 0.8, 0.8) (0.32;

1, 1))

((0.20; 0.8, 0.8) (0.26; 1,
1)), ((0.35; 0.8, 0.8) (0.38;

1, 1))

((0.53; 0.8, 0.8) (0.45; 1,
1)), ((0.58; 0.8, 0.8) (0.49;

1, 1))

AL2
((0.57; 0.8, 0.8) (0.48; 1,
1)), ((0.59; 0.8, 0.8) (0.51;

1, 1))

((0.27; 0.8, 0.8) (0.32; 1,
1)), ((0.35; 0.8, 0.8) (0.38;

1, 1))

((0.27; 0.8, 0.8) (0.32; 1,
1)), ((0.45; 0.8, 0.8) (0.41;

1, 1))

((0.45; 0.8, 0.8) (0.41; 1,
1)), ((0.58; 0.8, 0.8) (0.49;

1, 1))

((0.59; 0.8, 0.8) (0.49; 1,
1)), ((0.57; 0.8, 0.8) (0.44;

1, 1))

AL3
((0.36; 0.8, 0.8) (0.39; 1,
1)), ((0.45; 0.8, 0.8) (0.41;

1, 1))

((0.36; 0.8, 0.8) (0.39; 1,
1)), ((0.27; 0.8, 0.8) (0.32;

1, 1))

((0.36; 0.8, 0.8) (0.39; 1,
1)), ((0.27; 0.8, 0.8) (0.32;

1, 1))

((0.45; 0.8, 0.8) (0.41; 1,
1)), ((0.58; 0.8, 0.8) (0.49;

1, 1))

((0.59; 0.8, 0.8) (0.49; 1,
1)), ((0.57; 0.8, 0.8) (0.44;

1, 1))

AL4
((0.56; 0.8, 0.8) (0.44; 1,
1)), ((0.36; 0.8, 0.8) (0.39;

1, 1))

((0.60; 0.8, 0.8) (0.51; 1,
1)), ((0.45; 0.8, 0.8) (0.40;

1, 1))

((0.46; 0.8, 0.8) (0.44; 1,
1)), ((0.57; 0.8, 0.8) (0.46;

1, 1))

((0.20; 0.8, 0.8) (0.26; 1,
1)), ((0.35; 0.8, 0.8) (0.38;

1, 1))

((0.52; 0.8, 0.8) (0.44; 1,
1)), ((0.58; 0.8, 0.8) (0.49;

1, 1))

AL5
((0.31; 0.8, 0.8) (0.36; 1,
1)), ((0.31; 0.8, 0.8) (0.36;

1, 1))

((0.31; 0.8, 0.8) (0.36; 1,
1)), ((0.31; 0.8, 0.8) (0.36;

1, 1))

((0.36; 0.8, 0.8) (0.39; 1,
1)), ((0.36; 0.8, 0.8) (0.39;

1, 1))

((0.27; 0.8, 0.8) (0.32; 1,
1)), ((0.27; 0.8, 0.8) (0.32;

1, 1))

((0.35; 0.8, 0.8) (0.38; 1,
1)), ((0.35; 0.8, 0.8) (0.38;

1, 1))

AL6
((0.36; 0.8, 0.8) (0.39; 1,
1)), ((0.36; 0.8, 0.8) (0.39;

1, 1))

((0.27; 0.8, 0.8) (0.32; 1,
1)), ((0.27; 0.8, 0.8) (0.32;

1, 1))

((0.36; 0.8, 0.8) (0.39; 1,
1)), ((0.36; 0.8, 0.8) (0.39;

1, 1))

((0.27; 0.8, 0.8) (0.32, 1,
1)), ((0.36; 0.8, 0.8) (0.39;

1, 1))

((0.20; 0.8, 0.8) (0.26; 1,
1)), ((0.20; 0.8, 0.8) (0.26;

1, 1))

Table 6: Choosing the maximal entropy value for E(􏽥􏽥B1j).

E (􏽥􏽥B1J
)

CR1 ((0.27; 0.8, 0.8) (0.32; 1, 1)), ((0.45; 0.8, 0.8) (0.41; 1, 1)) E (􏽥􏽥B11)

CR2 ((0.20; 0.8, 0.8) (0.26; 1, 1)), ((0.27; 0.8, 0.8) (0.32; 1, 1)) E (􏽥􏽥B12)

CR3 ((0.20; 0.8, 0.8) (0.26; 1, 1)), ((0.27; 0.8, 0.8) (0.32; 1, 1)) E (􏽥􏽥B13)

CR4 ((0.20; 0.8, 0.8) (0.26; 1, 1)), ((0.35; 0.8, 0.8) (0.38; 1, 1)) E (􏽥􏽥B14)

CR5 ((0.53; 0.8, 0.8) (0.45; 1, 1)), ((0.58; 0.8, 0.8) (0.49; 1, 1)) E (􏽥􏽥B15)
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regard to all criteria based on equation (26) till 26. Te
result of the calculation is listed in Table 11.
Step 8. Defuzzify the utility measure value
(( 􏽥Mi) and regretmeasure value ( 􏽥Ni)).

