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In this paper, we are thus motivated to defne and introduce the extended fuzzy-valued convex functions that can take the
singleton fuzzy values − ∞ and + ∞ at some points. Such functions can be characterized using the notions of efective domain and
epigraph. In this way, we study important concepts such as fuzzy indicator function and fuzzy infmal convolution for extended
fuzzy-valued functions. Finally, we introduce the concept of directional generalized derivative for extended above functions and
its properties. Eventually, we give a practical example that will illustrate well the directional g-derivative for the extended fuzzy-
valued convex function.

1. Introduction

Since Zadeh [1] began to study the essential concepts and
defnitions of fuzzy theory, many studies have concentrated
on the theoretical and practical aspects of fuzzy numbers. In
this way, fuzzy numbers have been extensively researched by
many researchers. For instance, Diamond and Kloeden [2],
Puri and Ralescu [3], and many other researchers [4–8]
brought up the concepts of Hukuhara diferentiability (H-
diferentiability in short) and integrability for fuzzy map-
pings. Te fuzzy convex analysis is one of the fundamental
concepts in fuzzy optimal control and fuzzy optimization.
Nanda and Kar [9] proposed the concept of convexity for

fuzzy mapping in 1992. Accordingly, various studies on
convexity for fuzzy mappings and application in fuzzy
optimization have been introduced [10–13]. Yan and Xu [12]
have explored the concepts of convexity and quasiconvexity
of fuzzy-valued functions. Syau and Lee [14] have studied the
concepts of quasiconvex and pseudoconvex multivariable
fuzzy functions. Convexity and Lipschitz continuity of
fuzzy-valued functions have been discussed by Furukawa
[15]. Accordingly, some defnitions for various types of
convexity or generalized convexity of fuzzy mapping have
been proposed, and their properties have been perused
[10, 16]. Noor [17] has expressed the concept and properties
of fuzzy preinvex functions in theR feld. A generalization of
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the Hukuhara diference (H-diference in short), called the
generalized Hukuhara diference (gH-diference in short),
was proposed by Stefanini in 2010 [18] because the H-
diference exists between two fuzzy numbers only under
very restricted positions. Compared to the H-diference, the
gH-diference exists in more cases but does not always exist.
To solve this difculty, Bede and Stefanini [19] introduced
the generalized diference (g-diference in short), which
always exists. It should be noted that this diference in some
cases does not maintain the convexity condition of fuzzy
numbers, therefore may not be a fuzzy number. So, this
difculty is resolved by considering the convex hull of the
resulting set by Gomes and Barros [20]. Based on these two
diferences, the generalized Hukuhara diferentiability
(gH-diferentiability in short), level-wise generalized
Hukuhara diferentiability (LgH-diferentiability in short),
and generalized diferentiability (g-diferentiability in short)
have been introduced [19]. For more recent interesting
results related to Jensen’s and related inequalities, we rec-
ommended [21, 22].

In this paper, we consider a generalization for a fuzzy-
valued convex function whose range can be the extended
fuzzy values. Also, we investigate some essential concepts of
extended fuzzy-valued convex functions. We are thus mo-
tivated to introduce the extended fuzzy-valued convex
functions that can take the singleton fuzzy values − ∞ and
+ ∞ at some points.

Hereupon, the theoretical aspect of extended fuzzy
number-valued functions is described, and our aim is not to
consider the real applications. It is clear that this research has
many applications in dynamic systems of biomedical sci-
ence, such as problems with cancer, problems with drug
release, and so on.

In the following, we describe a comparative study be-
tween the convex functions with fuzzy values and the ex-
tended fuzzy-valued functions. In general, we prefer to work
with fuzzy convex functions containing fuzzy numbers
defned over the whole spaceRn (and not only over a convex
subset). However, in some situations, arising mainly in the
context of fuzzy optimization and fuzzy conjugation or fuzzy
duality, we will encounter operations with fuzzy number-
valued functions that produce extended fuzzy-valued
functions. An example is a fuzzy-valued function of the
form.

f(x) � sup
i ∈Λ

fi(x), (1)

where Λ is an infnite index set and can take the fuzzy value
+ ∞ even if the functions fi are fuzzy number-valued.
Furthermore, we will encounter functions f that are fuzzy-
valued convex over convex subset and cannot be extended to
functions that are fuzzy number-valued and convex over the
entire space Rn (e.g., the fuzzy number-valued function
f : (0, +∞)⟶ RF defned by f(x) � < − 1, 1, 2> ⊙ 1/x).

In such situations, it may be convenient, instead of
restricting the domain of f to the subset where f takes fuzzy
numbers values, to extend the domain to all of Rn, but allow
f to take fuzzy values + ∞. Tis process of extension enables

us to treat fuzzy number-valued convex functions with
diferent domains as fuzzy-valued convex functions with
extended fuzzy values in + ∞ and defned throughout Rn. A
difculty in defning extended fuzzy-valued convex func-
tions φ that can take both fuzzy values − ∞ and + ∞ is that
the term θ⊙φ(x)⊕ (1 − θ)⊙φ(y) arising in earlier papers
for the fuzzy-valued convex case may involve the forbidden
fuzzy sum − ∞⊕ + ∞ (this, of course, may happen only if φ
is fuzzy improper but fuzzy improper function may arise on
occasion in proofs or other analyses). So, the notions of
efective domain and epigraph provide an efective way of
dealing with this difculty. Furthermore, we present some of
the essential concepts such as the fuzzy indicator function,
the epigraph, the fuzzy infmal convolution, the directional
generalized derivatives, and their properties for extended
fuzzy values.

Tis paper is divided into seven sections; in Section 2,
several defnitions besides the results about fuzzy numbers
and the g-diference and g-diferentiability are expressed at
frst. Moreover, in Section 3, we introduced the specifc case
of fuzzy Jensen’s inequality for fuzzy-valued convex func-
tions, and in Section 4, the g-diferentiability for extended
fuzzy-valued convex function is considered. Ten, the
concepts of fuzzy indicator function and the epigraph are
discussed, and some outcomes are gained in Section 5.
Furthermore, the fuzzy infmal convolution is considered in
Section 6. At the end of this paper, in Section 7, the di-
rectional generalized derivatives with their properties for
extended fuzzy-valued convex function are presented, and
eventually, the above concepts are presented with several
examples.

