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Te abnormality of haemoglobin in the human body is the fundamental cause of thalassemia disease. Talassemia is considered
a common genetic blood condition that has received extensive investigation in medical research globally. Likely, inherited
disorders will be passed down to children from their parents. If both parents are beta Talassemia carriers, 25% of their children
will have intermediate or major beta thalassemia, which is fatal. An efcient method of beta thalassemia is prenatal screening after
couples have received counselling. Identifying Talassemia carriers involves a costly, time-consuming, and specialized test using
quantifable blood features. However, cost-efective and speedy screening methods must be developed to address this issue. Te
demise rate due to thalassemia development is outstandingly high around the globe. Te passing rate due to thalassemia de-
velopment can be reduced by following the proper procedure early; otherwise, it signifcantly impacts the body. A machine
learning-based late fusion model proposes the detection of beta-thalassemia carriers by analyzing red blood cells. Tis study
applied the late fusion technique to employ four machine learning algorithms. For identifying the beta-thalassemia carriers,
logistics regression, Näıve Bayes, decision tree, and neural network have achieved an accuracy of 94.01%, 93.15%, 97.93%, and
98.07%, respectively, by using the features-based dataset. Te late fusion-based ML model achieved an overall accuracy of 96% for
detecting beta-thalassemia carriers. Te proposed late fusion model performs better than previously published approaches
regarding efciency, reliability, and precision.
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1. Introduction

Talassemia comes from the Greek terms “Talassa” and
“Haima.” “Talassa” means “the ocean,” and “Haima”means
“the blood.” Talassemia is a genetic blood disorder char-
acterized by insufcient production of haemoglobin [1].
Haemoglobin plays a crucial role in the human body by
transporting oxygen from the lungs to the rest of the body
and returning carbon dioxide to the lungs [2].

Talassemia is one of the world’s most frequent
diseases, particularly in the Mediterranean. Many
countries are currently dealing with the high and rising
incidence of thalassemia, which has become a primary
public health concern—a signifcant source of disability
and mortality around the world. Early detection of
thalassemia can aid in the reduction of death rates. As
a result, healthcare practitioners are responsible for
making the right decisions. When distinguishing be-
tween ordinary people and patients, complete the fol-
lowing options. Who are carriers of diseases, especially
when it comes to genetic disorders such as a condition
known as thalassemia [3].

Tere are two divisions of thalassemia based on two
polypeptide chains in haemoglobin. Tese are known as
alpha-thalassemia (α) and beta-thalassemia (β). An abnor-
mality causes alpha-thalassemia in the alpha polypeptide
gene of haemoglobin, whereas beta-thalassemia is caused
due to disturbance in the beta polypeptide gene. Te de-
velopment of any of the alpha or beta-thalassemia in
a person’s body leads to low or abnormal haemoglobin
creation in the body [4]. Te red blood cells are afected due
to inadequate haemoglobin [5].

Te classifcation of thalassemia consists of three stages:
major, intermediate, and minor thalassemia. Talassemia
major is the most crucial stage of the disease in which the
patient needs a continuous blood transfusion to survive.
Talassemia intermediate is the middle stage of the con-
dition in which the patient occasionally needs blood
transfusion. It is also known as mild or moderate anaemia.
Te patient with thalassemia minor looks physically ft and
healthy. Tey do not need a blood transfusion but can
maintain their diet and healthy lifestyle [6].

Te World Health Organization (WHO) identifes that
beta-thalassemia has 5.1% carriers worldwide [7]. Many tests
are required to diagnose the diference between iron-
defciency anaemia and beta-thalassemia. Tese tests
include serum iron level, complete blood count,
high-performance liquid chromatography, the binding ca-
pacity of iron, and the calculation of ferritin and HBA2.
However, these tests are expensive and unavailable
everywhere [8].