Tis defuzzifcation step is needed to further the next
calculation in Step 9. Terefore, each utility measure
value ( 􏽥Mi) and regret measure value ( 􏽥Ni) from Ta-
ble 11 are defuzzifed using equation (31). Let us take an
example of 􏽥S1 upper boundary:

􏽥M1 �

(0.05 − 0.07) + (0.8 ×(0.05 − 0.07)) + (0.8 ×(0.06 − 0.07))/4 + 0.07+

[(0.04 − 0.05) + (1 ×(0.03 − 0.05)) + (1 ×(0.04 − 0.05))/4 + 0.05]

2
,

􏽥M1 � 0.05.

(34)

Tus, the rest of the defuzzifcation results for 􏽥M1 and
􏽥Ni are listed in Table 12.
Step 9. Rank the alternatives.

Table 13 lists all values for (1) maximum group
of utility 􏽥M

∗, (2) minimum value for a maximum group
of utility 􏽥M, (3) minimum individual regret of the op-
ponent 􏽥N

∗, and (4) minimum value 􏽥N using equation
(33).

Te fnal index for both 􏽥M
∗ and 􏽥N

∗ which is Pi is
AL1� 0.38, AL2� 0.88, AL3� 0.63, AL4� 0.70, AL5� 0.56, and
AL6� 0. Tat is, the best alternative is AL6, and the ranking

order of the alternatives is AL6>AL1>AL5>AL3>AL4>AL2
which is listed in Table 14.

As a result, the fve criteria, six alternatives, and the
opinions of the fve DMs are gathered to determine the best
strategies to improve the security of the water supply in
Malaysia. Among the frst ten ranks, strengthening the
policy on water security comes in as the frst rank at 0,
followed by strengthening the protection of water source
areas, increasing groundwater monitoring and protection,
developing water-saving systems, and fully implementing
the river chief system. Te last item on the list is enhancing
infrastructure to safeguard urban and rural water security.

Table 7: Te maximal entropy value.

CR1 CR2 CR3 CR4 CR5

AL1
((0.52; 0.8, 0.8) (0.72; 1,
1)), ((0.79; 0.8, 0.8) (0.82;

1, 1))

((0.39; 0.8, 0.8) (0.57; 1,
1)), ((0.47; 0.8, 0.8) (0.66;

1, 1))

((0.39; 0.8, 0.8) (0.57; 1,
1)), ((0.47; 0.8, 0.8) (0.66;

1, 1))

((0.39; 0.8, 0.8) (0.57; 1,
1)), ((0.61; 0.8, 0.8) (0.77;

1, 1))

((1.00; 0.8, 0.8) (1.00; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

AL2
((1.00; 0.8, 0.8) (1.00; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

((0.48; 0.8, 0.8) (0.68; 1,
1)), ((0.60; 0.8, 0.8) (0.74;

1, 1))

((0.48; 0.8, 0.8) (0.68; 1,
1)), ((0.77; 0.8, 0.8) (0.80;

1, 1))

((0.80; 0.8, 0.8) (0.85; 1,
1)), ((0.96; 0.8, 0.8) (0.90;

1, 1))

((0.62; 0.8, 0.8) (0.79; 1,
1)), ((0.76; 0.8, 0.8) (0.78;

1, 1))

AL3
((0.61; 0.8, 0.8) (0.80; 1,
1)), ((0.79; 0.8, 0.8) (0.82;

1, 1))

((0.61; 0.8, 0.8) (0.80; 1,
1)), ((0.47; 0.8, 0.8) (0.66;

1, 1))

((0.61; 0.8, 0.8) (0.80; 1,
1)), ((0.47; 0.8, 0.8) (0.66;

1, 1))

((0.77; 0.8, 0.8) (0.83; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

((1.00; 0.8, 0.8) (1.00; 1,
1), ((0.98; 0.8, 0.8) (0.89;

1, 1))

AL4
((0.93; 0.8, 0.8) (0.86; 1,
1)), ((0.62; 0.8, 0.8) (0.79;

1, 1))

((1.00; 0.8, 0.8) (1.00; 1,
1)), ((0.78; 0.8, 0.8) (0.80;

1, 1))

((0.77; 0.8, 0.8) (0.86; 1,
1)), ((0.98; 0.8, 0.8) (0.93;

1, 1))

((0.34; 0.8, 0.8) (0.50; 1,
1)), ((0.61; 0.8, 0.8) (0.77;

1, 1))