2. Preliminaries

In this section, the basic defnitions and concepts which will
be used throughout the paper will be presented and in-
troduced. Also, we use RF to denote the fuzzy numbers set,
that is normal, quasiconcave, upper semicontinuous, and
compactly supported fuzzy sets that are defned on the real
line. Suppose that X ∈RF is a fuzzy number; for r ∈ [0, 1],
the r-cuts of X are described by [X]r � x ∈R|X(x)≥ r{ },
and for r � 0 by [X]0 � x ∈R|X(x) > 0} is illustrated.
Moreover, [X]r � [X−

r , X+
r ] is explained, so the r-cut [X]r is

a closed interval for all r ∈ [0, 1]. If X, Y ∈RF, and θ ∈R, the
addition and scalar multiplication are described as having
the θ ∈R-cuts of [X + Y]r � [X]r + [Y]r and
[θ ⊙X]r � θ[X]r, relatively. By X � 〈a, b, c, d〉, a trapezoidal
fuzzy number defned so that a≤ b≤ c≤ d, and has r-cuts
[X]r � [a + r(b − a), d − r(d − c)] for 0≤ r≤ 1; if b � c, we
have the triangular fuzzy number. Te support of fuzzy
numbers X is specifed as follows:

supp(X) � x ∈R|X(x)> 0}. (2)

Te standard Hukuhara diference (H-diference ⊖H) is
defned by X⊖H Y � Z⇔X � Y + Z, being + the standard
fuzzy addition; if X⊖HY exists, its r-cuts are
[X⊖HY]r � [X−

r − Y−
r , X+

r + Y+
r ]. It is outstanding that
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X⊖HX � 0 (here 0 signifes the singleton 0{ }) for any fuzzy
number X but X − X≠ 0.whenever φg

′(x0) ∈RF is uniquely
determined by (19). It is called the g-derivative of φ at x0.

Defnition 1. Te family of all closed and bounded intervals
in R is demonstrated by KC, i.e.,

KC � a−
, a+

  ∈R : a− ≤ a+
 . (3)

Defnition 2 (see [9]). A singleton fuzzy number like a can
be defned for each a ∈R as follows:

a(t) �
1, t � a,

0, t≠ a.
 (4)

R can be embedded in RF.

Defnition 3. Let us consider the singleton fuzzy values − ∞
and + ∞∈RF such that − ∞(x) � 1, if x � −∞ and − ∞ � 0,
if x≠ −∞, also, + ∞(x) � 1, if x � +∞ and + ∞(x) � 0, if
x≠ +∞.

Remark 4. Troughout this paper, we use the extended fuzzy
numbers, i.e., RF ∪ + ∞ ∪ − ∞  by adjoining the sin-
gleton fuzzy elements + ∞ and − ∞.

Defnition 5 (see [23]). Suppose that X, Y ∈RF, the partial
order relations between two fuzzy numbers, i.e.,

X≼Y⇔ [X]r � X
−
r , X

+
r ≤ [Y]r � Y

−
r , Y

+
r ,∀r ∈ [0, 1].

(5)

If [X]r ≤ [Y]r ⇔ X−
r ≤Y−

r and X+
r ≤Y+

r . And X≺Y ⇔ X

≼Y and X≠Y.

Proposition 6 (see [19]). X is a fuzzy number which is
entirely distinguished by the pair of X � (X−, X+) as func-
tions X−, X+ : [0, 1]⟶ R, denoting by the endpoints of the
r-cuts, fulflling the below situations:

(1) As a function of r, X− : r⟶ X−
r ∈R is a bounded

monotonic increasing left-continuous function for all
r ∈ (0, 1] and right-continuous at r � 0;

(2) As a function of r, X+ : r⟶ X+
r∈R is a bounded

monotonic decreasing left-continuous function for all
r ∈ (0, 1] and right-continuous at r � 0;

(3) X−
1 ≤X+

1 for r � 1, which supplies X−
r ≤X+

r , ∀r∈ [0, 1].

Te addendum outcome is well known [24]:

Proposition 7 (see [19]). Suppose that an arbitrary real
interval collection Cr | r∈ (0, 1]  that satisfed the below
situations:

(1) Cr ∈KC for every r ∈ (0, 1];
(2) if 0< r< β≤ 1 then Cβ ⊆Cr;
(3) For any increasing sequence rn∈ (0, 1] is given, such

that limn⟶∞rn � r> 0, then Cr � ⋃∞n�1Crn
.

Terefore, there exists a unique LU-fuzzy quantity X (L
for lower, U for upper) with [X]r � Cr, ∀r∈ (0, 1] and
[X]0 � (∪ r∈(0,1]Cr).

Lemma 8 (see [19]). Suppose that φ : R⟶ RF, and x0∈R.
Ten, if

(1) limx⟶x0
[φ(x)]r � Cr � [C−

r , C+
r ] uniformly w.r.t.

r ∈ [0, 1],
(2) Te collections of C−

r , C+
r satisfy the situations in

Proposition 6 or equivalently Cr satisfy the situations
in Proposition 7, therefore limx⟶x0

φ(x) � C, with
[C]r � Cr � [C−

r , C+
r ].

Defnition 9 (see [19]). For each X, Y ∈RF, the gH-dif-
ference is determined by the form

X⊖gH Y � Z⇔
(1), X � Y⊕Z,

or (2), Y � X⊕ (−1)Z.
 (6)

In terms of r-cuts,

X⊖gH Y 
r

� min X
−
r − Y

−
r , X

+
r − Y

+
r , max X

−
r − Y

−
r , X

+
r − Y

+
r  , (7)

and conditions for the entity of Z � X⊖gH Y ∈RF are as the
form

case(1)
Z

−
r � X

−
r − Y

−
r andZ

+
r � X

+
r − Y

+
r ∀r ∈ [0, 1],

withZ
−
r increasing, Z

+
r decreasing, Z

−
r ≤ Z

+
r .

⎧⎨

⎩

case(2)
Z

−
r � X

+
r − Y

+
r andZ

+
r � X

−
r − Y

−
r ∀r ∈ [0, 1],

withZ
−
r increasing, Z

+
r decreasing, Z

−
r ≤ Z

+
r .

⎧⎨

⎩

(8)

It is obvious that the conditions (9) and (10) are both
satisfed if and only if Z is a crisp number.

Defnition 10 (see [19]). Suppose that x0 ∈ (a, b) and h with
x0 + h ∈ (a, b), then the function with gH-derivative
φ : (a, b)⟶ RF at x0 is described by the form

φgH
′ x0(  � lim

h⟶0

1
h

φ x0 + h( ⊖gH φ x0(  . (9)

If φgH
′ (x0) ∈RF fulflling (9) exists, it is said to be φ is

generalized Hukuhara diferentiable (gH-diferentiable in
short) at x0.

Advances in Fuzzy Systems 3



Defnition 11 (see [19]). Suppose that φ : (a, b)⊆R⟶ RF

and x0 ∈ (a, b) in terms of r-cuts φ−
r (x) and φ+

r (x) are
diferentiable at x0. Ten,

(1) if φ is [(9) gH]-diferentiable at x0

φgH
′ x0( r � φ−

r( ′ x0( , φ+
r( ′ x0(  ,∀ 0≤ r≤ 1. (10)

(2) if φ is [(10) gH]-diferentiable at x0

φgH
′ x0( r � φ+

r( ′ x0( , φ−
r( ′ x0(  ,∀ 0≤ r≤ 1. (11)

Defnition 12 (see [19]). Te g-diference of X, Y ∈RF in
terms of r-cuts is as follows:

X⊖g Y 
r

� conv ∪ β≥r [X]β ⊖gH [Y]β  , ∀r ∈ [0, 1],

(12)

such that the gH-diference of intervals is denoted by
[X]β ⊖gH [Y]β.

Proposition 13 (see [19]). Te g-diference (4) in terms of
r-cuts as the form

X⊖g Y 
r

� inf
β≥r

min X
−
β − Y

−
β , X

+
β − Y

+
β , sup

β≥r
max X

−
β − Y

−
β , X

+
β − Y

+
β ⎡⎣ ⎤⎦, ∀r ∈ [0, 1]. (13)

Remark 14 (see [19]). Assume that X⊖gH Y ∈RF as well as
X⊖g Y � X⊖gH Y.