In many other research disciplines, machine learning
approaches are very efcient in producing results. Tey
make managing and analyzing other felds easier and play
a signifcant role in the health sector. A computer-based
system can be developed to identify thalassemia with im-
proved accuracy, better results, and a more afordable cost.
Various machine learning algorithms have ofered efective

treatments for various biomedical problems. Many models
have been presented to analyze the data of other diseases
[9, 10] like brain tumours [11], kidney diseases [12], lung
disorders [13], and iron defciency anaemia by using ma-
chine learning techniques [14–16], including support vector
machine [17], K-nearest neighbour [18], fuzzy logic [19–21],
deep extreme machine learning [22], and deep neural net-
work [23–25].

Logistic regression models a discrete outcome given an
input variable. Te most popular logistic regression model is
a binary result (true/false, yes/no, etc.). When analyzing
a classifcation problem, logistic regression is a helpful
analysis tool.

Nave Bayes is a superfcial learning algorithm that uses
the Bayes rule and assumes attributes are class-dependent.
Due to its processing efciency and other benefts, nave
Bayes is commonly used in practice [26].

A tree has numerous analogies in real life and has in-
spired machine learning, classifcation, and regression. A
decision tree can represent the decision analysis process
visually and explicitly.

Feature-based data can be handled very efectively by
neural network algorithms. Neural networks are computing
systems inspired by human brain neural networks [2, 12].

Although machine learning algorithms are currently
helpful for identifying illnesses, earlier research models were
less accurate because they mainly concentrated on pre-
processing methods, data balancing, and other supervised
and semi-supervised learning models. A late fusion tech-
nique is needed to fuse the accuracy of many machine
learning algorithms while maintaining high sickness de-
tection accuracy. Tis study proposed a late-fusion-based
MLmodel that implements logistics regression, Naı̈ve Bayes,
decision tree, and neural network for data analysis. Te
system will use a feature-based dataset of thalassemia
reports.

It highlights the importance of accurately predicting
β-thalassemia carriers to enable early intervention and ge-
netic counselling. Te limitations of existing prediction
models and the need for an improved approach are dis-
cussed. Te objectives of the paper are clearly stated as
follows:

(1) To develop a fuzzy-based fusion model that com-
bines multiple machine learning algorithms for
β-thalassemia carrier prediction.

(2) To evaluate the performance of the proposed model
using relevant performance metrics and compare it
with existing approaches.

(3) To analyze the efectiveness of fuzzy logic in im-
proving the accuracy and reliability of β-thalassemia
carrier prediction.

Te results of four diferent machine learning algorithms
were combined through fuzzifcation to decide on beta-
thalassemia carrier identifcation. Te outcomes demon-
strate that the proposed approach is more precise and ef-
fective than existing solutions.
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2. Related Work

Te goal of the research is to identify thalassemia sickness
early. Hirimutugoda and Wijayarathna [2] implemented
a three-layer artifcial neural network to detect and difer-
entiate malaria and thalassemia. Both diseases are life-
threatening and global health issues. Visual inspection of
the images of blood analysis taken with a light microscope is
a well-known technique for determining malaria and thal-
assemia. Tis technique takes much time and is more
consuming and expensive. Te model used three and four
layers of ANN that merged with methods of image analysis
to determine the accuracy and efectiveness of the classif-
cation for identifying images related to the morphological
features of the blood erythrocytes.Te study claimed that the
three-layered ANN approach generated results with an
accuracy of 84.54%.

Ayyıldız and Arslan Tuncer [5] performed a decision-
based diagnosis to identify and discriminate the Iron de-
fciency anaemia (IDA) and beta-thalassemia (β). Tey
implemented red blood cell indices and two efective
techniques of machine learning: support vector machines
and k-nearest neighbour. Various parameters of complete
blood count were used to diferentiate between IDA and
β–Talassemia. Implementation of RBC indices improved
the efciency of the diagnostic model. But if the number of
features increases, the system becomes complicated.