((0.86; 0.8, 0.8) (0.85; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

AL5
((0.87; 0.8, 0.8) (0.92; 1,
1)), ((0.87; 0.8, 0.8) (0.92;

1, 1))

((0.87; 0.8, 0.8) (0.92; 1,
1)), ((0.87; 0.8, 0.8) (0.92;

1, 1))

((1.00; 0.8, 0.8) (1.00; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

((0.76; 0.8, 0.8) (0.84; 1,
1)), ((0.76; 0.8, 0.8) (0.84;

1, 1))

((0.99; 0.8, 0.8) (0.98; 1,
1)), ((0.99; 0.8, 0.8) (0.98;

1, 1))

AL6
((1.00; 0.8, 0.8) (1.00; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

((0.76; 0.8, 0.8) (0.84; 1,
1)), ((0.76; 0.8, 0.8) (0.84;

1, 1))

((1.00; 0.8, 0.8) (1.00; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

((0.76; 0.8, 0.8) (0.84; 1,
1)), ((1.00; 0.8, 0.8) (1.00;

1, 1))

((0.57; 0.8, 0.8) (0.67; 1,
1)), ((0.57; 0.8, 0.8) (0.67;

1, 1))

Table 8: Te entropy-based weights (􏽥􏽥wj).

( 􏽥􏽥Wj)

CR1 ((0.04; 0.8, 0.8) (0.02; 1, 1)), ((0.03; 0.8, 0.8) (0.02; 1, 1))
CR2 ((0.09; 0.8, 0.8) (0.04; 1, 1)), ((0.08; 0.8, 0.8) (0.05; 1, 1))
CR3 ((0.07; 0.8, 0.8) (0.04; 1, 1)), ((0.05; 0.8, 0.8) (0.03; 1, 1))
CR4 ((0.09; 0.8, 0.8) (0.06; 1, 1)), ((0.04; 0.8, 0.8) (0.02; 1, 1))
CR5 ((0.03; 0.8, 0.8) (0.02; 1, 1)), ((0.02; 0.8, 0.8) (0.02; 1, 1))
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6. Analysis and Comparison

Prior to the comparisons, questionnaires were circulated to
all DMs asking for their opinions and judgments about
Malaysia’s best strategies to enhance water supply security.
Based on the nature of each method, diferent linguistic
scales were used to set up the questionnaires. Tere were the
same fve DMs involved in the trials, and their opinions were
constructed based on their experience. To visualize the
agreement, we have used diferent methods: (1) extended
IT2FVIKOR, (2) IT2FVIKOR with equitable linguistic scale
only, (3) IT2FVIKOR with fuzzy entropy only, and (4)

Interval Type-2 Trapezoidal Fuzzy VIKOR (IT2TrFVIKOR).
Results for each comparison are listed in Table 15.

Considering the results from Table 15, it can be con-
cluded that the output from the extended IT2FVIKOR is
comparable with the output from the other methods. Results
seem to be slightly diferent. However, the order of each
alternative is still bearable. Tus, it shows that the extended
IT2FVIKOR can become another alternative methods for
handling uncertainty and unbalanced problems.Tey have a
high chance of handling uncertainty due to the advantages of
the proposed equitable linguistic scales, Z-Numbers, and
fuzzy entropy. Furthermore, the proposed equitable

Table 9: Weight of decision matrix.

CR1 CR2 CR3 CR4 CR5

AL1

((0.02, 0.03, 0.03, 0.04;
0.8, 0.8) (0.01, 0.02, 0.02,
0.02; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

((0.05, 0.06, 0.08, 0.08;
0.8, 0.8) (0.02, 0.03, 0.04,
0.04; 1, 1)), ((0.06, 0.06,
0.08, 0.08; 0.8, 0.8) (0.03,
0.04, 0.05, 0.05; 1, 1))

((0.05, 0.06, 0.07, 0.07;
0.8, 0.8) (0.02, 0.03, 0.04,
0.04; 1, 1)), ((0.03, 0.03,
0.04, 0.04; 0.8, 0.8) (0.02,
0.02, 0.03, 0.03; 1, 1))

((0.07, 0.08, 0.09, 0.09;
0.8, 0.8) (0.04, 0.05, 0.06,
0.06; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.02, 0.02, 0.02; 1, 1))

((0.01, 0.02, 0.02, 0.03;
0.8, 0.8) (0.01, 0.01, 0.02,
0.02; 1, 1)), ((0.01, 0.01,
0.02, 0.02; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

AL2

((0.01, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.01, 0.02,
0.02; 1, 1)), ((0.01, 0.02,
0.02, 0.02; 0.8, 0.8) (0.01,
0.01, 0.01, 0.02; 1, 1))