Proposition 15 (see [19]). Te g-diference of every
X, Y ∈RF is denoted by X⊖g Y ∈RF.

Proposition 16 (see [19]). Suppose that X, Y ∈RF, then

(1) X⊖g Y � X⊖gH Y, if the right side exists; particularly
X⊖g X � 0;

(2) (X + Y)⊖g Y � X;
(3) 0 ⊖g (X⊖g Y) � Y⊖g X;
(4) X⊖g Y � Y⊖g X � Z ⇔ Z � −Z; also, Z � 0⇔X

� Y.

Defnition 17. Whenever X, Y ∈RF, then

(1) X≽Y ⇔ X⊖g Y≽ 0;
(2) X⇔Y ⇔ X⊖g Y⇔ 0;
(3) X≽ 0 ⇔ ⊖g X⇔ 0.

Defnition 18 (see [19]). For every r ∈ (0, 1], suppose that
X∈RF is a fuzzy number. We can describe the Hausdorf
distance on RF as the form

D(X, Y) � sup
r ∈[0,1]

‖ [X]r ⊖gH [Y]r ‖∗ , (14)

where, for an interval [x, y], is the norm on R,

‖[x, y]‖∗ � max |x|, |y| . (15)

Note that the metric D is well defned because of the
interval gH-diference, [X]r ⊖gH [Y]r evermore exists.
Terefore, RF with the Hausdorf distance D becomes
a complete metric space. Tis defnition is equivalent to the
usual defnitions for metric fuzzy numbers spaces, e.g.,
[2, 25, 26].

Proposition 19 (see [19]). For all X, Y ∈RF

D(X, Y) � sup
r ∈[0,1]

‖ [X]r ⊖gH [Y]r ‖∗ � ‖ X⊖g Y ‖, (16)

where ‖.‖ � D(., 0).

Remark 20 (see [19]). Note that since ‖.‖ � D(., 0) whenever
the right expression exists, we also consummate
D(X, Y) � ‖X⊖g Y‖ � ‖X⊖gH Y‖, whenever X⊖gH Y exists.

Defnition 21 (see [19]). Suppose that x0 ∈ (a, b) and h with
x0 + h ∈ (a, b), then the level-wise gH-derivative (LgH-de-
rivative in short) of a function φ : (a, b)⟶ RF at x0 is
described as the interval-valued gH-derivatives set if they
exist,

φLgH
′ x0( r � lim

h⟶0

1
h

φ x0 + h(  r⊖gH φ x0(  r , (17)

If φLgH
′ (x0)r ∈KC, for all r ∈ [0, 1], it is said to be φ is

LgH-diferentiable at x0, and the intervals’ collection

φLgH
′ (x0)r | r∈ [0, 1]  is the LgH-derivative of φ at x0 and

indicated by φLgH
′ (x0).

Defnition 22. Suppose that φ : I⊆R⟶ RF is said to be
g-continuous at x0 ∈ I, if for every h ∈R with x0 + h ∈ I, then
we have

lim
h⟶0

φ x0 + h( ⊖g φ x0(  � 0. (18)

Defnition 23 (see [19]). Let x0 be a point of (a, b) and h with
x0 + h ∈ (a, b). Ten, φ : (a, b)⟶ RF is said to be g-dif-
ferentiable at x0 such that

φg
′ x0(  � lim

h⟶0

φ x0 + h( ⊖g φ x0( 

h
, (19)

Theorem 24 (see [19]). Suppose that φ : (a, b)⟶ RF, the
collection of interval φLgH

′ (x0)r : r ∈ [0, 1]  is uniformly
LgH-diferentiable at x0. Ten, φ has a g-derivative at x0 and

φg
′ x0( r � conv ∪

β≥r
φLgH
′ x0( β , ∀r ∈ [0, 1]. (20)
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Theorem 25 (see [19]). Suppose that φ : [a, b]⟶ RF with
[φ(x)]r � [φ−

r (x),φ+
r ]. If the real-valued functions φ−

r (x0)

and φ+
r (x0) are both diferentiable w.r.t. x0, uniformly w.r.t.

r ∈ [0, 1], then φ has a g-derivative at x0,

φg
′ x0( r � inf

β≥r
min φ−

β ′ x0( , φ+
β ′ x0(  , sup

β≥r
max φ−

β ′ x0( , φ+
β ′ x0(  ⎡⎣ ⎤⎦. (21)

3. The Fuzzy-Valued Convex Function in
Sense of Jensen’s Inequality

Terein-after, all of these below inequalities are now called
the fuzzy-valued convex function Jensen’s inequality. So, we
shall designate by I a (closed, open, or half-open, fnite or

infnite) interval in R. Also, we denoted the interior of I
by int(I).

Defnition 26 (see [23]). Suppose that φ : I⊆R⟶ RF,
then φ is said to be a fuzzy-valued convex function if

φ(θx +(1 − θ)y) ≼ θ⊙φ(x)⊕ (1 − θ)⊙φ(y), ∀x, y ∈ I, ∀ 0≤ θ≤ 1. (22)

Te basic fuzzy inequality equation (22) is sometimes
called fuzzy Jensen’s inequality.

Closely related to fuzzy convexity is the following
concept.

Defnition 27. Suppose that φ : I⊆R⟶ RF is a midpoint
fuzzy-valued convex function if

φ
x + y

2
 ≼

1
2
⊙ [φ(x)⊕φ(y)], ∀x, y ∈ I. (23)

Note that if φ is a fuzzy-valued convex function, then φ is
the midpoint fuzzy-valued convex function.

Theorem 28 (see [23]). Suppose that φ : I⊆R⟶ RF in
terms of [φ(x)]r � [φ−

r (x),φ+
r (x)], then φ is a fuzzy-valued

convex function if and only if for any fxed r ∈ [0, 1], the
convex functions φ−

r (x) and φ+
r (x) are both real-valued of x.

Defnition 29. Suppose that φ : I⊆R⟶ RF is a fuzzy-
valued convex function. Let x ∈ I and h with
x + h, x − h ∈ I then, we have

φ+g
′ (x) � lim

h⟶0+

φ(x + h)⊖g φ(x)

h
, (24)

φ−g
′ (x) � lim

h⟶0+

φ(x)⊖g φ(x − h)

h
, (25)

exists on int(I). If φ+g
′ (x) and φ−g

′ (x) ∈RF satisfying (24) and
(25) exist, then φ is said to be right and left g-diferentiable at
x on int(I).

