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In this study, we examine the numerical solutions of nonlinear fuzzy fractional partial diferential equations under the Caputo
derivative utilizing the technique of fuzzy Adomian decomposition. Tis technique is used as an alternative method for obtaining
approximate fuzzy solutions to various types of fractional diferential equations and also investigated some new existence and
uniqueness results of fuzzy solutions. Some examples are given to support the efectiveness of the proposed technique. We present
the numerical results in graphical form for diferent values of fractional order and uncertainty c ∈ [0, 1].

1. Introduction

During the last few decades, fractional calculus has been the
focus of many studies due to its frequent appearance in
many applications, such as viscoelasticity, physics, biology,
signal processing, engineering, economics, and fnancial
markets [1–5]. One of its most important applications is
fractional partial diferential equations (FPDEs), as most
natural phenomena can be modeled by using such types of
equations. Te frequent use of FPDEs in engineering and
scientifc applications has led many researchers in this feld
to develop new results in theoretical and applied research
methods [6–14]. Recently, several authors have solved linear
and nonlinear FPDEs by using diferent methods, such as the
homotopy perturbation method, Adomian decomposition
method, variational iteration method, and homotopy
analysis method, as mentioned in [15–22].

Physical models of real-world phenomena often contain
uncertainty, which can come from a variety of sources. Fuzzy
set theory, introduced by Zadeh [23] in 1965, is a suitable
tool for modeling this uncertainty, as it can represent im-
precise and vague concepts. Chang and Zadeh extended the
concept of fuzzy sets by introducing the notions of fuzzy
control and fuzzymapping [24]. Many researchers have built

on the concept of fuzzy mapping and control to develop
elementary fuzzy calculus [25–29]. Tis led to detailed
studies of fuzzy fractional diferential and integral equations
in the feld of physical science. Agarwal et al. [30] introduced
the concept of solving fuzzy fractional diferential equations
(FFDEs). Authors in [31, 32] used this concept to prove the
uniqueness and existence of solutions to initial value
problems involving FFDEs. Long et al. [33] investigated the
existence and uniqueness of fuzzy fractional partial difer-
ential equations (FFPDEs). Salahshour et al. [34] used
Laplace transforms to fnd solutions for FFDEs. Tey
converted the FFDEs into algebraic equations using Laplace
transforms, which made them easier to solve. Tey also
found a closed-form solution for one of the FFDEs.
Allahviranloo et al. [35] presented an explicit solution for
FFDEs. Tey found a solution for FFDE that can be written
in simple and closed form. Tis is a signifcant achievement,
as it makes it easier to use FFDEs in practical applications.

In recent years, numerous researchers have used dif-
ferent numerical methods to solve FFDEs analytically or
numerically [36–39]. Te Adomian decomposition method,
introduced by mathematician Adomian [40] in 1984, is
a simple and efective method in both linear and nonlinear
diferential equations. Tis method is a powerful tool for
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approximating the solution of fuzzy diferential equations. It
works by expressing the solution as an infnite series, which
often converges to the exact solution. Although there are
a few potential limitations or challenges associated with the
Adomian decomposition method, such as it can be com-
putationally expensive for complex problems, it is a good
choice for problems that are difcult or impossible to solve
using other methods. Recently, several researchers used this
method for solving various linear and nonlinear systems in
a fuzzy environment. Das and Roy [41] studied the nu-
merical solution of linear fuzzy fractional diferential
equations by applying the fuzzy Adomian decomposition
method. Osman et al. [42] presented a comparison of the
fuzzy Adomian decomposition method with the fuzzy
variational iteration method for solving fuzzy heat-like and
wave-like equations with variable coefcients under gH−

diferentiability. Ullah et al. [43] used fuzzy Laplace trans-
form along with Adomian decomposition to obtain general
numerical results for the complex population dynamical
model under the fuzzy Caputo fractional derivative [44–48].

Motivated by the above research, in this paper, we in-
vestigate some existence, uniqueness, and numerical results
by using the fuzzy Adomian decomposition method of the
following nonlinear fuzzy fractional partial diferential
equation (FFPDE):

c
D

φ
t ](ξ, t, c) � ℵ ξ, t, c, ], ]ξ , ]ξξ􏼐 􏼑 + g(ξ, t, c),

](ξ, 0, c) � E(ξ, c),
(1)

where cD
φ
t is the fuzzy Caputo derivative with respect to t,

0<φ< 1, c ∈ [0, 1], (ξ, t) ∈ J � [0, c
.
] × [0, d

.