Das et al. [23] employed a decision-based system that
used decision trees, ANN, and a Naı̈ve Bayes classifer to
discriminate β-thalassemia carriers from ordinary people.
Te Postgraduate Institute of Medical Education and Re-
search in the Indian city of Chandigarh is where the dataset
was gathered. Both ratings were determined to be completely
sensitive. Te screening score for thalassemia characteristics
(BTT) was determined to be 79.25 percent and 91.74 percent,
respectively, for the combined score of BTT and HbE. Al-
though the mechanism diferentiates two main variants
related to haemoglobin, it still requires validation with
datasets collected from diferent countries for imple-
mentation and unifcation.

Egejuru et al. [27] implemented a prediction model for
identifying the risk of thalassemia disease. Te model used
supervised machine learning approaches for analyzing the
data collected through questionnaires and medical persons.
TeWaikato Environment for Knowledge Analysis (WEKA)
tool was used for data simulation. Identifcation variables
included demographics (age, marital status, gender, social
class, and ethnicity) and clinical variables (spleen enlarge-
ment, family history, urine colour, diabetes, and inherited
disease status). Te dataset consisted of 57% disease carriers
and 43% non-carriers. Temodels implemented in the study
are multi-layer perception (MLP) and the Näıve Bayes
classifer. Te study results show that the MLP is a more
efective and reliable mechanism for identifying the risk of
thalassemia in patients in Nigeria.

Sadiq et al. [28] constructed an ensemble classifer model
using a random forest support vector machine and a Gra-
dient boosting machine to identify patients with thalassemia
from the complete blood count (CBC) test data. Te model

was implemented on the dataset of CBC reports of 5066
patients collected from the Punjab thalassemia prevention
program (PTPP). Input parameters used for this study are
red blood cells, haemoglobin, hematocrit, mean cell volume,
mean cell haemoglobin concentration, mean cell haemo-
globin, RBC distribution width, platelet count, and white
blood cells. Te study achieved an accuracy of 93% in
identifying β-thalassemia carriers.

Akhtar et al. [29] implemented a linear discrimination
analysis (LDA) classifer to classify the patients with thal-
assemia using various parameters of a complete blood count
report. Te parameters used in the study are ferritin, HB,
RBC, WBC, HCT, and platelets. Te study also used
mathematical formulas to discriminate the patients with
thalassemia and iron defciency anaemia. Te accuracy
achieved 78% results for females and 75% for males.

Te fuzzy-based model was developed to classify thal-
assemia diseases by Susanto et al. [30]. Te haemoglobin,
MCV, and MCH levels were obtained following the CBC
examination to determine the type of thalassemia. Major,
intermedia, minor, and not thalassemia are four output
models. Te doctor’s perspectives on thalassemia were
contrasted with the model prediction results against four
datasets. Additional data must be used to understand to
further test the model’s accuracy.

Jahan et al. [26] investigated the research on red cell
indices utilizing machine learning techniques, such as an
artifcial neural network (ANN), to detect beta-thalassemia
traits (BTT) in pregnant women.Te optimal cutof for each
index and the BTT detection test characteristics was de-
termined using a receiver operating characteristic (ROC)
curve analysis.Te C4.5 andNaive Bayes (NB) classifers and
a back-propagation type ANN were constructed and tested
over 3947 patients using the red cell indices. Te study
emphasizes that none of the red cell features alone helps
detect BTT. However, ANN, with a mixture of all red cell
indices, exhibited good sensitivity and specifcity for this use.
Further neural network development might produce
a valuable tool for thalassemia screening in remote areas.

Mohammed and Al-Tuwaijari [31] presented various
artifcial intelligence-based methods and machine learning
techniques for classifying and detecting thalassemia utilizing
CBC test variables such as RBC, HGB, MCV, HTC, and HB.
Tis system was developed to identify patients with minor
thalassemia alpha and major thalassemia beta. Te classi-
fcation methods are decision tree, Naive Bayes, and support
vector machine.