4. The Extended Fuzzy-Valued Convex
Functions and g-Differentiability

In the previous section, we consider the fuzzy-valued convex
function in sense of Jensen’s inequality with fuzzy values in
RF. Now, in this part, we shall consider more general fuzzy-

valued functions, with fuzzy values in RF ∪ + ∞ ∪ − ∞ .
In other words, we want to defne the fuzzy-valued convex
functions whose range of them be the extended fuzzy
numbers in RF ∪ + ∞ ∪ − ∞ . Troughout our paper, we
consider for convenience extended fuzzy-valued functions,
which take fuzzy values in RF ∪ + ∞ ∪ − ∞ . Te usual
conventions of the fuzzy arithmetic are that x⊕ + ∞ � + ∞
if x ∈R, x⊙ (− ∞) � − ∞ if x> 0, x⊙ + ∞ � − ∞ if x< 0,
but also the following less obvious one is as follows:

0⊙ (+ ∞) � (+ ∞)⊙ 0 � 0⊙ (− ∞) � (− ∞)⊙ 0 � 0. (26)

Also, we discussed the g-diferentiability and the basic
facts of the g-diferentiability for the extended fuzzy-valued
convex functions that can be easily visualized. Te expres-
sion − ∞⊕ + ∞ is undefned.

Defnition 30. An extended fuzzy-valued function
φ : R⟶ RF ∪ + ∞ ∪ − ∞  is called convex, if for all
x, y, θ ∈R and μ, ] ∈RF such that φ(x)≺ μ, we have
φ(y)≺ ], 0< θ< 1

φ(θx +(1 − θ)y) ≺ θ⊙ μ⊕ (1 − θ)⊙ ]. (27)

Lemma 31. Suppose that φ : R⟶ RF, then φ is the fuzzy-
valued convex function in Defnition 26 if and only if φ is the
fuzzy-valued convex function in Defnition 30.

Proof. Suppose that φ : R⟶ RF is convex fuzzy-valued
function, and let φ(x)≺ μ, φ(y)≺ ], 0< θ< 1. Ten,

φ(θx +(1 − θ)y) ≼ θ⊙φ(x)⊕ (1 − θ)⊙φ(y)

≺ θ⊙ μ⊕ (1 − θ)⊙ ].
(28)

Conversely, suppose that Defnition 30 holds. Ten, for
any ε> 0, let μ ≔ φ(x)⊕ ε and ] ≔ φ(y)⊕ ε, then by the
hypothesis, we have
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φ(θx +(1 − θ)y)≺ θ⊙ μ⊕ (1 − θ)⊙ ]

� θ⊙ (φ(x)⊕ ε)⊕ (1 − θ)⊙ (φ(y)⊕ ε)

� θ⊙φ(x)⊕ (1 − θ)⊙φ(y)⊕ ε, ∀ε> 0,

(29)

as ε⟶ 0, and so

φ(θx +(1 − θ)y) ≼ θ ⊙φ(x)⊕ (1 − θ)⊙φ(y). (30)

Hence, φ is a fuzzy-valued convex function. It comes
upon that Defnition 30 is a generalization of
Defnition 26. □

Defnition 32. Te extended fuzzy-valued convex function
efective domain of φ : R⟶ RF ∪ + ∞ ∪ − ∞ , denoted
by do m(φ), is the set of x ∈R : φ(x)≺ + ∞ .

Lemma 33. Te extended fuzzy-valued convex function ef-
fective domain of φ : R⟶ RF ∪ + ∞ ∪ − ∞  is
a convex set.

Proof. Suppose that φ : R⟶ RF ∪ + ∞ ∪ − ∞  is
a fuzzy-valued convex function, let x, y ∈ do m(φ), 0< θ < 1
we have

φ(θx +(1 − θ)y) ≺ θ⊙ μ⊕ (1 − θ)⊙ ], μ, ] ∈RF,withφ(x)≺ μ, φ(y)≺ ]. (31)

And so

φ(θx +(1 − θ)y)≺ + ∞≼ θx +(1 − θ)y ∈ dom(φ). (32)

Hence, dom (φ) is a convex set. □

Defnition 34. Te extended fuzzy-valued function
φ : R⟶ RF ∪ + ∞ ∪ − ∞  is called fuzzy proper, if
φ(x)≠ − ∞, ∀x ∈R and φ ≡ + ∞.

Defnition 35. Te extended fuzzy-valued function
φ : R⟶ RF ∪ + ∞ ∪ − ∞  is called fuzzy improper, if φ
is not fuzzy proper, i.e., φ(x) ≡ + ∞ or there exists x ∈R
such that φ(x) � − ∞.

Te below theorem is the class of fuzzy-valued improper
convex functions that is easy to describe.

Theorem 36. Suppose that φ : R⟶ RF ∪ + ∞ ∪ − ∞ 

be the fuzzy-valued improper convex function. Ten, φ(x) �

− ∞ whenever x ∈ int(dom(φ)).

Proof. Te statement is trivially true if φ ≡ + ∞, i.e., φ(x) �

+ ∞ for all x ∈R, then do m(φ) � ∅ therefore
int(dom(φ)) � ∅. Henceforth, φ ≡ + ∞ on int(dom(φ)).
Let φ ≡ + ∞, there exists x0 ∈R such that φ(x0) � − ∞,
then x0 ∈ dom(φ). Let x ∈ int(dom(φ)), x≠ x0 be arbitrary.
Tere exists y ∈ dom(dom(φ)) and 0< θ < 1 so that
x � θx0 + (1 − θ)y. By Defnition 30, for each μ ∈RF

therefore φ(y)≺ μ≼ + ∞ and each ] ∈RF

φ(x) � φ θx0 +(1 − θ)y( ≺ θ⊙ ]⊕ (1 − θ)⊙ μ, (33)

Since φ(x0) � − ∞≺ ]. Letting ]⟶ −∞, we see that
φ(x) � − ∞. Te proof is complete. □

By the following lemma, it is often convenient to extend
a fuzzy-valued convex function to all of R by defning its
fuzzy value to be + ∞  outside its domain.

Lemma 37. (Te fuzzy-valued convex extension) Suppose
that φ : I⊆R⟶ RF is a fuzzy number-valued convex
function, where I is a convex set. We defne its extended fuzzy-
valued of φ̂ : R⟶ RF ∪ + ∞ , as follows:

φ̂(x) ≔
φ(x), x ∈ domφ,

+ ∞, x ∉ domφ.

⎧⎨

⎩ (34)

Ten, the extension φ̂ is a fuzzy-valued convex function
that defnes on allR and takes the fuzzy values inRF ∪ + ∞ .

Proof. Let x, y ∈R, 0≤ θ≤ 1 be arbitrary. □

Case 1. If x, y ∈ domφ, then by (11), we have

φ̂(x) � φ(x) and φ̂(y) � φ(y). (35)

Consider

φ̂(θx +(1 − θ)y) � φ(θx +(1 − θ)y). (36)

Note that since φ is the fuzzy-valued convex function on
do mφ and by (34), we have

≼ θ⊙φ(x)⊕ (1 − θ)⊙φ(y) (37)

by (35),

� θ⊙ φ̂(x)⊕ (1 − θ)⊙ φ̂(y). (38)

Ten,

φ̂(θx +(1 − θ)y)≼ θ⊙ φ̂(x)⊕ (1 − θ)⊙ φ̂(y). (39)

Case 2. If x, y ∉ domφ, henceforth by (11),

φ̂(x) � + ∞, φ̂(y) � + ∞. (40)

Also, θx + (1 − θ)y ∉ domφ, then by (34),

φ̂(θx +(1 − θ)y) � + ∞. (41)