], c
.
, d

.

∈ R+,ℵ is
a nonlinear fuzzy-valued function, and E, g are known
fuzzy-valued functions.

2. Preliminary Concepts

In this section, we present certain defnitions and theorems
that will be helpful in our further discussion.

Defnition 1 (see [49]). A fuzzy number is a mapping
m: R⟶ [0, 1] satisfying the following features:

(1) For ξ0 ∈ R,m is normal, it means m(ξ0) � 1
(2) For ξ1, ξ2, ∈ R and t ∈ [0, 1], m is convex such that

m tξ1 +(1 − t)ξ2( 􏼁≥min m ξ1( 􏼁,m ξ2( 􏼁􏼈 􏼉, (2)

(3) m is semicontinuous
(4) cl ξ ∈ R,m(ξ)> 0{ } is compact

Defnition 2 (see [50]). A fuzzy number m can be repre-
sented in parametric form as [m (c),m(c)], for 0≤ c≤ 1, if
and only if

(i) m(c) is increasing bounded function and left
continuous over (0, 1]

(ii) m(c) is decreasing bounded function and right
continuous over (0, 1]

(iii) m(c)≤m(c)

Here, we employ the notations listed as follows:

(i) FR is the set of all fuzzy numbers on R

(ii) C[J,FR] is a space of all continuous fuzzy-valued
functions which are on J ⊂ R2

(iii) L[J,FR] is the set of Lebesque integrable for fuzzy-
valued functions on B, where B ⊂ Rm, m ∈ N

Te set of a fuzzy number m(ξ) ∈FR in the c-level
form is denoted by [m]c and defned as:

[m]c �
ξ∈ R |m(ξ)≥ c􏼈 􏼉, if 0< c≤ 1,

cl(suppm), if c � 0.
􏼨

For any p, q ∈FR. If there exists z ∈ FR such that
p � q + z, then z is called the Hukuhara diference of p and q
and it is denoted by p⊖ q.

Defnition 3 (see [49]).Te generalized Hukuhara diference
of two fuzzy numbers p, q ∈FR (gH diference for short) is
defned as the element z ∈FR such that

p⊖gHq � z⇔(i) p � q + z or (ii) q � p +(− 1)z. (3)

Note: if case (i) exists, then there is no need to consider
case (ii), but if both cases exist, it means that both types of
diference are the same and equal.

Allahviranloo [49] introduced the defnition of the fuzzy
partial derivative as follows:

Defnition 4. Let G: J⟶ FR, then gH-partial derivative
of the frst order at the point (z0, t0) ∈ J with respect to
variables z, t is denoted by zG(z0, t0)/zz, zG(z0, t0)/zt and
given by

zG z0, t0( 􏼁

zz
� lim

h⟶0

G z0 + h, t0( 􏼁⊖gHG z0, t0( 􏼁

h
,

zG z0, t0( 􏼁

zt
� lim

k⟶0

G z0, t0 + k( 􏼁⊖gHG z0, t0( 􏼁

k
,

(4)

provided that zG(z0, t0)/zz and zG(z0, t0)/zt ∈FR.

Defnition 5. Let G: J⟶ FR be gH-partial diferentiable
with respect to z at (z0, t0) ∈ J. We say that

(1) G is (i) gH-partial diferentiable with respect to z at
(z0, t0) ∈ J if

zG z0, t0, c( 􏼁

zz
􏼢 􏼣 �

zG z0, t0, c( 􏼁

zz
,
zG z0, t0, c( 􏼁

zz
􏼢 􏼣, ∀c ∈ [0, 1]. (5)
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(2) G is (ii) gH-partial diferentiable with respect to z at
(z0, t0) ∈ J if

zG z0, t0, c( 􏼁

zz
􏼢 􏼣 �

zG z0, t0, c( 􏼁

zz
,
zG z0, t0, c( 􏼁

zz
􏼢 􏼣, ∀c ∈ [0, 1]. (6)

Te following Newton–Leibniz formula is given in [33].

Lemma 6 (Newton–Leibniz formula). Let P ∈ C(R2,FR).

