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Recently, the intrauterine sterile environment theory has been questioned. Growing evidence shows that microbial in utero
pioneer gut colonization could occur prebirth, and this initial colonization may play an important role in the development of
the neonate immune system and setting up a niche for the adult-like microbiota. In this study, we compared the microbiota
networks from public available meconium datasets from different countries. The findings showed differences at the genera level
and were country-dependent. We generated and analyzed bacterial networks, at the genera level of meconium samples from c-
section and vaginally delivery modes. Interestingly, bacterial networks from the c-section-delivered meconium samples tended
to have a bigger diameter but fewer correlations, whereas the vaginally delivered meconium networks were smaller and with a
higher number of correlations. Even more, the networks were similar in the delivery mode, even between countries, at the
genera level. The c-section networks suggest incomplete colonization or important lack of bacteria, promoting the susceptibility
of the network to receive new members, beneficial or pathogens. These results suggest that the network analysis contributes to
the knowledge of microbiota composition, identifying microbial associations, despite the differences between the environment
and country habits, and obtaining a better understanding of microbial gut colonization.

1. Introduction

According to the Developmental Origins of Health and
Disease (DOHaD) theory, the origin of adult health or dis-
ease could be established during fetal development [1].
During the intrauterine developmental phase, the environ-
mental stimuli associated with maternal health like diet
and nutritional state, weight, stress, physical activity,
pollution-exposed habits like smoking, and alcohol con-
sumption, among others, determine the conditions for
developing the fetus. Otherwise, all that stimulus could
lead to epigenetic markers that are part of fetal program-
ming for health or disease [2].

Since the report of Aagaard and collegues, in 2014, about
the placental microbiota composition [3], the belief of a ster-
ile intrauterine environment was debated. The findings
showed a particular and unique characteristic microbial
niche with differences to others, such as the vagina, mouth,
gut, and skin [3]. These results have been discussed due to
possible contamination during the taking and processing of
the sample and laboratory contamination [4].

In 2019, Li et al. published a study where using negative
controls demonstrated that the first bacterial colonization
happens prebirth and before the newborn can even have
contact with any surface; therefore, the findings are not a
contamination issue. Moreover, they proposed that the way
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of birth, vaginal or cesarean delivery, could not influence this
type of colonization [5].

Kimura and collaborators reported in a mouse model
that the maternal gut microbiota confers resistance to obe-
sity in offspring via the SCFA-GPR41 (Short Chain Fatty
Acid-G protein-coupled receptor 41) and SCFA-GPR43
(Short Chain Fatty Acid-G protein-coupled receptor 43)
axes. SCFAs (Short Chain Fatty Acids) produced by mater-
nal microbiota activate embryonic GPR41 and GPR43
receptors. Activation of these receptors promotes sympa-
thetic, neuronal, enteroendocrine, and pancreatic B cell dif-
ferentiation. The conclusions were that maternal
microbiota influences the offspring’s metabolic pheno-
type [6].

Meconium is the initial substance present in the intes-
tines of the developing fetus and constitutes the first bowel
movement of the newborn. 24 to 48 h following birth, term
healthy neonates pass the meconium and represent a nonin-
vasive method for sampling and investigating the gut coloni-
zation [7].

Tapiainen and collaborators described interindividual
variability among first-pass meconium samples. They found
that the most abundant phyla were Firmicutes, with a rela-
tive abundance of 44%; in the second place, Proteobacteria
28%; and the third one, Bacteroidetes 15%. They also
reported that the microbial characteristics of meconium
were not affected by immediate perinatal factors, like the
delivery mode and the use of antibiotics, whereas the greater
biodiversity of the maternal living environment (such as pet
cohabitation) during all three trimesters of pregnancy
increases the diversity of the microbiota, which they
described as implying an in utero transfer of microbes [8].

The most abundant genera in the gut of a healthy new-
born are Bifidobacterium, Veillonella, Streptococcus, Citro-
bacter, Escherichia, Bacteroides, and Clostridium, according
to Milani and colleague's review from 2017 [9], and at the
phylum level are mostly Proteobacteria, Firmicutes, Actino-
bacteria, Verrucomicrobia, and Bacteroides as reported by
Del Chierico and colleagues [10].

The neonatal gut microbiota is considered unstable
because it undergoes several changes during the first months
of life. Facultative anaerobes are the first colonizers to pre-
pare the niches for the anaerobe microbes [11]. Infant gut
microbiota shifts due to several factors, such as delivery
mode, maternal and infant feeding, the introduction of solid
food, the use of antibiotics, and the presence of pets in the
household [12, 13].