Terefore.
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φ̂(θx +(1 − θ)y) � + ∞ � (+ ∞)⊕ (+ ∞) (42)

by (40),

� θ ⊙ φ̂(x)⊕ (1 − θ)⊙ φ̂(y). (43)

Hence,

φ̂(θx +(1 − θ)y) � θ⊙ φ̂(x)⊕ (1 − θ)⊙ φ̂(y). (44)

Case 3. If x ∈ domφ and y ∉ domφ, afterward by (11),

φ̂(x) � φ(x) and φ̂(y) � + ∞. (45)

Since x ∈ domφ and y ∉ domφ, then θx + (1 − θ)y ∉ I,
by (34), we have

φ̂(θx +(1 − θ)y) � + ∞. (46)

Terefore, we have

φ̂(θx +(1 − θ)y) � + ∞ � θ⊙φ(x)⊕ (+ ∞), (47)

by (45),

� θ ⊙ φ̂(x)⊕ (1 − θ)⊙ φ̂(y). (48)

So,

φ̂(θx +(1 − θ)y) � θ⊙ φ̂(x)⊕ (1 − θ)⊙ φ̂(y). (49)

Tus, in all three cases, the defnition of a fuzzy-valued
convex function was established for φ̂; hence, it is a fuzzy-
valued convex function on R.

Note that, by replacing the domain of a proper fuzzy-
valued convex function with efective domain, we can
convert it into a fuzzy-valued function.

In the below theorem, the sufcient conditions of left and
right LgH-diferentiability for right and left g-diferentia-
bility for RF ∪ + ∞ ∪ − ∞  proper fuzzy-valued convex
functions in terms of r-cut are stated.

Theorem 41. Suppose that φ : R⟶ RF ∪ + ∞ ∪ − ∞ 

is a proper fuzzy-valued convex function, and φ is right and
left uniformly LgH-diferentiable at x. Ten, φ has the right
and left g-derivative throughout do m(φ), provided the fuzzy
values + ∞ and − ∞ are permitted.

Proof. Te proof is the same as Teorem 5.2 in [23] and
Teorem 35 in [19] since the g-quotient φ(x)⊖g φ(a)/x − a

is nondecreasing and bounded from below on
do m(φ) � [a, b]; therefore, there exists a subsequence
xn > a, in which the members of subsequence are
φ(xn)⊖g φ(a)/xn − a and as φ(xn)⊖g φ(a)/xn − a converges
to infx>aφ(x)⊖g φ(a)/x − a equals to φ+g

′ (a), i.e., there exists
a subsequence xn > a such that

φ+g
′ (a) � lim

n⟶∞

φ xn( ⊖g φ(a)

xn − a
� inf

x>a

φ(x)⊖g φ(a)

x − a
. (50)

Similarly, since the g-quotient φ(x)⊖g φ(a)/x − a is
nonincreasing and bounded from above on
dom(φ) � [a, b], therefore there exists a subsequence
xn < a, in which the members of subsequence are
φ(xn)⊖g φ(a)/xn − a and as n⟶∞ converges to
supx<aφ(x)⊖g φ(a)/x − a equals to φ−g

′ (a), i.e., there exists
a subsequence xn < a such that

φ−g
′ (a) � lim

n⟶∞

φ xn( ⊖g φ(a)

xn − a
� sup

x<a

φ(x)⊖g φ(a)

x − a
. (51)

Tus, the left g-derivative φ−g
′ for the case where

do m(φ) � [a, b] exists. Hence, by the above concepts,
φ+g
′ (x) exists whenever x ∈ (a, b], and φ−g

′ (x) exists whenever
x∈ (a, b]. But for any x< a, we have φ(x) � + ∞, so the
quotient

φ(x)⊖g φ(a)

x − a
� − ∞, (52)

hence, φ−g
′ (a) � − ∞, for any x> b, we have the quotient

φ(x)⊖g φ(b)

x − b
� + ∞, (53)

and so φ+g
′ (b) � + ∞. □

5. The Fuzzy Concepts of Indicator Function
and Epigraph

Now, we introduce the fuzzy indicator function and the
epigraph for the extended fuzzy-valued convex function by
the forms.

Defnition 42. Suppose that C⊆Rn is a set. Defne the fuzzy
indicator function of C as follows:

IC : R
n⟶ RF ∪ + ∞ , (54)

is given by

IC(x) ≔
0, if  x∈C,

+ ∞, if  x ∉ C.

⎧⎨

⎩ (55)

Theorem 43. Let C⊆Rn.Ten, C is a convex set if and only if
IC is a fuzzy-valued convex function.

Proof. Suppose that C is a convex set. Let x, y ∈Rn, 0< θ < 1.
If x, y ∈C, since C is a convex set, then θx + (1 − θ) ∈C.
Terefore,

IC(θx +(1 − θ)y) � 0≼ θ⊙ IC(x)⊕ (1 − θ)⊙ IC(y) � 0.

(56)

If x, y ∉ C, then IC(x) � + ∞, IC(y) � + ∞. Since C is
a convex set, then (θx + (1 − θ)y) ∉ C, therefore
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θ⊙ IC(x)⊕ (1 − θ)⊙ IC(y) � + ∞. (57)

Tus,

IC(θx +(1 − θ)y) � + ∞

� θ⊙ IC(x)⊕ (1 − θ)⊙ IC(y).

(58)

Hence, IC is the fuzzy-valued convex function.
Conversely, suppose that IC is a fuzzy-valued convex

function. Let x, y ∈C, 0< θ< 1, then IC(x) � 0, IC(y) � 0.
Consider

IC(θx +(1 − θ)y) ≼ θ⊙ IC(x)⊕ (1 − θ)⊙ IC(y) � 0,

(59)

then

IC(θx +(1 − θ)y) � 0⟹ θx +(1 − θ)y ∈C. (60)

Terefore, C is a convex set. Te proof is complete. □

Defnition 44. Let φ : Rn⟶ RF ∪ + ∞ ∪ − ∞ . Te
epigraph of φ (epi(φ) in short) is a subset Rn × RF by

epi(φ) ≔ (x, θ) ∈Rn
× RF : φ(x)≼ θ . (61)

Defnition 45. Let φ : RnR⟶F ∪ + ∞ ∪ − ∞ . Te
fuzzy strictly epigraph of φ (epis(φ) in short) is a subsetRn ×

RF by

epis(φ) ≔ (x, θ) ∈Rn
× RF : φ(x)≺ θ . (62)

Defnition 46. An extended fuzzy-valued function
φ : Rn⟶ RF ∪ + ∞ ∪ − ∞  is said to be convex, if for all
x, y ∈ dom(φ), θ ∈R, and μ, ] ∈RF such that φ(x)≺ μ,
φ(y)≺ ], 0< θ< 1

φ(θx +(1 − θ)y) ≺ θ⊙ μ⊕ (1 − θ)⊙ ]. (63)

Theorem 47. Let φ : Rn⟶ RF ∪ + ∞ ∪ − ∞ , the fol-
lowing conditions are equivalent:

(1) φ is a fuzzy-valued convex function.
(2) epi(φ) is a convex set.
(3) epis(φ) is a convex set.