Tyas et al. [32] examined multilayer perceptron to
classify erythrocytes present in thalassemia cases. It com-
bined morphological features with texture and colour fea-
tures to increase the accuracy of erythrocyte classifcation.
Te experimental results of 7108 erythrocytes indicated an
accuracy of 98.11% for training and 93.77% for testing based
on the combination of features. Te system’s efectiveness
was assessed using images captured at various magnifca-
tions and on diferent scanning platforms. Te least number
of red cells to image for analysis was determined using
Poisson modelling, and the results were validated using
image sets. Table 1 shows the comparative analysis with
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respect to the accuracy of past works that were about
anomaly detection in network security.

Te aims and objectives of the paper are as follows:

To highlight the importance of identifying beta-
thalassemia carriers and their impact on reducing
the mortality rate associated with the disease.
To identify the limitations of current screening
methods and propose developing cost-efective and
speedy screening methods.
To develop a machine learning-based late fusion model
for detecting beta-thalassemia carriers by analyzing red
blood cells.
To compare the proposed late fusion model’s accuracy,
efciency, reliability, and precision with previously
published approaches.
To explore the use of machine learning in medical
research to detect beta-thalassemia carriers.
To evaluate the performance of four machine learning
algorithms, including logistics regression, Näıve Bayes,
decision tree, and neural network.
To use a feature-based dataset for the development of
the late fusion model.

2.1. Proposed β-Talassemia Prediction Model. Te Late
fusion model based on machine learning is proposed for
predicting β-thalassemia carriers. Te system used a fea-
tures-based dataset of thalassemia reports obtained from the
Internet of Medical Tings (IoMT) enabled devices. Te
novel features dataset was collected from the Punjab Tal-
assemia Prevention Program (PTPP) database. Table 2
presents a complete overview of the features.

PTPP is the initiative of the Punjab government of
Pakistan to protect the people from thalassemia disease.Tis
platform provides support to thalassemia patients in
β-Talassemia carrier screening. Initially, the dataset is di-
vided into training and testing phases. 70% of records were
fxed for training and 30% for testing.

Te proposed model consists of training and vali-
dation phases. Te proposed model consists of various
layers that help to diagnose beta-thalassemia disease.
Tese layers are data acquisition, preprocessing, and
application. Te proposed model’s frst layer is the data
acquisition layer, which collects the dataset from PTPP
based on IoMT devices [28]. It consisted of twelve var-
iables and a total number of 5066 instants. Output is

classifed into two categories. Te frst is β-Talassemia
non-carriers, which contains 3051 records, and the
second is β-Talassemia carriers, with 2015 patient re-
cords. Te sex distribution ratio is 53% for males and 47%
for females.

Tis unprocessed data may have some missing or noisy
values. Normalization of the data and treatment of missing
values is accomplished in the preprocessing layer. Te
normalizing method is used to handle noisy data. In con-
trast, missing values are driven by calculating existing values’
mean and moving averages.

In the training phase, the third layer of the model is the
application layer, which predicts thalassemia sickness using
four diferent machine learning algorithms: Logistics Re-
gression (LR), Näıve Bayes (NB), Decision Tree (DT), and
Neural Network (NN).

Te LR, NB, DT, and NN results are given to the
evaluation phase, which calculates the accuracy. It misrates
in the targeted class represented by [0, 1], where 0 is for
β-Talassemia noncarrier, and 1 is for β-Talassemia carrier
investigated. Te data is sent to the cloud if the learning
criteria are satisfed. Otherwise, it needs to be retrained, as
shown in Figure 1.

Te results of four diferent techniques are combined in
the following stage using a fuzzy inference system to increase
the performance of the suggested beta-thalassemia
carrier’s model.

Te validation phase utilized the 30% records of the
thalassemia dataset to validate the model. Te trained
fusion-based model is imported from the cloud to predict
thalassemia. Te model discards the value if a beta-
thalassemia non-carrier is found. If a beta-thalassemia
carrier is found, the patient is referred to the hospital for
additional treatment, as shown in Figure 1.