(1) If P is (i) gH-partial diferentiable with respect to y
such that the type of gH-partial diferentiability does
not change on R × [b, y], then

􏽚
y

b

zP(8, y)

zy
dt � P(8, y)⊖P(8, b). (7)

(2) If P is (ii) gH-partial diferentiable with respect to y
such that the type of gH-partial diferentiability does
not change on R × [b, y], then

􏽚
y

b

zP(8, y)

zy
dt � (− 1)P(8, b)⊖(− 1)P(8, y). (8)

Te authors in [34, 35] have defned the concepts of
Riemann–Liouville integral and Caputo’s gH-derivative of
fuzzy-valued functions as follows.

Defnition 7. Let υ(z) ∈ C[I,FR]∩L[I,FR],I ∈ R. Te
fuzzy fractional integral in the Riemann–Liouville sense of
order φ> 0 is defned as

I
φυ(z, c) � I

φ υ(z, c),I
φυ(z, c)􏼂 􏼃, c ∈ [0, 1], (9)

where

I
φ υ(z, c) �

1
Γ(φ)

􏽚
z

0
(z − τ)

φ− 1 υ(τ, c)dτ, z> 0,

I
φυ(z, c) �

1
Γ(φ)

􏽚
z

0
(z − τ)

φ− 1υ(τ, c)d τ, z> 0.

(10)

Defnition 8. Let υ(z) ∈ C[I,FR]∩L[I,FR]. Ten, the
fuzzy fractional Caputo’s gH-derivative under (i)
gH-diferentiability is given as follows:

c
D

φ
zυ(z, c) �

c
D

φ
z υ(z, c),

c
D

φ
zυ(z, c)􏽨 􏽩, (11)

and under (ii) gH-diferentiability is given as follows:
c
D

φ
zυ(z, c) �

c
D

φ
zυ(z, c),

c
D

φ
z υ(z, c)􏽨 􏽩, (12)

where

c
D

φ
z υ(z, c)] �

1
Γ(l − φ)

􏽚
z

0
(z − τ)

l− φ− 1 υ
(l)

(τ, c)dτ,

c
D

φ
zυ(z, c) �

1
Γ(l − φ)

􏽚
z

0
(z − τ)

l− φ− 1υ(l)
(τ, c)dτ.

(13)

Te Caputo derivative is a powerful tool for modeling
and analyzing complex phenomena. It has several advan-
tages over other fractional derivatives, such as its ability to
use traditional initial and boundary conditions, its clear
physical interpretation, and its mathematical tractability
[51–53].

Proposition 9 (see [49]). If υ(8): [0, a]⟶ FR is an in-
tegrable fuzzy function and φ> 0, β> 0, then

I
φ

( 􏼁 I
β

􏼐 􏼑υ(8) � I
φ+β

􏼐 􏼑υ(8), 8 ∈ [0, a]. (14)

Theorem 10 (see [54]) (Banach contraction principle). Let
(N, d) be a complete metric space, then each contraction
mapping T: N⟶ N has a unique fxed point z of T in N,
that is, Tz � z.

3. Existence and Uniqueness Results

Let 0<φ< 1 and ] ∈ C[J,FR]. Te following equivalent
formulations of equation (1) are satisfed. From Proposition
9 and Lemma 6, we have

Case (1): If ] is (i)-gH diferentiable, then

](ξ, t, c) � E(ξ, c) + I
φ
t ℵ ξ, t, c, ], ]ξ , ]ξξ􏼐 􏼑 + g(ξ, t, c)􏽨 􏽩. (15)
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Case (2): If ] is (ii)-gH diferentiable, then

](ξ, t, c) � E(ξ, c)⊖(− 1)I
φ
t ℵ ξ, t, c, ], ]ξ , ]ξξ􏼐 􏼑 + g(ξ, t, c)􏽨 􏽩. (16)

Note: in this paper, we study our results for case (1) only.
Now, we will demonstrate the existence and uniqueness

of the fuzzy solution to the problem (1), by introducing the
following assumptions.