Proof. (1)⇔ (3): Let (x, α), (y, β) ∈Fpeis(φ), 0< θ< 1,
α, β ∈RF, then φ(x)≺ α, φ(y)≺ β. Bring up

θ ⊙ (x, α)⊕ (1 − θ)⊙ (y, β) � (θx +(1 − θ)y, θ ⊙ α⊕ (1 − θ)⊙ β), (64)

we have epis(φ) is convex set if and only if

φ(θx +(1 − θ)y) ≺ θ ⊙ α⊕ (1 − θ)⊙ β, (65)

whenever φ(x)≺ α,φ(y)≺ β, 0< θ< 1.
Applying Defnition 26, the equivalence of (9) and (11) is

as follows.(2)⇔ (3): Supposing that epi(φ) is a convex set.
Let (x, α) ∈ epis(φ), (y, β) ∈ epis(φ), 0< θ< 1. Because

φ(x)≺ α,φ(y)≺ β, we can select α0, β0 ∈RF so that
φ(x)≼ α0 ≺ α,φ(y)≼ β0 ≺ β. We have (x, α0) ∈ epi(φ),

(y, β0) ∈ epi(φ). Since epi(φ) is a convex set, henceforth

θx +(1 − θ)y, θ⊙ α0 +(1 − θ)⊙ β0  ∈ epi(φ), (66)

and so

φ(θx +(1 − θ)y) ≼ θ⊙ α0 ⊕ (1 − θ)⊙ β0 ≺ θ⊙ α⊕ (1 − θ)⊙ β. (67)

It follows that

(θx +(1 − θ)y, θ⊙ α⊕ (1 − θ)⊙ β) ∈ epis(φ)

⟹ θ ⊙ (x, α)⊕ (1 − θ)⊙ (y, β) ∈ epis(φ).

(68)

We conclude that epis(φ) is a convex set.
Vice versa, suppose that epis(φ) is a convex set. Let

(x, α), (y, β) ∈ epi(φ), 0< θ< 1, then φ(x)≼ α, φ(y)≼ β,
therefore for each ε> 0

φ(x)≺ α⊕ ε,φ(y)≺ β⊕ ε, (69)

thus

(x, α⊕ ε) ∈ epis(φ), (y, β⊕ ε) ∈ epis(φ). (70)

Since epis(φ) is a convex set, then

θ ⊙ (x, α⊕ ε)⊕ (1 − θ)⊙ (y, β⊕ ε) ∈ epis(φ). (71)

Hence,
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φ(θx +(1 − θ)y) ≺ θ⊙ (α⊕ ε)⊕ (1 − θ)⊙ (β⊕ ε) � θ⊙ α⊕ (1 − θ)⊙ β⊕ ε, ∀ε> 0, as ε⟶ 0+
. (72)

It follows that

φ(θx +(1 − θ)y) ≼ θ ⊙ α⊕ (1 − θ)⊙ β, (73)

then

(θx +(1 − θ)y, θ ⊙ α⊕ (1 − θ)⊙ β) ∈ epi(φ)

⟹ θ⊙ (x, α)⊕ (1 − θ)⊙ (y, β) ∈ epi(φ),

(74)

and we consummate that epi(φ) is a convex set. □

Defnition 48. Suppose that A ⊂ Rn × RF is a convex set.
We defne a fuzzy-valued function φ : Rn⟶ RF

∪ + ∞ ∪ − ∞  by

φ(x) ≔ inf θ ∈RF : (x, θ) ∈A , ∀x ∈Rn
, (75)

i.e., φ(x) is the greatest fuzzy-valued convex function on Rn

which the epigraph contains A.

Theorem 49. Suppose that A ⊂ Rn × RF is a convex set, and
let

φ(x) ≔ inf θ ∈RF : (x, θ) ∈A , ∀x ∈Rn
. (76)

Ten φ is a fuzzy-valued convex function.

Proof. We show that epis(φ) is a convex set. Let
(x, α), (y, β) ∈ epis(φ), 0< μ< 1, then φ(x)≺ α, φ(y)≺ β. By
defnition of infmum, there exists θ1 ∈RF so that
(x, θ1) ∈A, θ1 ≺ α and there exists θ2 ∈RF so that
(y, θ2) ∈A, θ2 ≺ β. Since A is a convex set, then

μ⊙ x, θ1 ⊕ (1 − μ)⊙ y, θ2  ∈A

⟹ μx +(1 − μ)y, μ⊙ θ1 ⊕ (1 − μ)⊙ θ2  ∈A,

(77)

by Defnition 30, then

φ(μx +(1 − μ)y)≼ μ⊙ θ1 ⊕ (1 − μ)θ2 ≺ μ⊙ α⊕ (1 − μ)⊙ β,

(78)

therefore

φ(μx +(1 − μ)y)≺ μ⊙ α⊕ (1 − μ)⊙ β

⇒ (μx +(1 − μ)y, μ⊙ α⊕ (1 − μ)⊙ β) ∈ epis(φ)

⇒ μ⊙ (x, α)⊕ (1 − μ)⊙ (y, β) ∈ epis(φ),

(79)

so epis(φ) is a convex set, hence byTeorem 47, φ is a fuzzy-
valued convex function. □

6. The Fuzzy Infimal Convolution

Now, in the following, we introduce the fuzzy infmal
convolution as a subset Rn × RF for extended fuzzy-valued
convex functions φ and g that denote by φ□g.

Defnition 50. Let φ, g : Rn⟶ RF ∪ + ∞ ∪ − ∞  be the
fuzzy-valued functions. Defne the fuzzy infmal convolution
φ and g as follows:

φ□g : R
n⟶ RF ∪ + ∞ ∪ − ∞ , (80)

by

(φ□g)(x) ≔ inf θ ∈RF : (x, θ) ∈ epi(φ)⊕ epi(g) . (81)

Note that if φ and g are fuzzy-valued convex functions,
then epi(φ), epi(g) in Rn × RF are convex sets, therefore
epi(φ) ⊕ epi(g) in Rn × RF is a convex set, hence by
Teorem 49, φ□g is a fuzzy-valued convex function. Te
terminology is motivated by the case where φ and g are
fuzzy-valued functions, φ, g : Rn⟶ RF ∪ + ∞ ∪ − ∞ .
Ten, φ□g can also be defned as

(φ□g)(x) � inf θ ∈RF : (x, θ) ∈ epi(φ) ⊕ epi(g) 

� inf θ ∈RF : ∃ x1,
θ1  ∈ epi(φ), ∃ x2,

θ2  ∈ epi(g) : (x, θ) � x1,
θ1 ⊕ x2,

θ2  

� inf θ ∈RF : θ � θ1 ⊕ θ2, x � x1 + x2,φ x1( ≼ θ1, g x2( ≼ θ2 

� inf θ ∈RF : φ x1( ⊕g x2( ≼ θ, x � x1 + x2, x1, x2 ∈R
n

 

� inf φ x1( ⊕g x2(  : x � x1 + x2, x1, x2 ∈R
n

 

� inf φ(y)⊕g(x − y) : y ∈Rn
 .

(82)
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Hence.