Te following conditions (if-then rules) are employed in
the fuzzy logic of the suggested late fusion model, which is
written as follows:

Table 1: Previous work accuracy and dataset status.

Author Method Dataset Accuracy (%)
Hirimutugoda and Wijayarathna [2] Artifcial neural network Public 86.54
Sadiq et al. [28] Random forest Private 91
Sadiq et al. [28] Support vector machine Private 90
Sadiq et al. [28] Gradient boosting machine Private 91
Susanto et al. [30] Fuzzy inference system Public 89.26
Jahan et al. [26] Artifcial neural network Private 85.95
Tyas et al. [32] Convolutional neural network Public 93.77

Table 2: Dataset structure.

Sr Features Datatype
1 CS/PS Integer
2 ETC Nominal
3 Age Integer
4 Sex Integer
5 MCH Integer
6 Hb Integer
7 Hct Integer
8 MCV Integer

4 Advances in Fuzzy Systems



Te late fusion-based rules identify beta-thalassemia
carriers.

μLR∩NB∩DT∩NN(l, n, d, n ) � min μLR(l), μNB(n), μDT(d), μNN(n) , (1)

Rule1bt � IF (LR is carrier and NB is carrier and DT is
carrier and NN is carrier) THEN (Talassemia is Beta
Carrier).
Rule bt � IF (LR is carrier and NB is carrier and DT is
carrier and NN is noncarrier) THEN (Talassemia is
Beta Carrier).
Rule3bt � IF (LR is carrier and NB is carrier and DT is
non-carrier and NN is carrier) THEN (Talassemia is
Beta Carrier).
Rule4bt � IF (LR is carrier and NB is carrier and DT is
noncarrier and NN is noncarrier) THEN (Talassemia
is Beta Carrier).
Rule5bt � IF (LR is carrier and NB is noncarrier and DT
is carrier and NN is carrier) THEN (Talassemia is Beta
Carrier).

Rule6bt � IF (LR is carrier and NB is noncarrier and DT
is carrier and NN is noncarrier) THEN (Talassemia is
Beta Carrier).
Rule7bt � IF (LR is carrier and NB is noncarrier and DT
is noncarrier and NN is carrier) THEN (Talassemia is
beta carrier).
Rule8bt � IF (LR is carrier and NB is noncarrier and DT
is noncarrier and NN is noncarrier) THEN (Talas-
semia is beta noncarrier).
Rule9bt � IF (LR is noncarrier and NB is carrier and DT
is carrier and NN is carrier) THEN (Talassemia is beta
carrier).
Rule10bt � IF (LR is noncarrier and NB is carrier and DT
is carrier and NN is noncarrier) THEN (Talassemia is
beta noncarrier).
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Figure 1: Proposed late fusion model for thalassemia disease prediction.
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Rule11bt � IF (LR is noncarrier and NB is carrier and DT
is noncarrier and NN is carrier) THEN (Talassemia is
Beta noncarrier).
Rule1 bt � IF (LR is noncarrier and NB is carrier and DT
is noncarrier and NN is noncarrier) THEN (Talas-
semia is beta noncarrier).
Rule13bt � IF (LR is noncarrier and NB is noncarrier and
DT is carrier and NN is carrier) THEN (Talassemia is
Beta noncarrier).
Rule14bt � IF (LR is noncarrier and NB is noncarrier and
DT is carrier and NN is noncarrier) THEN (Talas-
semia is beta noncarrier).
Rule15bt � IF (LR is noncarrier and NB is noncarrier and
DT is noncarrier and NN is carrier) THEN (Talas-
semia is beta noncarrier).
Rule16bt � IF (LR is noncarrier and NB is noncarrier and
DT is noncarrier and NN is noncarrier) THEN
(Talassemia is Beta noncarrier).