A1: For any ], w ∈ C(J,FR), there exist constants
Kı, ı � 1, 2, 3 such that

ℵ ξ, t, c, v, vξ , vξξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌 − ℵ ξ, t, c, w, wξ , wξξ􏼐 􏼑|≤K1|](ξ, t, c) − w(ξ, t, c)| + K2 ]ξ(ξ, t, c) − wξ(ξ, t, c)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + K3 ]ξξ(ξ, t, c) − wξξ(ξ, t, c)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(17)

A2: Tere exist constants M1, M2 > 0 such that

]ξ(ξ, t, c) − wξ(ξ, t, c)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M1|](ξ, t, c) − w(ξ, t, c)|,

]ξξ(ξ, t, c) − wξξ(ξ, t, c)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤M2|u(ξ, t, c) − w(ξ, t, c)|.
(18)

LetC(J,FR) be the Banach space of all continuous fuzzy
valued functions with the norm

‖]‖∞ � sup |](ξ, t)|; (ξ, t) ∈ J{ }. (19)

Theorem 11. Assume that the hypotheses A1 and A2 are
fulflled and

S � sup
(ξ,t)∈J

φ(ξ, t, c) +
1
Γ(φ)

􏽚

t

0

(t − 9)
φ− 1ℵ(ξ, 9, c, 0,0,0)d9

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<+∞, (20)

where

ϕ(ξ, t, c) � E(ξ, c) +
1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1
g(ξ, 9, c)d9. (21)

If

l
∗

�
K1 + M1K2 + M2K3􏼂 􏼃 _d

φ

Γ(φ + 1)
< 1, (22)

then the problem (1) has a unique solution defned on J.

Proof. We defne the operator S∗: C(J,FR)⟶ C(J,FR)

by

S
∗
(](ξ, t, c)) � E(ξ, c) +

1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1ℵ ξ, 9, c, ], ]ξ , ]ξξ􏼐 􏼑d9

+
1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1
g(ξ, 9, c)d9,

(23)

for all (ξ, t) ∈ J and c ∈ [0, 1]. Assume that ] ∈ C(J,FR). Ten, there exists S∗ > 0
such that ‖]‖≤S∗. Now, we prove that S∗ is in the space
C(J,FR). We have

S
∗](ξ, t, c)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ ϕ(ξ, t, c)) +

1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1ℵ(ξ, 9, c, 0, 0, 0)d9

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1 ℵ ξ, 9, c, ], ]ξ , ]ξξ􏼐 􏼑 − ℵ(ξ, 9, c, 0, 0, 0)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌d9.

(24)
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From (20), we have

S
∗
(](ξ, t, c))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤S +
1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1
K1|](ξ, 9, c)| + K2 ]ξ(ξ, 9, c)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + K3 ]ξξ(ξ, 9, c)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩d9

≤S +
1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1
K1 + M1K2 + M2K3􏼂 􏼃|](ξ, 9, c)|d9

≤S +
K1 + M1K2 + M2K3􏼂 􏼃

Γ(φ)
􏽚

t

0
(t − 9)

φ− 1
|](ξ, 9, c)|d9.

(25)

Applying supremum to both hands sides, we get

S
∗
(](ξ, t, c))

����
����≤S +

‖]‖ K1 + M1K2 + M2K3􏼂 􏼃t
φ

Γ(φ + 1)
. (26)

For 0< t≤ d
.

, we get

S
∗
(](ξ, t, c))

����
����≤S +

S
∗
K1 + M1K2 + M2K3􏼂 􏼃d

. φ

Γ(φ + 1)
< +∞, (27)

it shows that S∗ is in the space C(J,FR). Tus, S∗ maps
C(J,FR) into itself.

Next, we establish that S∗ is a contraction mapping.
For ],ϖ ∈ C(J,FR) and (ξ, t) ∈ J, we obtain

S
∗](ξ, t, c), S

∗ϖ(ξ, t, c)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
1
Γ φ1( 􏼁

􏽚
t

0
(t − 9)

φ− 1 ℵ ξ, 9, c, ], ]ξ , ]ξξ􏼐 􏼑 − ℵ ξ, 9, c,ϖ,ϖξ ,ϖξξ􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌d9

≤
1
Γ(φ)

􏽚
t

0
(t − 9)

φ− 1
K1|](ξ, 9, c) − ϖ(ξ, 9, c)| + K2 ]ξ(ξ, 9, c) − ϖξ(ξ, 9, c)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨

+K3 ]ξξ(ξ, τ, c) − ϖξξ(ξ, τ, c)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽩 d9

≤
1
Γ(φ)

􏽚
t

0
(t − 9)

α− 1
K1 + M1K2 + M2K3􏼂 􏼃|](ξ, 9, c) − ϖ(ξ, 9, c)|d9

≤
K1 + M1K2 + M2K3􏼂 􏼃

Γ(φ)
‖] − ϖ‖􏽚

t

0
(t − 9)

φ− 1d9.