((0.05, 0.06, 0.07, 0.07;
0.8, 0.8) (0.02, 0.03, 0.04,
0.04; 1, 1)), ((0.05, 0.06,
0.08, 0.08; 0.8, 0.8) (0.02,
0.03, 0.04, 0.05; 1, 1))

((0.04, 0.05, 0.06, 0.07;
0.8, 0.8) (0.02, 0.03, 0.03,
0.04; 1, 1)), ((0.02, 0.03,
0.04, 0.04; 0.8, 0.8) (0.01,
0.02, 0.03, 0.03; 1, 1))

((0.05, 0.06, 0.08, 0.08;
0.8, 0.8) (0.02, 0.04, 0.05,
0.05; 1, 1)), ((0.01, 0.02,
0.02, 0.02; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

((0.02, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02,
0.02; 1, 1)), ((0.01, 0.01,
0.02, 0.02; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

AL3

((0.02, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02,
0.02; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

((0.04, 0.05, 0.07, 0.07;
0.8, 0.8) (0.02, 0.03, 0.04,
0.04; 1, 1)), ((0.06, 0.06,
0.08, 0.08; 0.8, 0.8) (0.03,
0.04, 0.05, 0.05; 1, 1))

((0.04, 0.05, 0.06, 0.07;
0.8, 0.8) (0.02, 0.03, 0.03,
0.03; 1, 1)), ((0.03, 0.03,
0.04, 0.04; 0.8, 0.8) (0.01,
0.02, 0.03, 0.03; 1, 1))

((0.05, 0.06, 0.08, 0.08;
0.8, 0.8) (0.02, 0.04, 0.05,
0.05; 1, 1)), ((0.01, 0.02,
0.02, 0.03; 0.8, 0.8) (0.01,
0.01, 0.01, 0.02; 1, 1))

((0.01, 0.02, 0.02, 0.02;
0.8, 0.8) (0.01, 0.01, 0.02,
0.03; 1, 1)), ((0.01, 0.01,
0.01, 0.01; 0.8, 0.8) (0.00,
0.01, 0.01, 0.02; 1, 1))

AL4

((0.01, 0.02, 0.02, 0.03;
0.8, 0.8) (0.01, 0.01, 0.01,
0.02; 1, 1)), ((0.00, 0.00,
0.01, 0.01; 0.8, 0.8) (0.00,
0.00, 0.01, 0.01; 1, 1))

((0.02, 0.03, 0.04, 0.04;
0.8, 0.8) (0.01, 0.01, 0.02,
0.03; 1, 1)), ((0.05, 0.05,
0.07, 0.08; 0, 8, 0.8) (0.02,
0.03, 0.04, 0.05; 1, 1))

((0.01, 0.02, 0.03, 0.03;
0.8, 0.8) (0.00, 0.01, 0.01,
0.02; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

((0.07, 0.08, 0.09, 0.09;
0.8, 0.8) (0.04, 0.05, 0.06,
0.06; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.02, 0.02, 0.02; 1, 1))

((0.01, 0.02, 0.02, 0.03;
0.8, 0.8) (0.01, 0.01, 0.02,
0.02; 1, 1)), ((0.01, 0.01,
0.02, 0.02; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

AL5

((0.02, 0.03, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02,
0.02; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

((0.05, 0.06, 0.07, 0.07;
0.8, 0.8) (0.02, 0.03, 0.04,
0.04; 1, 1)), ((0.06, 0.06,
0.08, 0.08; 0.8, 0.8) (0.03,
0.04, 0.04, 0.04; 1, 1))

((0.04, 0.05, 0.06, 0.06;
0.8, 0.8) (0.02, 0.03, 0.03,
0.03; 1, 1)), ((0.03, 0.03,
0.04, 0.04; 0.8, 0.8) (0.02,
0.02, 0.03, 0.03; 1, 1))

((0.06, 0.07, 0.09, 0.09;
0.8, 0.8) (0.03, 0.04, 0.06,
0.06; 1, 1)), ((0.02, 0.03,
0.03, 0.03; 0.8, 0.8) (0.01,
0.02, 0.02, 0.02; 1, 1))

((0.02, 0.02, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02,
0.02; 1, 1)), ((0.01, 0.01,
0.02, 0.02; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

AL6

((0.02, 0.02, 0.03, 0.03; 0,
8, 0.8) (0.01, 0.02, 0.02,
0.02; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.01, 0.02, 0.02; 1, 1))

((0.05, 0.06, 0.07, 0.07;
0.8, 0.8) (0.02, 0.03, 0.04,
0.04; 1, 1)), ((0.06, 0.06,
0.08, 0.08, 8, 0.8) (0.03,
0.04, 0.05, 0.05; 1, 1))