Te generated fuzzy rules show that the suggested late
fusion-based technique will predict the optimal result based
on at least three classifcation strategies (either beta-
thalassemia carrier or beta-thalassemia noncarrier).

Te proposed late fusion technique of the rule surface for
predicting beta-thalassemia carriers based on NB and LR is
shown in Figure 2. If both classifcation methods indicate
that “beta-thalassemia� carrier” is the outcome, then the
suggested technique will also mean that “beta-
thalassemia� carrier” is the outcome. If both methods in-
dicate that “beta-thalassemia� noncarrier” is the outcome,
then the proposed technique will suggest that “beta-
thalassemia� noncarrier” is the outcome.

Figure 3 demonstrates that the suggested late fusion
technique will also predict “beta-thalassemia� carrier” if NB,
DT, and NNmake this prediction “beta-thalassemia� carrier.”

Figure 4 shows that if LR and NB show “beta-
thalassemia� noncarrier,” even if DT and NN show “beta-
thalassemia� carrier,” the proposed method will still show
“beta-thalassemia� noncarrier.”

Table 3 shows membership functions based on fuzzy
rules. Te system testing layer predicts beta-thalassemia
carriers. A fuzzy-based cloud model is used to achieve an
outcome that stores real-time patient data for evaluation.

3. Results and Simulation

Te late fusion-based model is proposed for the earliest
prediction of beta-thalassemia carriers. Te results are ob-
tained using the MATLAB tool 2022. Te proposed model
comprises four machine learning techniques, LR, NB, DT,
and NN are applied to 5066 features. For both methods, 30%
of the fused samples were utilized for validation, while the
remaining 70% were used for training. Te proposed model
diagnoses the beta-thalassemia carrier and beta-thalassemia
noncarrier. Te statistical metrics used to evaluate the
suggested late fusion model’s predicted efectiveness and
other categorization methods are explained below. βTc
represents beta-thalassemia true predicted, βTnc represents

beta-thalassemia false predicted, βFnc represents beta-
thalassemia noncarrier false expected, and βFc means ex-
pected false beta-thalassemia carrier.

Accuracy �
βTc + βTnc

βFc + βFnc + βTc + βTnc
. (2)

Accuracy is the number of correctly labelled cases out of
the total number of cases.

Miss rate �
βFc + βFnc

βFc + βFnc + βTc + βTnc
. (3)

Te percentage of real positives and negatives missed
during an experiment is known as the miss rate.

Sensitivity �
βTc

βTc + βFnc
. (4)

Sensitivity measures the capacity of the proposed model
to identify positive cases.

Specificity �
βTnc

βTnc + βFc
,

Positive prediction value �
βTc

βTc + βFc
,

Negative prediction value �
βTnc

βFnc + βTnc
.

(5)

Predictive values, positive and negative, are calculated by
dividing each set of results by the proportion of actual
successes and failures.

False positive ratio � 1 −
βTnc

βTnc + βFc
,

False negative ratio � 1 −
βTc

βTc + βFnc
,

Likelihood ratio positive �
βTc

βTc + βFnc
/1 −

βTnc
βTnc + βFc

,

Likelihood ratio negative � 1 −
βTc

βTc + βFnc
βTnc

βTnc + βFc
.

(6)
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Figure 2: Proposed late fusion rule surface for NB and LR.
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Te dataset contains 5066 instances. 70% of the dataset is
used for training which consists of 3,546 records, while the
remaining 30% is used for testing, which consists of 1,520
records.

Te 3546 records were used for training with the LR
approach, in which 1715 were beta-thalassemia noncarriers,
and 1831 were beta-thalassemia carriers. When trained with
LR, 1623 out of 1715 occurrences were noncarriers, while
1717 out of 1831 were found to be carriers. Table 4 displays
the results of a comparison between actual and predicted

performance throughout training. Results showed an ac-
curacy of 94.2% with a miss rate of 5.8%.