In 2019, Reyman and colleagues found that Bacteroides
phyla were not found in newborns who were delivered by
c-section, in contrast with those vaginally delivered (Reyman
et al.). Recently, Yassour and colleagues analyzed 73 samples
divided into 3 groups: vaginally delivered, postlabor CS (c-
section), and prelabor CS. They described the presence of
Bacteroides in all 3 groups, but in those born via c-section
(pre- or postlabor), the colonization could not be main-
tained; then, the Bacteroides disappeared at week 2. These
results suggest a new hypothesis that both birth delivery
modes, vaginal and c-section, promote Bacteroides coloniza-
tion of the newborn gut; however, the necessary conditions

that allow the maintenance of an appropriate niche for Bac-
teroides are not present in the gut of newborns that were
born by CS [14].

The implications of these findings in the changes in the
microbiome composition due to delivered mode are dis-
cussed and still controversial; however, much evidence sup-
ports the main role of the composition, abundance, and
function in the microbiome in human health Kulagina
et al. [15]. Highlighting the differences of the microbiome
over the early steps of life that could determine the immune
system development, maturation, and function and how is
associated with the susceptibility to diseases during life, even
in adults [14, 16]. The gut is associated with neurodegener-
ative, cardiovascular, and different metabolic diseases.
Mainly, the conclusions show a strong association between
differences in microbiome between healthy individuals and
patients ([17, 18], Méndez-Salazar et al. 2018)

Currently, the controversy around in utero colonization
continues mainly because of the lack of reliable methods that
allow researchers to confirm whether human bacterial colo-
nization begins during intrauterine development but also
due to ethical restrictions and technical issues, like better
sample selection and methods to obtain it and contamina-
tion issues, among others.

Microbiota composition studies (16S rRNA sequencing)
mostly focus on measuring the abundance (raw and relative
counts) and the presence or absence of microorganisms in a
specific environment. Moreover, there are different plat-
forms to perform 16S rRNA sequencing, but the raw
sequencing data should be comparable with the indepen-
dence of the platform in which it was conducted Allali
et al. [19]. Unfortunately, this does not happen, and most
of the time, some bioinformatic preprocessing must be done
to get comparable data.

Bioinformatic tools bring the possibility of performing
various analyses using existing datasets or databases. One
of these analyses is the association of microorganisms under
different conditions, measured as correlations and generat-
ing microbial association networks. Network analysis of
microbial association patterns allows getting insights into
the characteristics of the bacterial communities and possible
interactions, among others [20]. Beyond the abundance of
different bacteria, the understanding of the functional role
and associations between microorganisms may help us get
a deeper understanding of the microbiota composition.

Since the first gut colonization is still a controversy,
whether it occurs during intrauterine development or after
birth, many articles have reported the sequencing results of
the meconium microbiota. In this study, we selected three
different publicly available datasets from meconium samples
from three different countries, to compare the characteristics
between pioneer gut microbiota and between meconium
microbiome association networks to better understand the
associations between microbial communities. We found that
at the phylum level, the microbiota composition is similar
between delivering modes, vaginal or c-section. However,
at the genera level, all three studies present differences
between them. We generated association networks for the
meconium samples at the genera level for each study and
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for each delivery mode. We found common features
depending upon the delivery mode, regardless of the study.
C-section networks are less compact and do not have a dom-
inant community, compared to vaginal networks. Vaginal
networks present a dominant community structure and are
highly connected. Our results highlight the utility of network
analysis in microbiota studies for assessing a better under-
standing of the first gut colonization.

2. Materials and Methods

2.1. BioProject Datasets. BioProject datasets PRJNA311499,
PRJNA530829, and PRJNA559967 were downloaded from
the Sequence Read Archive. We have used the fastq-dump
function from the SRAtoolkit (GitHub—ncbi/sra-tools:
SRA Tools) with default parameters and with the –split-3
parameter. We performed a quality control analysis using
the FastQC v0.11.9 tool (Babraham Bioinformatics—-
FastQC, a quality control tool for high-throughput sequence
data). For the PRJ311499 (Ion Torrent PGM platform) pro-
ject, the fragments have a mean of Phred score of ~29. The
PRJ530829 (PacBio platform) project fragments have a
mean Phred score of ~92. And the PRJ559967 (MiSeq Illu-
mina platform) project fragments have a mean Phred score
of ~37.