((0.04, 0.05, 0.06, 0.06;
0.8, 0.8) (0.02, 0.03, 0.03,
0.03; 1, 1)), ((0.03, 0.03,
0.04, 0.04; 0.8, 0.8) (0.02,
0.02, 0.03, 0.03; 1, 1))

((0.06, 0.07, 0.09, 0.09;
0.8, 0.8) (0.03, 0.04, 0.06,
0.06; 1, 1)), ((0.02, 0.02,
0.03, 0.03; 0.8, 0.8) (0.01,
0.02, 0.02, 0.02; 1, 1))

((0.02, 0.03, 0.03, 0.03;
0.8, 0.8) (0.01, 0.02, 0.02,
0.02; 1, 1)), ((0.02, 0.02,
0.02, 0.02; 0.8, 0.8) (0.01,
0.02, 0.02, 0.02; 1, 1))

Table 10: Fuzzy best value and fuzzy worst value.

Fuzzy best value Fuzzy worst value

CR1
((0.02, 0.03, 0.03, 0.04; 0.8, 0.8) (0.01, 0.02, 0.02, 0.02; 1, 1)), ((0.02,

0.02, 0.03, 0.03; 0.8, 0.8) (0.01, 0.01, 0.02, 0.02; 1, 1))
((0.01, 0.02, 0.02, 0.03; 0.8, 0.8) (0.01, 0.01, 0.01, 0.02; 1, 1)), ((0.00,

0.00, 0.01, 0.01; 0.8, 0.8) (− 0.00, 0.00, 0.01, 0.01; 1, 1))

CR2
((0.05, 0.06, 0.08, 0.08; 0.8, 0.8) (0.02, 0.03, 0.04, 0.04; 1, 1)),
((0.06, 0.06, 0.08, 0.08; 0.8, 0.8), (0.03, 0.04, 0.05, 0.05; 1, 1))

((0.02, 0.03, 0.04, 0.04; 0.8, 0.8) (0.01, 0.01, 0.02, 0.03; 1, 1)), ((0.05,
0.05, 0.07, 0.08; 0.8, 0.8) (0.02, 0.03, 0.04, 0.04; 1, 1))

CR3
((0.05, 0.06, 0.07, 0.07; 0.8, 0.8) (0.02, 0.03, 0.04, 0.04; 1, 1)),
((0.03, 0.03, 0.04, 0.04; 0.8, 0.8) (0.02, 0.02, 0.03, 0.03; 1, 1))

((0.01, 0.02, 0.03, 0.03; 0.8, 0.8) (0.00, 0.01, 0.01, 0.02; 1, 1)), ((0.02,
0.02, 0.03, 0.03; 0.8, 0.8) (0.01, 0.01, 0.02, 0.02; 1, 1))

CR4
((0.07, 0.08, 0.09, 0.09; 0.8, 0.8) (0.04, 0.05, 0.06, 0.06; 1, 1)),
((0.02, 0.03, 0.03, 0.03; 0.8, 0.8) (0.01, 0.02, 0.02, 0.02; 1, 1))

((0.05, 0.06, 0.08, 0.08; 0.8, 0.8) (0.02, 0.04, 0.05, 0.05; 1, 1)), ((0.01,
0.02, 0.02, 0.02; 0.8, 0.8) (0.01, 0.01, 0.02, 0.02; 1, 1))

CR5
((0.02, 0.03, 0.03, 0.03; 0.8, 0.8) (0.01, 0.02, 0.02, 0.02; 1, 1)), ((0.02,

0.02, 0.02, 0.02; 0.8, 0.8) (0.01, 0.02, 0.02, 0.02; 1, 1))
((0.01, 0.02, 0.02, 0.02; 0.8, 0.8) (0.01, 0.01, 0.02, 0.02; 1, 1)), ((0.01,

0.01, 0.01, 0.01; 0.8, 0.8) (0.00, 0.01, 0.01, 0.02; 1, 1))
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linguistic scales, Z-Numbers, and fuzzy entropy embedded
inside the extended IT2FVIKOR are believed to be able to
evaluate uncertainty, vagueness, and confict in line with the
previous method. Tis approach proved that it could handle
the concept of rating and weighting when it comes to dif-
ferent shapes, negative type, and objective type. Besides, it is

not compensative to each other due to the concept of the
ranking phase. Besides, this proposed method can model the
variation of decision-making problems demonstrated by
various DMs’ opinions. Tis led to providing a clearer
agreement with human evaluations associated to Type-1 and
Interval Type-2 Fuzzy Systems. It was found that the

Table 11: 􏽥Mi and 􏽥Ni.