(φ□g)(x) � inf φ(y)⊕g(x − y) : y ∈Rn
 , (83)

which is analogous to the formula for fuzzy integral
convolution

(φ∗g)(x) � 
+∞

−∞
φ(y)⊙g(x − y) dy, (84)

and φ□g is exact at x ∈Rn, if (φ□g)(x) � miny ∈Rn

φ(y)⊕g(x − y), i.e., there exists y ∈Rn so that

(φ□g)(x) � φ(y)⊕g(x − y); (85)

φ□g is exact if it is exact at every point of its domain, in
which case it is denoted by φ⊡g .

Proposition 51. Let φ, g, and h be the extended fuzzy-valued
functions from Rn to RF ∪ + ∞ . Ten, the following cases
hold:

(1) φ□g � g□φ;
(2) φ□(g□h) � (φ□g)□h.

Proof. For the proof of (1), we can see that

(φ□g)(x) � inf φ x1( ⊕g x2(  : x � x1 + x2, x1, x2 ∈R
n

  � (g□φ)(x). (86)

Hence, φ□g � g□φ. Also, for the proof of (10), we have

((φ□g)□h)(x) � inf (φ□g) x1( ⊕ h x2(  : x � x1 + x2, x1, x2 ∈R
n

 

� inf inf φ t1( ⊕g t2(  : x1 � t1 + t2, t1, t2 ∈R
n

 ⊕ h x2(  : x � x1 + x2, x1, x2 ∈R
n

 

� inf φ t1( ⊕g t2( ⊕ h x2(  : x � t1 + t2 + x2, t1, t2, x2 ∈R
n

 .

(87)

On the other hand, we have

φ□(g□h)(x) � inf φ x1( ⊕ (g□h) x2(  : x � x1 + x2, x1, x2 ∈R
n

 

� inf φ x1( ⊕ inf g t1( ⊕ h t2(  : x2 � t1 + t2, t1, t2 ∈R
n

  : x � x1 + x2, x1, x2 ∈R
n

 

� inf φ x1( ⊕g t1( ⊕ h t2(  : x � x1 + t1 + t2, t1, t2 ∈R
n

 .

(88)

Hence, (φ□g)□h � φ□(g□h). □

Example 1. Consider C⊆Rn to be a nonempty convex set
and x0 ∈Rn. Te fuzzy distance of x0 from C is defned by

d x0, C(  ≔ 〈−1, 0, 1〉⊙ inf
y ∈C

‖ x0 − y ‖ . (89)

We show that d(x0, C) is a fuzzy-valued convex func-
tion. Since C is a convex set, then by Teorem 43, IC is
a fuzzy-valued convex function. Let φ(x) � 〈−1, 0, 1〉

⊙ ‖x‖, ∀x ∈Rn. Terefore, φ is a fuzzy-valued convex
function. By Defnition 50, hence φ□IC is a fuzzy-valued
convex function. Consider

φ□IC  x0(  � inf
y ∈Rn

IC x0( ⊕ 〈−1, 0, 1〉⊙ ‖x0 − y‖ 

� inf
y ∈Rn

IC x0( ⊕φ x0 − y(  

� inf
y ∈C

φ x0 − y(   � 〈−1, 0, 1〉⊙ inf
y ∈C

‖x0 − y‖ � d x0, C( .

(90)

10 Advances in Fuzzy Systems



So, (φ□IC)(x0) � d(x0, C). According to Defnition 50,
d(x0, C) is a fuzzy-valued convex function.

Example 2. Consider φ : Rn⟶ RF ∪ + ∞  is an extended
fuzzy-valued function and let y ∈Rn. We show that
I y{ } ⊡φ � ιyφ, where

ιyφ (x) ≔ φ(x − y), ∀x ∈Rn
, (91)

is the translation of the extended fuzzy-valued function φ by
y ∈Rn.

Let x ∈Rn be arbitrary. Ten

I y{ } ⊡φ (x) � min
z ∈Rn

I y{ }(z)⊕φ(x − z)  � φ(x − y) � ιyφ (x). (92)

Hence, I y{ } ⊡φ � ιyφ.

7. The Directional g-Derivative for Extended
Fuzzy-Valued Convex Functions

Now, we introduce the directional g-derivative for extended
fuzzy-valued convex functions and their properties are
discussed.

Defnition 52. Suppose that φ is an extended fuzzy-valued
function, φ : Rn⟶ RF ∪ + ∞ ∪ − ∞  and x0, x ∈Rn.
Te directional g-derivative of φ at x0 in the direction x is as
follows:

φg
′ x0, x(  ≔ lim

t⟶0+

φ x0 + tx( ⊖g φ x0( 

t
. (93)

If φg
′(x0, x) ∈RF ∪ + ∞ ∪ − ∞  satisfying (93) exist.

Note that if it exists (+ ∞ and − ∞ being allowed as limits).

Theorem 53. Suppose that φ : Rn⟶ RF ∪ + ∞ ∪ − ∞ 

is a proper fuzzy-valued convex function and x0 ∈ do m(φ).
Ten,

(1) φg
′(x0, x) exist, ∀x ∈Rn.

(2) φg
′(x0, .) is fuzzy positively homogeneous and fuzzy-

valued convex.

Proof. For proof of (1), let x ∈Rn be arbitrary. Defne
gx0 ,x0+x : R⟶ RF ∪ + ∞ ∪ − ∞  by

g
x0 ,x0+x

(t) ≔ φ (1 − t)x0 + t x0 + x( (  � φ x0 + tx( , ∀t ∈R. (94)

Since by the hypothesis, φ is the proper fuzzy-valued
convex function, then g : R⟶ RF ∪ + ∞ ∪ − ∞  is
a proper fuzzy-valued convex function, therefore by Te-
orem 41, g+g

′ (0) exists where it is the right g-derivative of the
proper fuzzy-valued convex function at t � 0, as follows:

g+g
′ (0) � lim

t⟶0+

g(t)⊖g g(0)

t

� lim
t⟶0+

φ x0 + tx( ⊖g φ x0( 

t
� φg
′ x0, x( .

(95)

Hence φg
′(x0, x) exists, for all x ∈Rn. For proof of (10), let

θ> 0, x ∈Rn. Consider

φg
′ x0, θx(  � lim

t⟶0+

φ x0 + t(θx)( ⊖g φ x0( 

tθ

� θ⊙ lim
tθ⟶0+

φ x0 +(tθ)x( ⊖g φ x0( 

tθ

(96)

get s � tθ, when t⟶ 0+⇒ tθ⟶ 0+,∀θ> 0⇒ s⟶ 0+

� θ⊙ lim
s⟶0+

φ x0 + sx( ⊖g φ x0( 

s
� θ⊙φg
′ x0, x( . (97)

Hence, φg
′(x0, θx) � θ⊙φg

′(x0, x).
Te convexity of this function is as follows:
Let y, z ∈Rn, 0< θ < 1. Consider

φg
′ x0, θy +(1 − θ)z(  � lim

t⟶0+

φ x0 + t(θy +(1 − θ)z)( ⊖g φ x0( 

t
. (98)
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Let x0 � θx0 + (1 − θ)x0, then

� lim
t⟶0+

φ θ x0 + ty(  +(1 − θ) x0 + tz( ( ⊖g φ x0( 

t

≼ lim
t⟶0+

θ⊙φ x0 + ty( ⊕ (1 − θ)⊙φ x0 + tz( ⊖g φ x0( 

t

� θ⊙ lim
t⟶0+

φ x0 + ty( ⊖g φ x0( 

t
⊕ (1 − θ)⊙ lim

t⟶0+

φ x0 + tz( ⊖g φ x0( 

t

� θ⊙φg
′ x0, y( ⊕ (1 − θ)⊙φg

′ x0, z( .