In contrast, during the testing of LR, 716 records out of
757 were identifed as noncarriers, while 713 records out of
763 were classifed as carriers, as shown in Table 5. In LR
testing, the attained accuracy was 94.01%, and the miss rate
of 5.99%.

Te 3546 records were used for training with the NB
approach, in which 1715 were beta-thalassemia noncarrier,
and 1831 were beta-thalassemia carriers. When trained with
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Figure 3: Result of proposed late fusion model beta thalassemia carrier.
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NB, 1618 out of 1715 occurrences were found to be non-
carriers, while 1658 out of 1831 instances were found to be
carriers. Table 6 displays the results of a comparison between
actual and predicted performance throughout training.
Results showed an accuracy of 92.4% with a miss rate of
7.6%.

In contrast, during the testing of NB, 721 records out of
757 were identifed as noncarriers, while 695 records out of
763 were classifed as carriers, as shown in Table 7. In NB
testing, the attained accuracy was 93.15% and a miss rate
of 6.85%.

Te 3546 records were used for training with the DT
approach, in which 1715 were beta-thalassemia noncarrier,
and 1831 were beta-thalassemia carriers. When trained with
DT, 1703 out of 1715 occurrences were noncarriers, while
1813 out of 1831 were found to be carriers. Table 8 displays
the results of a comparison between actual and predicted
performance throughout training. Results showed an ac-
curacy of 99.15% with a miss rate of 0.85%.

In contrast, during the testing of DT, 756 records out of 757
were identifed as noncarriers, while 763 records out of 763
were classifed as carriers, as shown in Table 9. In DT testing,
the attained accuracy was 99.93%, and a miss rate of 0.07%.

Table 3: Fuzzy-based graphical and mathematical membership function representation.

Sr No Input/Output variables Membership functions (MF) Graphical representation of MF

1 LR� μLR((lr)) μLR,c(lr) � max(min(1,0.5 − lr/0.1), 0){ }

μLR,nc(lr) � max(min(lr − 0.4/0.1,1), 0){ }

1

0.5

0

Non-Carrier Carrier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
input variable "Logistics-Regression"

2 NB� μNB((nb))
μNB,c(nb) � max(min(1,0.5 − nb/0.1), 0){ }

μNB,nc(nb) � max(min(nb − 0.4/0.1,1), 0){ }

1

0.5

0

Non-Carrier Carrier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
input variable "Naive_Bayes"

3 DT� μDT((dt)) μDT,c(dt) � max(min(1,0.5 − dt/0.1), 0){ }

μDT,nc(dt) � max(min(dt − 0.4/0.1,1), 0){ }

1

0.5

0

Non-Carrier Carrier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
input variable "Decision_Tree"

4 NN� μNN((nn))
μNN,c(nn) � max(min(1,0.5 − nn/0.1), 0){ }

μNN,nc(nn) � max(min(nn − 0.4/0.1,1), 0){ }

1

0.5

0

Non-Carrier Carrier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
input variable "Neural_Network"

5 Beta-thalassemia� μBT((bt)) μBT,c(bt) � max(min(1,0.5 − bt/0.05), 0){ }

μBT,nc(bt) � max(min(bt − 0.45/0.05,1), 0){ }

1

0.5

0

Beta-Non-Carrier Beta_Carrier

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
output variable "Thalassemia_Prediction"

Table 4: Proposed LR-based training confusion matrix.

Total samples� 3546 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�1715 1623 92
IBT-Carrier�1831 114 1717

Table 5: Proposed LR-based testing confusion matrix.

Total samples� 1520 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�757 716 41
IBT-Carrier�763 50 713

Table 6: Proposed NB-based training confusion matrix.

Total samples� 3546 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�1715 1618 97
IBT-Carrier�1831 173 1658

Table 7: Proposed NB-based testing confusion matrix.