􏽥Mi
􏽥Ni

AL1
((0.05, 0.05, 0.06, 0.08; 0.8, 0.8) (0.04, 0.03, 0.04, 0.05; 1, 1)), ((0.05,

0.05, 0.04, 0.04; 0.8, 0.8) (0.04, 0.03, 0.03, 0.02; 1, 1))
((0.04, 0.04, 0.04, 0.04; 0.8, 0.8) (0.02, 0.02, 0.02; 1, 1)), ((0.03,

0.03, 0.03, 0.03; 0.8, 0.8) (0.02, 0.02, 0.02, 0.02; 1, 1))

AL2
((0.11, 0.12, 0.13, 0.13; 0.8, 0.8) (0.06, 0.06, 0.07, 0.07; 1, 1)), ((0.09,

0.10, 0.13, 0.17; 0.8, 0.8) (0.08, 0.06, 0.07, 0.07; 1, 1))
((0.08, 0.08, 0.08, 0.08; 0.8, 0.8) (0.04, 0.04, 0.04, 0.04; 1, 1)),
((0.09, 0.09, 0.09, 0.09; 0.8, 0.8) (0.05, 0.05, 0.05, 0.05; 1, 1))

AL3
((0.11, 0.11, 0.11, 0.11; 0.8, 0.8) (0.06, 0.06, 0.06, 0.06; 1, 1)), ((0.06,

0.06, 0.06, 0.07; 0.8, 0.8) (0.04, 0.04, 0.05, 0.05; 1, 1))
((0.07, 0.07, 0.07, 0.07; 0.8, 0.8) (0.04, 0.04, 0.04, 0.04; 1, 1)),
((0.05, 0.05, 0.05, 0.05; 0.8, 0.8) (0.03, 0.03, 0.03, 0.03; 1, 1))

AL4
((0.16, 0.16, 0.16, 0.15; 0.8, 0.8) (0.10, 0.10, 0.10, 0.08; 0.8, 0.8)),
((0.06, 0.06, 0.06, 0.05; 0.8, 0.8) (0.04, 0.03, 0.04, 0.03; 1, 1))

((0.09, 0.09, 0.09, 0.09; 0.8, 0.8) (0.06, 0.06, 0.06, 0.06; 1, 1)),
((0.03, 0.03, 0.03, 0.03; 0.8, 0.8) (0.02, 0.02, 0.02, 0.02; 1, 1))

AL5
((0.12, 0.12, 0.12, 0.11; 0.8, 0.8) (0.09, 0.08, 0.09, 0.07; 1, 1)), ((0.08,

0.08, 0.08, 0.08; 0.8, 0.8) (0.07, 0.07, 0.08, 0.06; 1, 1))
((0.03, 0.03, 0.03, 0.03; 0.8, 0.8) (0.02, 0.02, 0.02, 0.02; 1, 1)),
((0.02, 0.02, 0.02, 0.03; 0.8, 0.8) (0.02, 0.02, 0.02, 0.02; 1, 1))

AL6
((0, 0, 0, 0; 0.8, 0.8) (0, 0, 0, 0; 1, 1)), ((0, 0, 0, 0; 0.8, 0.8) (0, 0, 0, 0; 1,

1))
((0, 0, 0, 0; 0.8, 0.8) (0, 0, 0, 0; 1, 1)), ((0, 0, 0, 0; 0.8, 0.8) (0, 0, 0, 0;

1, 1))

Table 12: Defuzzifcation of 􏽥M1 and 􏽥Ni.

􏽥M1
􏽥Ni

AL1 (0.05) (0.04) (0.03) (0.02)
AL2 (0.09) (0.09) (0.06) (0.06)
AL3 (0.08) (0.05) (0.05) (0.04)
AL4 (0.12) (0.04) (0.07) (0.02)
AL5 (0.09) (0.07) (0.03) (0.02)
AL6 (0) (0) (0) (0)

Table 13: 􏽥M
∗, 􏽥M

− , 􏽥N
∗, and 􏽥N

− .
􏽥M
∗ (0) (0)

􏽥M
− (0.12) (0.09)

􏽥N
∗ (0) (0)

􏽥N
− (0.07) (0.06)

Table 14: Te rating of Pi and rank of each alternative.

m 􏽥Pi Pi Rank

AL1 (0.38) (0.38) 0.38 2
AL2 (0.76) (1) 0.88 6
AL3 (0.68) (0.57) 0.63 4
AL4 (1) (0.40) 0.70 5
AL5 (0.58) (0.54) 0.56 3
AL6 (0) (0) 0 1

Table 15: Comparative analysis.