2.2. 16S rRNA High-Throughput Sequencing Data Processing.
We used the R package DADA2 v1.16.0 [21] to process the
16S rRNA sequencing data. For the PRJNA311499 (Ion Tor-
rent) and PRJNA530829 (PacBio) datasets, we have trimmed
10nt from the left and right sides of the fragments. For
PRJNA559967 (MiSeq Illumina), we have trimmed 25nt
on the right side. For the PRJNA530829 project, we have
removed the forward primer AGRGTTYGATYMTGGCT-
CAG and the reverse primer RGYTACCTTGTTACGACTT
using the removePrimers() function, with default parameters.
Error rates were calculated using the learnErrors() function
with default parameters for all BioProject datasets; with
HOMOPOLYMER_GAP_PENALTY = -1 and BAND_SIZE
= 32 for PRJNA311499 and errorEstimationFunction = Pac-
BioErrfun and BAND_SIZE = 32 for PRJNA530829. We
have used the dada() function to infer the sample composi-
tion using default parameters and the calculated error rates.
Then, we removed the chimeras using the removeBimeraDe-
novo () function with default parameters. The taxonomy for
each sequence was assigned using the assignTaxonomy()
function and the silva_nr99_v138 database. For all BioPro-
ject datasets, we have obtained an amplicon sequence variant
(ASV) table.

2.3. Taxon Abundance Analysis. Taxon abundances were
processed using custom R v4.0.2 (R Core Team [22]—Euro-
pean Environment Agency) scripts. For each dataset, we
have removed samples with no counts in at least a fifth of
the samples for PRJNA311499, one sample for
PRJNA530829, and at least a fifth for PRJNA559967. We
have removed taxa with less than one count in at least a
twentieth of the taxa. The normalization for the sample in

each dataset (project) was calculated as the logarithm of
the counts per million for each sample, log ðcpmðASVÞ + 1
Þ.
2.4. sPLS-DA Analysis. Using the normalized abundances,
we have performed an sPLS-DA analysis to identify which
taxa are more abundant in different sample types. We used
the splsda() function from the MixOmics R package [23]
with default parameters, ncomp = 2 and scale = TRUE.

2.5. Permutation Test for sPLS-DA Loading. To obtain statis-
tical significance to the loadings from the sPLS-DA, we have
performed a permutation test with an in-house R script and
by randomizing the variable ids, genera, or pathways accord-
ing to the analysis. The number of permutations was n =
1000. For each variable, we calculate the observed score;
then, we randomize the variables ids n times, and for each
randomization, we obtain a randomized score. Finally, we
obtain a p value by comparing the observed score to the ran-
domized scores.

2.6. Network Inference.We inferred the relationship between
taxa for each sample type in each BioProject dataset as the
correlation ρ between taxon-normalized abundance. Each
taxon is defined as a vertex (vertex/node: a vertex is defined
as the fundamental unit of a graph). The correlations ρ are
defined as the edges of the network (edge: an edge is the link
between any pair of vertices). We used the cor() function
from the stats R package with the “Spearman” method. For
each correlation ρ, we tested it with the cor.test() function
and obtained its corresponding p value. We have corrected
these p values with the p.adjust() function using the method
False Discovery Rate (FDR). We kept correlations with
FDR ≤ 0:1 in order to reduce the false discoveries. Using
these correlations between taxa, we used the igraph R pack-
age (Package “igraph” Title Network Analysis and Visualiza-
tion [24]) to generate an igraph network (network: a
multigraph in which more than one edge is allowed between
a pair of vertices and edges may be connect a vertex to itself)
object with weights = absðρÞ. Network properties (diameter:
the maximum distance over all vertices in a network, degree:
the number of edges corresponding to each vertex, and hub
score: score associated to a node that with a number of links
greater than the average) were calculated using the diame-
ter(), degree(), and hub_score() functions from the igraph
package. Plots of the networks were generated with the plot()
S3 method for igraph objects (Package “igraph” Title Net-
work Analysis and Visualization [24]).

2.7. Pathway’s Inference. We have used Tax4Fun2 [25] to
perform the pathway prediction for the 16S sequencing data.
First, we used the runRefBlast() and then the makeFunctio-
nalPrediction() functions, with default parameters. The
input to these functions was the ASV quantification profiles.
We used the reference RF99NR used in both steps. The
resulting pathway prediction table was used to perform a
sparse Partial Least Squares Discriminant Analysis (sPLS-
DA). To perform this, we used the function spls-da() from
the R package MixOmics with default parameters and nco
mp = 2 [23]. We have used in-house R scripts to generate
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the plots to represent the results of the sPLS-DA (R: The R
Project for Statistical Computing [26]).

3. Results

A total of three datasets with 16S rRNA-sequenced meco-
nium samples was analyzed using bioinformatic methods
(see Materials and Methods). All three datasets included
data from meconium samples that were divided into two
groups: data of newborn samples delivered by c-section
(CS) or vaginally (V). These studies were selected based on
the availability of the data, and the type of sample was meco-
nium from newborns from different studies and countries.

3.1. The Phylum-Level Composition Is Consistent across
Studies. Relative abundances at the phylum level were calcu-
lated to describe the composition by delivery mode in each
study. In Figure 1, we observed the previously reported
phylum-level composition in all meconium samples with
some differences in the order, with Proteobacteria and Fir-
micutes being the most abundant phyla [9, 10, 13].