Total samples� 1520 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�757 721 36
IBT-Carrier�763 68 695
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Te 3546 records were used for training with the NN
approach, in which 1715 were beta-thalassemia noncarrier,
and 1831 were beta-thalassemia carriers. When trained with
NN, 1700 out of 1715 occurrences were found to be non-
carriers, while 1824 out of 1831 instances were found to be
carriers. Table 10 displays the results of a comparison be-
tween actual and predicted performance throughout
training. Results showed an accuracy of 99.4% with a miss
rate of 0.6%.

In contrast, during the testing of NN, 757 records out of
757 were identifed as noncarriers, while 763 records out of
763 were classifed as carriers, as shown in Table 11. In NN
testing, the attained accuracy was 100%.

Table 12 displays detailed results for validation of all used
classifcation machine learning techniques (LR, NB, DT, and
NN). It can be observed that all four machine learning
techniques performed well and achieved an average accuracy
is 96.77% and misrate of 3.23%.

Four machine learning techniques are fnally provided to
the fuzzy system as input for the fnal prediction. Input to the
fuzzy system consists of LR, NB, DT, and NN classifers and
the output class Beta Talassemia Carriers classifers. By

employing fuzzy rules, the suggested machine learning late
fusion-based fuzzy system attained an accuracy of 96% and
a miss rate of 4%. Te fuzzy system randomly takes twenty-
fve input ranges for generating the fusion-based results.
Based on the fuzzy rules, 12 outputs show beta-thalassemia
carriers, and 12 outcomes noncarriers truly predicted. Te
remaining one is between the carrier and noncarrier stages
that, showed the system’s error.

Table 13 displays the results of a comparison between the
suggested fused machine learning model and the various
thalassemia illness prediction methods described in the
literature. Te proposed late fusion model is compared with
RF [28], SVM [28], GBM [28], FIS [30], NB [26], and CNN
[32]. Advanced methods are contrasted with the proposed
late fusion model. In comparison to the other methods, the
proposed late fusion model excelled. Te proposed fused
model outperformed the diferent approaches. Te sug-
gested machine learning fusion-based system can be in-
cluded in intelligent healthcare systems for early and
accurate beta-thalassemia carrier prediction. Te proposed
model has shown the accuracy of beta-thalassemia carrier
prediction is 96%.

Table 8: Proposed DT-based training confusion matrix.

Total samples� 3546 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�1715 1703 12
IBT-Carrier�1831 18 1813

Table 9: Proposed DT-based testing confusion matrix.

Total samples� 1520 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�757 756 1
IBT-Carrier�763 0 763

Table 10: Proposed NN-based training confusion matrix.

Total samples� 3546 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�1715 1700 15
IBT-Carrier�1831 7 1824

Table 11: Proposed NN-based testing confusion matrix.

Total samples� 1520 OBT-Non-Carrier OBT-Carrier
IBT-Non-Carrier�757 757 0
IBT-Carrier�763 0 763

Table 12: ML-based proposed model performance (validation).

Samples for validation (30% records)
Approaches Accuracy (%) Miss rate (%)
Logistics regression (LR) 94.01 5.99
Naı̈ve Bayes (NB) 93.15 6.85
Decision tree (DT) 99.93 0.07
Neural network (NN) 100 0
Average performance proposed model 96.77 3.23
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4. Conclusions

Te critical point of this study is to develop a system to
analyze beta-thalassemia carrier patients using the late
fusion-based ML model. Tis system is fundamental and
more accessible for medical experts and nonexperts. Hence,
any person can examine the status of thalassemia just by
feeding the required input data. Te goal of this study is to
analyze the various dimensions of thalassemia. Te total
precision of this proposed late fusion-based ML model is
96%. Te presented framework can be enhanced in the
future by utilizing diferent methods, including federated
learning. Te study can also be extended by applying short-
term long memory (LSTM) and other ML algorithms and
diagnosing the other stages of Talassemia such as Alpha
Max and Min, Beta Max, and Min.
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