Methods Results
Te extended IT2FVIKOR AL6>AL1>AL5>AL3>AL4>AL2
IT2FVIKOR with equitable linguistic scale only AL5>AL6>AL1>AL3>AL2>AL4
IT2FVIKOR with fuzzy entropy only AL5>AL6>AL2>AL1>AL4>AL3
IT2TrFVIKOR AL5>AL6>AL2>AL1>AL3>AL4
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subjective and qualitative factors in water supply security
selection can merge with the proposed model to handle
diferent opinions and factors of DMs. Te positive IT2FE
and negative IT2FE are good for narrow domains of confict
in DMs’ decisions. Essentially, the positive IT2FE and
negative IT2FE have been created by the intersection of the
positive and negative sides to cope with the positive and
negative aspects of water supply security selection. Besides,
the fuzzy entropy weight-based IT2FS was proposed for the
objective weights instead of subjective weights and con-
sidered all criteria. By using this approach, the subjective
weighting process can be signifcantly simplifed, and a more
consistent weighting outcome can be achieved [54].
Terefore, we can say that the proposed approach gives a
new dimension in the IT2MCDM area, which is particularly
important for facilitating decision analysis in practical
applications.

6.1. Sensitivity Analysis. Te sensitivity analysis method is
becoming progressively prevalent in a wide variety of en-
gineering and science felds, including computational
modeling, process simplifcation, and experimental data
processing [55, 56]. A model’s sensitivity can be described as
how it depends on its input factors (whether numerical or
otherwise) as described by Saltelli et al. [57]. It is a crucial

step to perform sensitivity analysis for the FMCDM prob-
lems. Sensitivity analysis can help identify complicated
systems’ uncertainty [58]. An in-depth analysis of sensitivity
and uncertainty in large-scale systems was made by Ionescu-
Bujor and Cacuci [55].

Due to the imperfect and changeable input data of a
FMCDM problem, DMs are eager to know how changes will
afect their results and whether their decision results are
balanced. Tus, sensitivity analysis is an efective tool for
determining whether the results of a decision are stable. By
using diferent weight assessment methods, Li et al. [59]
computed the robustness of the water supply security se-
lection towards the extended IT2FVIKOR by analyzing the
sensitivity of the attribute weights. In order to determine
how the valuation results would vary as the weights are
altered, the sensitivity analysis is carried out on a water
supply security study.

Table 16 indicates that the sort of water supply security
selection did not vary until the unitary variation ratio
reached 0.7. Figure 6 shows that the sort of the seven unitary
variation ratios began to change at about v � 0.7, where the
relative order for A3 and A5 was changed, and the rest were
unchanged. It shows that the unitary variation ratio v � 0.7
did not cause much impact on the order of alternatives.
However, when the unitary variation ratio reached 1.0, the
order of water supply security selection signifcantly changed

Table 16: Ranking of alternatives in sensitivity runs when group utility (v) varies from 0.1 to 1.0.

v
Alternatives

Rank
AL1 AL2 AL3 AL4 AL5 AL6

0.1 0.3786 0.8762 0.6312 0.6960 0.3836 0 AL6>AL1>AL5>AL3>AL4>AL2
0.2 0.3796 0.8741 0.6310 0.7038 0.4281 0 AL6>AL1>AL5>AL3>AL4>AL2
0.3 0.3806 0.8721 0.6308 0.7116 0.4727 0 AL6>AL1>AL5>AL3>AL4>AL2
0.4 0.3816 0.8701 0.6305 0.7195 0.5173 0 AL6>AL1>AL5>AL3>AL4>AL2
0.5 0.3826 0.8681 0.6303 0.7273 0.5619 0 AL6>AL1>AL5>AL3>AL4>AL2
0.6 0.3836 0.8661 0.6301 0.7351 0.6064 0 AL6>AL1>AL5>AL3>AL4>AL2
0.7 0.3846 0.8640 0.6298 0.7429 0.6510 0 AL6>AL1>AL3>AL5>AL4>AL2
0.8 0.3856 0.8620 0.6296 0.7506 0.6956 0 AL6>AL1>AL3>AL5>AL4>AL2
0.9 0.3866 0.8600 0.6294 0.7586 0.7401 0 AL6>AL1>AL3>AL5>AL4>AL2
1.0 0.3876 0.8580 0.6292 0.7664 0.7847 0 AL6>AL1>AL3>AL4>AL5>AL2
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Figure 6: Results of sensitivity analysis.
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each other. Tis may be because it discriminates more
among the alternatives. Besides, uncertainty may exist in the
process of v � 1.0 and is more sensitive to the variation of
input data.

Similarly, the results in Table 16 are illustrated in
Figure 6.

In summary, these phenomena observed in Table 16 and
Figure 6 reveal that small disturbances to all weights did not
impact the assessment results. However, they started to
change when the unitary variation ratio began to increase. At
frst, only two alternatives were slightly changed, and the rest
remained unchanged. Until the unitary variation ratio be-
gins to increase, three alternatives were changed, and other
alternatives remained at the same rank. Terefore, an in-
crease in the unitary variation ratio will alter the fnal as-
sessment results. With the small unitary variation ratio, it
can defnitely be declared that the disruption to the weights
of the parameter will not impact the valuation results.