In the Oulu, Finland, study (PRJNA311499) [8], at the
phylum level, we found 41% Firmicutes, 31% Proteobacteria,
25% Bacteroides, and 1.3% Actinobacteria in the meconium
samples from vaginally (V) delivered newborns. However,
for c-section delivery (CS), the samples contain 34% Firmi-
cutes, 65% Proteobacteria, 0.015% Bacteroides, and 0.66%
Actinobacteria composition. Interestingly, Proteobacteria in
CS increases ~2.1-folds, and Bacteroidota reduces ~0.0006-
folds.

The Perth, Australia, study (PRJNA530829) [27] uses
only c-section- (CS-) delivered newborn samples. The com-
position was 3.9% Firmicutes, 92% Proteobacteria, 3.3%
Actinobacteria, and 0.31% Deinococcota. As in the Finland
study, CS microbiome composition was dominated by Pro-
teobacteria and with no detectable fraction of Bacteroidota.

In the Yunnan, China, study (PRJNA559967) [5], the
vaginally (V) delivered neonate meconium samples had
11% Firmicutes, 59% Proteobacteria, 11% Actinobacteria,
and 17% Deinococcota. The c-section (CS) samples had
8% Firmicutes, 70% Proteobacteria, 4.3% Actinobacteria,
and 12% Deinococcota. This Yunnan study has undetectable
Bacteroidota evidence for both types of samples, V and CS.
Moreover, compared to the other two studies, Firmicutes is
not the most abundant phylum. Proteobacteria dominate
in both types of samples and are more abundant in CS
samples.

Expected phylum distribution was founded in all three
studies, with the predominance of Firmicutes and Proteo-
bacteria. These phyla have the characteristics needed to exist
in the neonatal gut environment, although they are com-
posed by Gram positive and negative bacteria, and the pres-
ence of both aerobic and anaerobic species.

3.2. Differences by Country and Birth Mode. According to the
multidimensional scaling (MDS) analysis (Figure 2), there is
no tendency to cluster together with the samples according
to the birth mode at the genus level. We observed that sam-
ples from PRJNA559967 (China) were clustered together

(both c-section and vaginal-delivered samples). Samples
from PRJNA311499 (Finland) were not clustered with any
other study samples, but V and CS samples are differentiated
between them. In the PRJNA530829 (Australia) study with
only CS samples, these samples are closer to the
PRJNA311499 (Finland) V samples. From these results, a
clear clustering is not observed given the birth delivery
mode. In the PRJNA559967 (China) study, differentiation
between birth modes was not observed. Thus, no similarities
in the relative abundance composition were observed in the
meconium samples analyzed.

3.3. Diverse Genera Are Present by Study and Delivery Mode.
Sparse Partial Least Squares Discriminant Analysis (sPLS-
DA) and permutation test were used to obtain the significant
genera that characterize each delivery mode in the three
datasets (Figure 3). In the Oulu, Finland, study
(PRJNA311499), the genera from the CS-delivered meco-
nium samples explained ~56% of the total variance. In this
study, there was a clear differentiation between V and CS
meconium samples (Figure 3(a)). The specific and significant
(p value < 0.1) genera for CS (Figure 3(b)) were Bacteroides,
Agathobacter, UCG-002, Faecalibacterium, Dialister, Alis-
tipes, and Anaerostipes. The specific and significant genera
for V were Bradyrhizobium and Staphylococcus. The genera
associated with the differentiation of the CS samples are
more mostly Gram positive. Instead, the V sample genera
are mostly found in plant, root, and skin microbiota, the
dominant genus being Gram negative.

The Yunnan, China, study (PRJNA559967) is shown in
Figure 3. In this study, there is no clear differentiation
between V and CS samples as the Oulu, Finland, studies
(PRJNA311499) (Figure 3(c)), according to the sPLS-DA
analysis. Here, the specific and significant (p value < 0.1)
genera generating the mild differentiation are Streptococcus,
Thermus, Pyrinomonas, Schlegelella, Brevundimonas, and
Amaricoccus. Instead, the specific and significant genera for
V were only Alcaligenes. However, Deinococcus and Mega-
sphaera were also detectable but not significant
(Figure 3(d)). The genera associated with the differentiation
of the CS samples are mostly Gram negative, as well as the V
samples.

The Australian study (PRJNA530829) only included
data from the meconium of CS and amniotic fluid (AF)
(Figure 3(e)). There was a mild difference between CS and
AF samples. The Pelomonas and Novosphingobium genera
were specific and significant findings (p value < 0.1)
(Figure 3(f)). The genera associated with the differentiation
of the CS samples are Gram negative and possibly related
to the Australian water, as was before described [28].