(99)

Hence, φg
′(x0, x) is an extended fuzzy-valued convex

function. □

Proposition 54. Let φ : Rn⟶ RF ∪ + ∞ ∪ − ∞  be
a proper fuzzy-valued convex function and x0 ∈ do m(φ) be so
that [φ(x)]r � [φ−

r (x),φ+
r (x)]. Assume that φ−

r (x) and

φ+
r (x) of the proper real-valued convex functions are di-

rectional diferentiable at x0 in the direction of x, uniformly
w.r.t. r ∈ [0, 1]. Ten, φ has a directional g-derivative at x0 in
the direction of x as follows:

φg
′ x0, x( r � inf

β≥r
min φ′−β x0, x( ,φ′+β x0, x(  , sup

β≥r
max φ′−β x0, x( ,φ′+β x0, x(  ⎡⎣ ⎤⎦. (100)

Proof. According to Proposition 13, we get

φ x0 + tx( ⊖g φ x0( 

t
 

r

� inf
β≥r

min
φ−
β x0 + tx(  − φ−

β x0( 

t
,
φ+
β x0 + tx(  − φ+

β x0( 

t

⎧⎨

⎩

⎫⎬

⎭,⎡⎣

sup
β≥r

max
φ−
β x0 + tx(  − φ−

β x0( 

t
,
φ+
β x0 + tx(  − φ+

β x0( 

t

⎧⎨

⎩

⎫⎬

⎭
⎤⎦.

(101)

Since the proper real-valued convex functions φ−
r (x) and

φ+
r (x) are directional diferentiable at x0 in the direction of

x, we have

lim
t⟶0+

φ x0 + tx( ⊖g φ x0( 

t
 

r

� inf
β≥r

min φ′−β x0, x( ,φ′+β x0, x(  ,

sup
β≥r

max φ′−β x0, x( ,φ′+β x0, x(  ⎤⎦, ∀r ∈ [0, 1].

(102)

Also, let us consider that if the functions φ−
r (x) and

φ+
r (x) are left continuous w.r.t. r ∈ (0, 1] and right

continuous at 0. From the defnition of the directional
derivative, for any n≥ 1, there exists a sequence tn > 0 such
that tn⟶ 0+ the quotients

φ−
r x0 + tnx(  − φ−

r x0( 

tn

,
φ+

r x0 + tnx(  − φ+
r x0( 

tn

, (103)

as functions of r∈ [0, 1] are left continuous at r ∈ (0, 1] and
right continuous at 0. Also, for any n≥ 1, there exists a se-
quence tn > 0 such that tn⟶ 0+, then the functions

inf
β≥r

min
φ−
β x0 + tnx(  − φ−

β x0( 

tn

,
φ+
β x0 + tnx(  − φ+

β x0( 

tn

⎧⎨

⎩

⎫⎬

⎭,

(104)

12 Advances in Fuzzy Systems



and

sup
β≥r

max
φ−
β x0 + tnx(  − φ−

β x0( 

tn

,
φ+
β x0 + tnx(  − φ+

β x0( 

tn

⎧⎨

⎩

⎫⎬

⎭, (105)

satisfying the above properties. Tus, it follows that

inf
β≥r

min φ′−β x0, x( ,φ′+β x0, x(  , (106)

and

sup
β≥r

min φ′−β x0, x( ,φ′+β x0, x(  , (107)

as functions of r∈ [0, 1] are left continuous at r ∈ (0, 1] and right
continuous at 0. It is obvious to see that the

function infβ≥r min φ′−β (x0, x),φ′+β (x0, x)  is increasing

function w.r.t. r∈ [0, 1] and the function supβ≥r min

φ′−β (x0, x),φ′+β (x0, x)  is decreasing function w.r.t. r ∈ [0, 1],

by Proposition 6, they defne a fuzzy number. Consequently, the
r-cuts φg

′(x0, x)r defne a fuzzy number, by Lemma 8, the
directional g-derivative with extended fuzzy-valued φg

′(x0, x)

exists at x0 in the direction x. □

Below, we give a practical example that will illustrate well
the directional g-derivative for the extended fuzzy-valued
convex function.

Example 3. Let φ : R⟶ RF ∪ + ∞ ∪ − ∞  be an ex-
tended fuzzy-valued convex function defned by

φ x0(  � 〈−1, 0, 1〉⊙ | x0 | ; ∀x0 ∈ dom(φ), (108)

its r-cuts, r ∈ [0, 1], are defned by

φ x0(  r � φ−
r x0( ,φ+

r x0(   � (r − 1) | x0 | , (1 − r) | x0 | .

(109)

For all r ∈ [0, 1], the functions φ−
r (x0) and φ+

r (x0) are
extended real-valued diferentiable at each point
0≠x0 ∈ do m(φ), then φ′−r (x0) � (r − 1)x0/|x0| and
φ′+r (x0) � (1 − r)x0/|x0|. Now, for all r ∈ [0, 1], the two
functions φ−

r (x0) and φ+
r (x0) are not diferentiable at x0 � 0.

However, for all r ∈ [0, 1], the functions φ′−r (x0, x) � (r −

1)|x| and φ′+r (x0, x) � (1 − r)|x| are real-valued directional
diferentiable at x0 � 0 in any direction x ∈R and satisfy the
conditions in Proposition 6, indeed for any direction x ∈R
and r ∈ [0, 1] we have

φg
′(0, x)r � inf

β≥r
min φ′−β (0, x),φ′+β (0, x) , sup

β≥r
max φ′−β (0, x),φ′+β (0, x) ⎡⎣ ⎤⎦

� inf
β≥r

min (β − 1)|x|, (1 − β)|x| , sup
β≥r

max (β − 1)|x|, (1 − β)|x| ⎡⎣ ⎤⎦

� [(r − 1)|x|, (1 − r)|x|] � [r − 1, 1 − r]|x|, ∀x ∈R

(110)

it follows that

φg
′(0, x)r � [r − 1, 1 − r]|x|, ∀x ∈R. (111)

Hence, φ is directionally g-diferentiable at x0 � 0 in any
direction x ∈R.

8. Conclusion

Te concepts of g-diference and g-diferentiability were
introduced for fuzzy-valued functions in 2013 by Bede and
Stefanini [19] which is the generalization concept of
gH-diference and gH-diferentiability. Here, we defned
the fuzzy-valued convex functions whose range is extended
fuzzy numbers, and some of their properties were expressed.

Moreover, several important fuzzy concepts such as in-
dicator function, epigraph, infmal convolution, and di-
rectional g-derivative with their properties for the extended
fuzzy-valued convex functions have been stated and dis-
cussed. It is worth pursuing follow-up research by consid-
ering g-subgradient and g-subdiferential for the extended
fuzzy-valued convex function. In this way, in the next studies
and research, we propose the concepts of g-subgradient and
g-subdiferential, which play an important role in extended
fuzzy-valued optimization.
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