(28)

Tis implies that

S
∗](ξ, t, c), S

∗ϖ(ξ, t, c)( 􏼁
����

����≤
K1 + M1K2 + M2K3􏼂 􏼃 _d

φ

Γ(φ + 1)
‖] − ϖ‖

≤ l
∗
‖] − ϖ‖.

(29)
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Since l∗ < 1, the operator S∗ is a contraction mapping.
Tus, by Banach’s fxed point theorem, problem (1) has
a unique fuzzy solution ] defned on J. □

4. Analysis of the Fuzzy Adomian
Decomposition Method (FADM)

Now, we employ the FADM to analyze the system (1) as
follows.

Te decomposition method requires writing the non-
linear fuzzy fractional diferential equation (1) in terms of
general operator form as

c
D

α
t ](ξ, t, c) + 􏽢L](ξ, t, c) + 􏽢N](ξ, t, c) � g(ξ, t, c), (30)

where 􏽢L represents a linear operator and 􏽢N represents
a nonlinear operator.

Now applying the operator Iφ
t to both sides of equation

(30), we get

](ξ, t, c) � ](ξ, 0, c) + I
φ
t g(ξ, t, c) − I

φ
t [􏽢L](ξ, t, c) + 􏽢N](ξ, t, c)]. (31)

Now, we consider the equation (31) in parametric form
as follows:

](ξ, t, c) � ](ξ, t, c), ](ξ, t, c)􏼂 􏼃, (32)

where

](ξ, t, c) � E (ξ, c) + I
φ
t g(ξ, t, c) − I

φ
t

􏽢L ](ξ, t, c) + 􏽢N](ξ, t, c)],􏽨 (33)

](ξ, t, c) � E (ξ, c) + I
φ
t g(ξ, t, c) − I

φ
t [􏽢L](ξ, t, c) + 􏽢N](ξ, t, c)]. (34)

Te standard Adomian method defnes the solution
](ξ, t, c) in the form of the series

](ξ, t, c) � 􏽘
∞

k�o

]k(ξ, t, c), (35)

](ξ, t, c) � 􏽘
∞

k�o

]k(ξ, t, c), (36)

and the nonlinear term 􏽢N is decomposed as

􏽢N ] � 􏽘
∞

k�0
Mk,

􏽢N] � 􏽘
∞

k�0
Mk,

(37)

where Mk and Mk are Adomian polynomials given by

Mk �
1
k!

z
k

zq
k

􏽢N 􏽘
∞

i�0
q

i]i
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

q�0

,

Mk �
1
k!

z
k

zp
k

􏽢N 􏽘
∞

i�0
p

i]i
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

p�0

.

(38)

Moreover, we employ the following recurrence relations:

]0(ξ, t, c) � E (ξ, c) +I
φ
t g(ξ, t, c),

]k+1(ξ, t, c) � I
φ
t

􏽢L]k + 􏽘
∞

k�0
Mk

⎛⎝ ⎞⎠,
(39)

and

]0(ξ, t, c) � E (ξ, c) +I
φ
t g(ξ, t, c), ]k+1(ξ, t, c) � I

φ
t

􏽢L]k + 􏽘
∞

k�0
Mk

⎛⎝ ⎞⎠. (40)

Finally, the series (35) and (36) provide the approximate
solution to the problem (1).
5. Applications

In this section, we propose three examples of nonlinear
FFPDEs to test the efciency of the FADM.

Example 1. Consider the following nonlinear time fuzzy
fractional advection equation:

c
D

φ
t ](ξ, t, c) + ](ξ, t, c)]ξ(ξ, t, c) � 0, 0≤ ξ, t≤ 1,

](ξ, 0, c) � − [c − 1, 1 − c]ξ, 0≤ c≤ 1.
􏼨

(41)
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Applying the FADM step by step, we obtain the fol-
lowing recurrence relations:

]0(ξ, t, c) � − (c − 1)ξ,

]k+1(ξ, t, c) � − I
φ
t 􏽘

∞

k�0
Mk

⎛⎝ ⎞⎠, k≥ 0.
(42)

and

]0(ξ, t, c) � − (1 − c)ξ,

]k+1(ξ, t, c) � − I
φ
t 􏽘

∞

k�0
Mk

⎛⎝ ⎞⎠, k≥ 0,
(43)

where [Mk, Mk] represent the Adomian polynomials of the
nonlinear function

􏽢N] � ](ξ, t, c)]ξ(ξ, t, c), ](ξ, t, c)]ξ(ξ, t, c)􏽨 􏽩. (44)