We found common genera between the PRJNA311499
and PRJNA559967. These studies have V and CS samples.
For the CS samples, the common genera were Ruminococcus
and Lactococcus. For the V samples, the common genus was
Bradyrhizobium. For both studies, there are detectable
shared genera, but they are uncommon for the delivery
mode, CS or V. These genera were Cutibacterium, Strepto-
coccus, Stenotrophomonas, and Staphylococcus. Between the
studies PRJNA311499 and PRJNA530829, there are
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common genera associated with V and AF, respectively.
These genera were Ralstonia, Streptococcus, Staphylococcus,
and Pelomonas (Figure 4).

Accordingly, these results showed that there is no shared
genera for CS or V samples between studies. This suggests
that each study has characteristic and specific genera due
to the origin of the studies. The geographic, ethnic, and diet
characteristics could explain the differences between the
studies.

3.4. Network Characteristics. To better understand the rela-
tionship between taxa, network analysis was performed for
each study and delivery mode. The characteristics of the net-
works are listed in Table 1.

In the PRJNA311499 study, the network of meconium
CS samples has 32 nodes, 246 edges, and a diameter of
0.92. Alternatively, the network of meconium V samples
has 393 edges, 32 nodes, and a diameter of 0.62. Besides,
the V network has a higher average degree, ~22 for V and
~17 for CS networks, and the average hub score, ~0.74 for
V and ~0.60 compared with the CS network. V network
has 5 communities, the main community contains 14 gen-
era, and the second one contains 9 genera. In contrast, the
CS network has only 2 communities containing 14 and 15
genera. Besides, the V network has a greater number of pos-
itive correlations between genera, 88% vs. 84% (Table 1).
The results suggest that the V network is more compact,

dense, and dominated by only one community, compared
to the CS network.

In the PRJNA559967 study, the meconium samples of
newborns from the CS delivery network have 28 nodes, 45
edges, and a diameter of 4.1. In contrast, the meconium sam-
ples of newborns from the V delivery network have 33
nodes, 126 edges, and a diameter of 2.6, having a higher
average degree, ~5 for V and ~3 for CS networks, and an
average hub score, ~0.25 for V and ~0.24 for CS networks,
compared with the CS network, as well as the PRJNA311499
study. The V network has 5 communities, the main commu-
nity contains 17 genera, and the second one contains 6 gen-
era. The CS network has 9 communities containing 10 for
the main community and 4 for the second to the fourth
communities. In this study, the V network has a greater
number of positive correlations between genera, 96% vs.
69%. For this study, the results suggest that the V network
is also more compact, dense, and dominated by only one
community in comparison to the CS network, as the
PRJNA311499 study.

The network analysis results of the PRJNA530829 study
showed 19 nodes, 166 edges, and a diameter of 1; this project
only includes meconium CS samples. In this study, there is
no V network to be compared with the CS network. How-
ever, the AF network has 3 communities and is dominated
by 1 community containing 16 genera and 2 communities
with only 1 genus. The CS network has 2 communities with
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6 and 13 genera. Here, the AF network is dominated by one
community, as for the V networks in other studies.

Networks from the meconium samples from the vagi-
nally delivered mode tended to have a greater number of
edges in contrast to those coming from the c-section deliv-
ery; however, V networks had a smaller diameter. Interest-
ingly, the findings on meconium samples from newborns
vaginally delivered showed the dominance of only one com-
munity, given the number of genera that the communities
contain, compared to the c-section networks. In contrast,
CS networks do not show clear dominance of only one
community.

The networks coming from the meconium data of new-
borns who had a vaginal delivery look centered and tighter,
with stronger connections, with a greater number of correla-
tions between genera present in the niche (FDR < 0:01), and

most of the correlations were positive (Table 1). The net-
works resulting from the c-section-delivered samples
seemed more scattered, with greater distance between the
nodes, more negative correlations (see Table 1), and more
scattered communities, compared to the vaginal networks.
The characteristics observed suggest that the CS networks
are more dynamic than V networks and prone to integrate
new genera, beneficial or prejudicial, into the network.

3.5. Interaction Changes in the Newborn Core Gut
Microbiota. The networks of PRJNA311499 are shown in
Figure 5. Ruminococcus is one of the generas mentioned as
the newborn Core Gut Microbiota and is present in both
PRJNA311499 and PRJNA559967 networks (Figures 5 and
6). Ruminococcus represents a bigger node and has a higher
number of correlations: 32 and 16, respectively; the majority
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Figure 3: Continued.
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were positive for vaginal delivery networks in both projects.
In contrast, CS networks showed 15 and 3 positive correla-
tions, respectively (Figure 6(a)). Ruminococcus is a genus of

mutualistic bacteria and degrades complex polysaccharides,
which could be useful in the feeding transition in the
neonate.
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Figure 3: MDS (multidimensional scaling) and scatter plots from the 3 datasets. Vaginal (V) from PRJNA311499 in orange, c-section (CS)
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Table 1: Network characteristics from the three studies for vaginal and c-section delivery modes.