Te theoretical analysis and case study demonstrate that
the extended IT2FVIKOR technique in water supply security
selection is a reasonable and dependable method with regard
to the sensitivity analysis to weights, and this research may
be concluded accordingly. Te fnal evaluation results can
maintain a reasonable level of stability within the target
range while maintaining a rather high sensitivity to weight
variation. Furthermore, the model’s sensitivity and the case
study’s validity are enhanced for credibility, showing that the
approach is useful and is sufcient for accurately repre-
senting the situation for the purpose targeted.

7. Conclusion

In this research, we extend an IT2FVIKOR that thoroughly
evaluates a group of DMs based on the synthesis of DM's
preferences and opinions. When dealing with ambiguity and
imprecision, the theory of the equitable linguistic scale and
Z-Numbers are excellent tools for the IT2FVIKOR model.
Tese equitable linguistic scales refects exactly what the
DM's mean, which focuses on the balance of the two sides.
With the use of this, DM articulated his or her wants, needs,
personality quirks, values, life experiences, and subjective
assessments using the equitable linguistic scale. Tis equi-
table linguistic scale has demonstrated to be more consistent
with people’s tendency to make choices and act in accor-
dance with their perceptions of reality. It avoids the single-
sided judgment bias in the evaluation process because in
real-life problems, positive and negative sides exist together,
and these opposite sides can describe simultaneously a real
condition of the alternatives [60]. Moreover, it allows to
describe and assess the uncertainties among all DMs’
opinions and judgments, resolving conficts among various
personal preferences with various alternatives and attributes.
Tis work proposes Z-Numbers to incorporate the recom-
mended equitable linguistic scale to create a concerted
decision environment in IT2FVIKOR. Te Z-Number
theory was used considering the restriction and reliability
decisions of the DMs. Using these equitable linguistic scales
and Z-Numbers, the proposed method can produce the
optimum decision based on the agreement of a group of

DMs. Furthermore, it allows DMs to clearly convey their
rational knowledge decisions using the language used to
illustrate solutions. Moreover, this study also considers the
objective weight in the weighting process. A relatively
consistent weighting outcome can be achieved by using
entropy weights to reduce decision-making burdens. Aside
from being computationally simple, the entropy weight
concept is also rational and understandable. It ensures that
the outcome of the evaluation is not afected by interde-
pendencies and inconsistencies in subjective weights [21]. In
this way, we can escape the subjectivity of the DM’s personal
bias and verify the objectivity.

We have conducted experiments on solving the water
security problems in Malaysia to evaluate six diferent
strategies to fnd the best ways to enhance water supply
security in Malaysia towards the fve main criteria. Result
shows that strengthening the protection of water source
areas is ranked frst, reinforcing groundwater monitoring
and protections is ranked second, developing water-
saving system is ranked third, and implementing the river
chief system is ranked fourth. Improving infrastructure to
safeguard urban and rural water security is ranked last.
Te proposed IT2FVIKOR seems to have better agreed
with the DMs’ decision than the existing IT2FVIKOR. It
can be concluded that the output from the extended
IT2FVIKOR is comparable with the output from the other
methods. Results seem to be slightly diferent. However,
the order of each alternative is still bearable. Te extended
IT2FVIKOR ofers an alternative way of selecting the best
water supply security selection. It allows the “water supply
security selection” case study to have a better ranking via
dealing with human and non-human factors. Te new
ranking values clearly show the best water supply security
selection.Temodels successfully deal with vagueness and
uncertainty of the data information provided by the DMs
because it uses IT2FSs concept, equitable linguistic scales,
Z-Numbers, and fuzzy entropy. Tus, it shows that the
extended IT2FVIKOR can become another alternative
method for handling uncertainty and unbalanced prob-
lems. Te fndings unequivocally demonstrate the theory
behind the suggested model’s ability to assess ambiguity,
confict, and uncertainty. We provided sensitivity analysis
in addition to comparative analysis to evaluate the ef-
fectiveness of the extended IT2FVIKOR with regard to the
problem of water supply security selection. It is a good
platform to study how sensitive this model is towards the
diferent weights’ values. It ofers a more confdent model
of the extended IT2FVIKOR for the water supply security
selection after checking the model’s efciency via the
sensitivity analysis. We intend to use universal type-2
membership functions in our upcoming work to increase
the level of uncertainty in the decision-making process.
Te overall type-2 fuzzy application combines the dif-
ferent group DMs’ viewpoints into a single endorsement
that represents the uncertainty distribution (in the third
dimension) related to the DMs. Te use of general type-2
is anticipated to improve the levels of agreement between
group DM choices and the IT2FTOPSIS system. Te
control decision system’s ability to simulate a group of
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human decisions in the choice of water supply security
increases with the agreement value.
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