Now, we calculate the frst few iterations of the de-
composition series as follows:

]0(ξ, t, c) � − (c − 1)ξ,

]0(ξ, t, c) � − (1 − c)ξ,

]1(ξ, t, c) � − (c − 1)
2ξ

t
φ

Γ(φ + 1)
􏼢 􏼣,

]1(ξ, t, c) � − (1 − c)
2ξ

t
φ

Γ(φ + 1)
􏼢 􏼣,

]2(ξ, t, c) � − (c − 1)
3ξ

2t
2φ

Γ(2φ + 1)
􏼢 􏼣,

]2(ξ, t, c) � − (1 − c)
3ξ

2t
3φ

Γ(2φ + 1)
􏼢 􏼣,

]3(ξ, t, c) � − (c − 1)
4ξ

4
Γ(3φ + 1)

+
Γ(2φ + 1)

Γ2(φ + 1)Γ(3φ + 1)
􏼢 􏼣t

3φ
,

]3(ξ, t, c) � − (1 − c)
4ξ

4
Γ(3φ + 1)

+
Γ(2φ + 1)

Γ2(φ + 1)Γ(3φ + 1)
􏼢 􏼣t

3φ
.

(45)

Similarly, we can fnd the other terms. Hence, the ap-
proximate solution of equation (41) is given by

](ξ, t, c) � − (c − 1)ξ 1 +(c − 1)
t
φ

Γ(φ + 1)
􏼢 􏼣 +(c − 1)

2 2t
2φ

Γ(2φ + 1)
􏼢 􏼣􏼢

+(c − 1)
3 4
Γ(3φ + 1)

+
Γ(2φ + 1)

Γ2(φ + 1)Γ(3φ + 1)
􏼢 􏼣t

3φ
+ · · ·􏼣,

](ξ, t, c) � − (1 − c)ξ 1 +(1 − c)
t
φ

Γ(φ + 1)
􏼢 􏼣 +(1 − c)

2 2t
2φ

Γ(2φ + 1)
􏼢 􏼣􏼢

+(1 − c)
3 4
Γ(3φ + 1)

+
Γ(2φ + 1)

Γ2(φ + 1)Γ(3φ + 1)
􏼢 􏼣t

3φ
+ · · ·􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)
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For φ � 1, the exact solution is given by

](ξ, t, c) �
(c − 1)ξ

(c − 1)t − 1
,

](ξ, t, c) �
(1 − c)ξ

(1 − c)t − 1
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(47)

Remark 12. When [c − 1, 1 − c] � 1, then the equation (46)
recovers the results of the fractional order as in [55] and the
solution (47) converges to the exact solution obtained
in [56].

Figures 1 and 2 represent (a) the exact solutions and (b)
the FADM solutions for the frst three approximations of
Example 1 with diferent fractional order and uncertainty
c � [0, 1]. We observe that the exact and derived results are
in good contact, confrming the high accuracy of the pro-
posed method for the fuzzy fractional problems in the sense
of the Caputo operator.

Example 2. Consider the following nonlinear fuzzy frac-
tional gas dynamic equation:

c
D

φ
t ](ξ, t, c) + ](ξ, t, c)]ξ(ξ, t, c) − ](ξ, t, c) + ]2(ξ, t, c) � 0, 0≤ ξ, t≤ 1,

](ξ, 0, c) � [c, 3 − 2c]e
− ξ

.

⎧⎪⎨

⎪⎩
(48)

Applying the FADM step by step, we obtain the fol-
lowing recurrence relations:

]0(ξ, t, c) � ce
− ξ

,

]k+1(ξ, t, c) � I
φ
t ]k(ξ, t, c) − 􏽘

∞

k�0
Mk

⎛⎝ ⎞⎠, k≥ 0,
(49)

and

]0(ξ, t, c) � (3 − 2c)e
− ξ

,

]k+1(ξ, t, c) � I
φ
t ]k(ξ, t, c) − 􏽘

∞

k�0
Mk

⎛⎝ ⎞⎠, k≥ 0,
(50)

where [Mk, Mk] represent the Adomian polynomials of the
nonlinear function

􏽢N] � ](ξ, t, c)]ξ(ξ, t, c) + ]
2
(ξ, t, c), ](ξ, t, c)]ξ(ξ, t, c) + ]2(ξ, t, c)􏼔 􏼕. (51)