PRJNA311499 (Oulu,
Finland)

PRJNA559967 (Yunnan,
China)

PRJNA530829 (Perth, Australia)

C-section Vaginal C-section Vaginal C-section Amniotic fluid

Nodes 32 32 28 33 19 19

Edges 246 393 45 126 166 166

Diameter 0.92 0.62 4.1 2.6 1 1.2

Communities 2 5 5 9 2 3

Positive correlations 206 (84%) 345(88%) 38 (84%) 119 (94%) 166 (100%) 166(100%)

Negative correlations 40 (16%) 48 (12%) 7 (16%) 5 (6%) 0 (0%) 0 (0%)

Mean degree ~22 ~17 ~5 ~3 N/A N/A

Mean hub score ~0.74 ~0.60 ~0.25 ~0.24 N/A N/A

Figure 5: Networks from the meconium microbiota of the PRJNA311499 study. On the left is the network of CS delivery, and vaginal
delivery is shown on the right side. The red lines are the positive correlations, and the blue ones are negative. The vaginal network has a
more compact core with an important number of positive correlations. The size of the circle (node) is determined by the hub score.

Figure 6: Networks from meconium microbiota (PRJNA559967). On the left is the network of CS delivery, and on the right is the network
of V delivery. The red lines are the positive correlations, and the blue ones are negative. The vaginal network has a more compact core with
an important number of positive correlations. The size of the circle (node) is determined by the hub score.
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Alternatively, the Bacteroides genus is only present in
PRJNA311499 at V delivery, with 19 positive correlations
and only 1 negative correlation with Phyllobacterium. None-
theless, it is represented as a core node in this network
(Figure 5). Moreover, mentioned among the newborn Core
Gut Microbiota is the Lactococcus genus. It is present on
both PRJNA311499 and PRJNA559967. In the
PRJNA311499, it is in both CS and V delivery, while in the
PRJNA559967 study, it is only present at the V delivery. In
the PRJNA559967 analysis, Lactococcus is at the center as a
relevant node in the network (Figure 7). Therefore, in this
network, Lactococcus is a core node. Lactobacillus is present
only in the PRJNA530829 CS network. All positive correla-
tions were found in the network analysis for the
PRJNA530829 study (Figure 6). Lactobacillus is also among
the genera mentioned as newborn Core Gut Microbiota. The
four genera described as part of the newborn Core Gut
Microbiota were found in the networks. However, networks
are constructed with the results of the sPLS-DA results; if
some genera are not part of the networks, it does not mean
that is not present.

3.6. Metabolic Pathway Prediction. Using the 16S rRNA
sequencing data, the metabolic pathways related to the main
genera for each study were predicted through the R package
Tax4Fun2. The predicted metabolic pathways related to
abundance at the genus level for each study are shown plot-
ting sPLS-DA (Figure 8).

For the PRJNA311499 CS delivery mode, the significant
pathways identified were lipoic acid metabolism, chlorocy-
clohexane and chlorobenzene degradation, and ether lipid
metabolism. Moreover, detectable but not significant path-
ways were lipoarabinomannan LAM biosynthesis, alpha
linolenic acid metabolism, styrene degradation, linoleic acid
metabolism, and xylene degradation (Figure 8). For V deliv-
ery mode, the significant pathways identified were glyco-
sphingolipid biosynthesis, lacro and neo lacto series,

sphingolipid metabolism, glycan degradation, glycosamino-
glycan degradation, various types of N glycan biosynthesis,
glycosphingolipid biosynthesis globo and isoglobo series,
and glycosphingolipid biosynthesis ganglio series
(Figure 8). The predicted CS pathways are related to lipid
metabolism, metabolism of cofactors and vitamins, and
xenobiotics biodegradation mainly. The predicted V path-
ways are related to glycan biosynthesis and lipid metabolism.

In the PRJNA559967 study of CS delivery, the significant
pathways were ascorbate and aldarate metabolism, arginine
and proline metabolism, phosphonate and phosphinate
metabolism, lipopolysaccharide biosynthesis, and nitroto-
luene degradation. Other nonsignificant pathways for CS
were taurine and hypotaurine metabolism, styrene degrada-
tion, nitrogen metabolism, steroid hormone biosynthesis
(lipid metabolism), glutathione metabolism, and drug
metabolism cytochrome p450 (Figure 9). For the V delivery
mode, the significant pathways were cysteine and methio-
nine metabolism, lysine biosynthesis, citrate cycle TCA
cycle, D glutamine and D glutamate metabolism, central car-
bon metabolism in cancer, X2 oxocarboxylic acid metabo-
lism, peptidoglycan biosynthesis, thiamine metabolism,
phenylalanine tyrosine and tryptophan biosynthesis, lipoar-
abinomannan LAM biosynthesis, sphingolipid metabolism,
C5 branched dibasic acid metabolism, carbon fixation path-
ways in prokaryotes, dioxin degradation, and oxidative
phosphorylation. The CS pathways are related to carbohy-
drate metabolism, amino acid metabolism, glycan metabo-
lism, and xenobiotic biodegradation. The V pathways are
related to amino acid metabolism, carbohydrate metabolism,
glycan biosynthesis, metabolism of cofactors and vitamins,
lipid metabolism, and energy metabolism.

In the PRJNA530829 study of the CS delivery mode, the
significant pathways identified were carbon fixation path-
ways in prokaryotes (energy metabolism), citrate cycle,
TCA cycle, glycine, serine and threonine metabolism, thia-
mine metabolism, phenylalanine, tyrosine and tryptophan

Figure 7: Networks from meconium microbiota from the PRJNA530829 study. On the left is the network of CS delivery and amniotic fluid
is shown on the right side. The red lines are the positive correlations, and the blue ones are negative. The vaginal network has a more
compact core with an important number of positive correlations. The size of the circle (node) is determined by the hub score.
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biosynthesis, methane metabolism, retinol metabolism,
pyrimidine metabolism, glycerolipid metabolism, central
carbon metabolism in cancer, pyruvate metabolism, glycoly-

sis glyconeogenesis, peptidoglycan biosynthesis, oxidative
phosphorylation from energy metabolism, and oxidative
phosphorylation (Figure 10). These pathways are mainly
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Figure 8: sPLS-DA from PRJNA311499. CS stands for c-section delivery mode and is represented by blue bars; V stands for vaginal delivery
mode and is represented by orange bars. AF stands for amniotic fluid and is represented by green bars.
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related to energy metabolism, carbohydrate metabolism,
amino acid metabolism, metabolism of cofactors and vita-
mins, nucleotide metabolism, and glycan metabolism.

The original database of the PRJNA530829 study
excluded the vaginal delivery data. The significant AF path-
ways are related to the metabolism of other amino acids,
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Figure 9: sPLS-DA from PRJNA559967. CS stands for c-section delivery mode and is represented by blue bars; V stands for vaginal delivery
mode and is represented by orange bars. AF stands for amniotic fluid and is represented by green bars.
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lipid metabolism, metabolism of cofactors and vitamins, and
energy metabolism (Figure 10).

There are no clear differences and common pathways
associated with the delivery mode, vaginal, or c-section.

However, we found that glycan biosynthesis (glycosphingo-
lipids) and lipid metabolism (sphingolipids) were associated
with V samples and xenobiotics biodegradation and carbo-
hydrate metabolism in CS samples.
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Figure 10: sPLS-DA from PRJNA530829. CS stands for c-section delivery mode and is represented by blue bars; V stands for vaginal
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4. Discussion

Omics sciences such as metabolomics, metagenomics, tran-
scriptomics, genomics, and many others generate a large
amount of data Yu and Zeng [29]. Commonly, researchers
cannot use all information; only one focus and one aim are
usually reported. However, the data obtained could be used
for many aims. In the microbiota analysis where 16S rRNA
high-throughput sequencing is used, relative abundances
are usually reported, and most of the time, another kind of
analysis is not included. Even more, these studies are from
different cities, regions, or countries [30].

Now, the growing progress in computational and bioin-
formatic tools allows us to dig deeper into the already exist-
ing data. The optimization of the information in public
databases could be an opportunity for several deeper analy-
ses that bring out new knowledge [31]. For the 16S rRNA
sequencing data, in addition to relative abundance and eco-
logical diversity, there are some other analyses to better
understand the structure and dynamics of that ecosystem
which could be performed. The correlation calculation,
cooccurrence, or associations between taxa can be shown
as networks, by using the normalized relative abundance
between studies, for example. The characteristics such as
network structure, network topology, and the potential eco-
logical relationship between taxa could be obtained. Worth-
while information about the metabolic pathways, role, and
activity of each genus in the niche could be elucidated with
the network and pathway analyses [32].

The composition of the gut microbiota changes rapidly
in the first years of development; the practice of breastfeed-
ing leads the child to have an adult-like microbiota, some-
times regardless of the way of birth Kim et al. [33]. The
relevance of the meconium microbiota study is the possibil-
ity of knowing about possible immunological conditions and
general health information developed during the intrauter-
ine stage [34]. The first colonizers made the initial immune
imprinting [35]. Much evidence suggests that alteration of
the first colonization is associated with the development of
diverse diseases during extrauterine life, like autoimmune
diseases, allergies, respiratory problems, and obesity, among
others that have been previously related [34].