Now, we calculate the frst few iterations of the de-
composition series as follows:

]0(ξ, t, c) � ce
− ξ

,

]0(ξ, t, c) � (3 − 2c)e
− ξ

,

]1(ξ, t, c) � ce
− ξ t

φ

Γ(φ + 1)
􏼢 􏼣,

]1(ξ, t, c) � (3 − 2c)e
− ξ t

φ

Γ(φ + 1)
􏼢 􏼣,

]2(ξ, t, c) � ce
− ξ t

2φ

Γ(2φ + 1)
􏼢 􏼣,

]2(ξ, t, c) � (3 − 2c)e
− ξ t

2φ

Γ(2φ + 1)
􏼢 􏼣,

]3(ξ, t, c) � ce
− ξ t

3φ

Γ(3φ + 1)
􏼢 􏼣,

]3(ξ, t, c) � (3 − 2c)e
− ξ t

3φ

Γ(3φ + 1)
􏼢 􏼣,

(52)
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Figure 1: 2D simulation of the exact and approximate solutions of fuzzy upper and lower portions of Example 1 at ξ � 0.2 and t � 1.
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Figure 2: 3D simulation of the exact and approximate solutions of fuzzy upper and lower portions of Example 1 at ξ � 0.5.
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and so on. Tus, the approximate solution is given by

](ξ, t, c) � ce
− ξ 1 +

t
φ

Γ(φ + 1)
+

t
2φ

Γ(2φ + 1)
+

t
3φ

Γ(3φ + 1)
+ · · ·􏼢 􏼣,

](ξ, t, c) � (3 − 2c)e
− ξ 1 +

t
φ

Γ(φ + 1)
+

t
2φ

Γ(2φ + 1)
+

t
3φ

Γ(3φ + 1)
+ · · ·􏼢 􏼣.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(53)

For φ � 1, the FADM solution (53) converges to the
following exact solution:

](ξ, t, c) � ce
t− ξ

,

](ξ, t, c) � (3 − 2c)e
t− ξ

.

⎧⎨

⎩ (54)

Remark 13. When [c, 3 − 2c] � 1, then the equation (53)
converts to the fractional order solution as in [57] and the
solution (54) converges to the exact solution as in [58].

Figures 3 and 4 represent (a) the exact solutions and (b)
the FADM solutions for the frst three approximations of
Example 2 with diferent fractional order and uncertainty
c � [0, 1]. We observe that the exact and derived results are
in good contact, confrming the high accuracy of the pro-
posed method for the fuzzy fractional problems in the sense
of the Caputo operator.

Example 3. Consider the following nonlinear fuzzy frac-
tional partial diferential equation:

c
D

φ
t ](ξ, t, c) +

1
36

ξ]2ξξ(ξ, t, c) � ξ3, ξ ∈ [0, 1], t ∈ [0, 2],

](ξ, 0, c) � [c, 2 − c].

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(55)

Applying the FADM step by step, we obtain the fol-
lowing recurrence relations:

]0(ξ, t, c) � c + I
φ
t ξ3􏼐 􏼑,

]k+1(ξ, t, c) � − I
φ
t 􏽘

∞

k�0
Mk

⎛⎝ ⎞⎠, k≥ 0.
(56)

and
]0(ξ, t, c) � (2 − c) + I

φ
t ξ3􏼐 􏼑,

]k+1(ξ, t, c) � − I
φ
t 􏽘

∞

k�0
Mk

⎛⎝ ⎞⎠, k≥ 0,
(57)

where [Mk, Mk] represent the Adomian polynomials of the
nonlinear function

􏽢N] � −
1
36

ξ]2ξξ(ξ, t, c), −
1
36

ξ]2ξξ(ξ, t, c)􏼔 􏼕. (58)

Te frst few iterations of the decomposition series are as
follows:

]0(ξ, t, c) � c + ξ3
t
φ

Γ(φ + 1)
􏼢 􏼣,

]0(ξ, t, c) � (2 − c) + ξ3
t
φ

Γ(φ + 1)
􏼢 􏼣,

]1(ξ, t, c) � − ξ3
Γ(2φ + 1)t

3φ

Γ2(φ + 1)Γ(3φ + 1)
􏼢 􏼣,

]1(ξ, t, c) � − ξ3
Γ(2φ + 1)t

3φ

Γ2(φ + 1)Γ(3φ + 1)
􏼢 􏼣,

]2(ξ, t, c) � 2ξ3
Γ(2φ + 1)Γ(4φ + 1)t

5φ

Γ3(φ + 1)Γ(3φ + 1)Γ(5φ + 1)
􏼢 􏼣,

]2(ξ, t, c) � 2ξ3
Γ(2φ + 1)Γ(4φ + 1)t

5φ

Γ3(φ + 1)Γ(3φ + 1)Γ(5φ + 1)
􏼢 􏼣,

]3(ξ, t, c) � − ξ3
4Γ(2φ + 1)Γ(4φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ(3φ + 1)Γ(5φ + 1)Γ(7φ + 1)
􏼠􏼢

+
Γ2(2φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ2(3φ + 1)Γ(7φ + 1)
􏼡t

7φ
􏼣,

]3(ξ, t, c) � − ξ3
4Γ(2φ + 1)Γ(4φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ(3φ + 1)Γ(5φ + 1)Γ(7φ + 1)
􏼠􏼢

+
Γ2(2φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ2(3φ + 1)Γ(7φ + 1)
􏼡t

7φ
􏼣.

(59)

Similarly, we can fnd the other terms. Hence the ap-
proximate solution is given by
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Figure 3: 2D simulation of the exact and approximate solutions of fuzzy upper and lower portions of Example 2 at ξ � 0.50 and t � 0.5.
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Figure 4: 3D simulation of the exact and approximate solutions of fuzzy upper and lower portions of Example 2 at ξ � 0.5.
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](ξ, t, c) � c + ξ3
t
φ

Γ(φ + 1)
−
Γ(2φ + 1)t

3φ

Γ2(φ + 1)Γ(3φ + 1)
+
Γ(2φ + 1)Γ(4φ + 1)t

5φ

Γ3(φ + 1)Γ(3φ + 1)Γ(5φ + 1)
􏼢

−
4Γ(2φ + 1)Γ(4φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ(3φ + 1)Γ(5φ + 1)Γ(7φ + 1)
+
Γ2(2φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ2(3φ + 1)Γ(7φ + 1)
􏼠 􏼡

× t
7φ

+ · · · 􏼣,

](ξ, t, c) � (2 − c) + ξ3
t
φ

Γ(φ + 1)
−
Γ(2φ + 1)t

3φ

Γ2(φ + 1)Γ(3φ + 1)
+
Γ(2φ + 1)Γ(4φ + 1)t

5φ

Γ3(φ + 1)Γ(3φ + 1)Γ(5φ + 1)
􏼢

−
4Γ(2φ + 1)Γ(4φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ(3φ + 1)Γ(5φ + 1)Γ(7φ + 1)
+
Γ2(2φ + 1)Γ(6φ + 1)

Γ4(φ + 1)Γ2(3φ + 1)Γ(7φ + 1)
􏼠 􏼡

× t
7φ

+ · · · 􏼣.

(60)

For φ � 1, the exact solution obtained as follows:

](ξ, t, c) � c + ξ3tanht,

](ξ, t, c) � (2 − c) + ξ3tanht.

⎧⎨

⎩ (61)

Remark 14. When [c, 2 − c] � 0, then the equation (61)
converges to the exact solution obtained in [56].

Figures 5 and 6 represent (a) the exact solutions and (b)
the FADM solutions for the frst three approximations of
Example 3 with diferent fractional order and uncertainty
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Figure 5: 2D simulation of the exact and approximate solutions of fuzzy upper and lower portions of Example 3 at ξ � 1 and t � 0.5.
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c � [0, 1]. We observe that the exact and derived results are
in good contact, confrming the high accuracy of the pro-
posed method for the fuzzy fractional problems in the sense
of the Caputo operator.

6. Conclusion

Tis work aimed to investigate certain sufcient conditions
for the existence and uniqueness of a solution of the non-
linear fuzzy fractional partial diferential equations. Fur-
thermore, we used the FADM to obtain the approximate
solutions to the given problem. Te proposed method
provides more believable series solutions whose continuity
depends on the fuzzy fractional derivative. As the number of
decomposed terms increases, the numerical solution begins
to converge. Te performance and reliability of the FADM
are studied by implementing three numerical examples. We
also generated graphs of the numerical solution at diferent
fractional orders. As can be seen in the fgures, the plots
converge to the curve at φ � 1 as the fractional order φ
approaches its integer value. Tis suggests that fractional
calculus can be used to identify the global nature of the
dynamics of equations related to fuzzy concepts.
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