The delivery mode has been associated with specific pat-
terns in the first gut microbiota colonization that may be
associated with many diseases in the newborn and during
extrauterine life [36, 37]. Previously, diminished bacterial
diversity in newborns from CS delivery birth mode has been
reported [38].

Here, we selected three studies with 16S rRNA through-
put sequencing data that had publicly available databases.
This is to compare the meconium microbiota according to
birth delivery mode, vaginal (V) or c-section (CS). With
the network analysis, several characteristics about the rela-
tionship between taxa were obtained and the possible contri-
bution of each one over the niche.

First, we found that all samples had similar relative
abundances at the phylum level despite country and delivery
modes. All samples present the expected phylum distribu-
tion for newborn gut microbiota [10], with mild shifts like

having either Firmicutes or Proteobacteria phyla with higher
abundance. The fetal gut has specific characteristics like pH,
oxygen, and nutrient availability [11]. This is the reason only
some microorganisms can survive and remain. At this stage
of life, the country and delivery mode of birth seem to not
make much difference at the phylum level [5, 39].

At the genus level, groups from the studies were not clus-
tered together (MDS analysis) by delivery mode or country.
This could be an indication that, as previously mentioned,
the delivery mode might not be the defining factor of the
composition of the meconium microbiota, and at the genus
level, there are not enough coincidences between delivery
modes in the datasets to form clusters based on that
characteristic.

From the previously reported in the newborn [40], we
identified members of the microbiota from all 3 studies,
using the sPLS-DA, that are characteristic genera dependent
on delivery mode and country.

From the newborn Core Microbiota, Ruminococcus and
Lactococcus are present in the CS of PRJNA311499 and
PRJNA559967 studies. Ruminococcus is a strictly anaerobic
genus, belonging to the Firmicutes phylum [41]. This bacte-
rium degrades complex polysaccharides and transforms
them into nutrients for the host [42]. As part of the newborn
Core Microbiota [10], this genus is well adapted to the envi-
ronment of the neonate’s gut. Lactococcus is a lactic acid
genus that previously belonged to the Streptococcus genus
until 1985, is Gram positive, and is facultative anaerobic
gut bacteria, which is a part of the Firmicutes phylum as
well [43].

Coincidental genera, such as Corynebacterium, Cutibac-
terium, Streptococcus, Staphylococcus, Stenotrophomonas,
Lactococcus, and Ruminococcus, were identified in
PRJNA311499 and PRJNA559967 (Figure 4). Corynebacte-
rium and Cutibacterium are genera from the Actinobacteria
phylum, commonly present in the skin microbiota and have
been described as opportunistic pathogens [44]. This genus
is characteristic of fermenting lactose into propionic acid
in an anaerobic environment [45]. Cutibacterium has been
identified as part of the pioneer gut colonizers [46, 47], both
delivery modes c-section [48, 49] and vaginal delivery [50].
Streptococcus is a lactic acid producer that belongs to the Fir-
micutes phylum, like Lactobacillus and Lactococcus [51]. Ste-
notrophomonas is a Gram-negative bacterium and is an
opportunistic human pathogen found mainly in soil and
plants [52].

Bradyrhizobium was found in vaginal delivery meco-
nium samples from PRJNA311499 and PRJNA559967. Bra-
dyrhizobium is a Gram-negative soil bacterium with
nitrogen fixation capabilities [53]. Stenotrophomonas and
Bradyrhizobium are genera that belong to the phylum Pro-
teobacteria, characteristic of the oral cavity [54] and found
in soil and plant roots [55], respectively. The leguminous,
possibly included in the maternal diet, might be responsible
for the presence of the genus [56].

Thermus and Novosphingobium were identified in CS
samples from PRJ530829 and PRJ559967 studies. Thermus
is Gram negative and is implicated in meningitis, endocardi-
tis, and septicemia. Thermus is considered a potential
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pathogen [57]. Novosphingobium is a Gram-negative bacte-
rium that degrades aromatic compounds like phenol, ani-
line, nitrobenzene, and phenanthrene [58].

The differences at the genus level, depending on the
delivery mode, could be explained by the differences in feed-
ing habits of the mother [59], previous nutritional status
[60], the use of antibiotics during pregnancy, the presence
of pets in the household Kates et al. [61], and even the lati-
tude, which is an environment factor [62]. All these factors
are different for the country and for the culture. In this anal-
ysis, newborns from Finland, China, and Australia were
included.

In Finland, potatoes, rye, dairy products, and sausages
are commonly consumed Mikkilä et al. [63]. China is a large
country with diverse eating habits; depending on the loca-
tion, still, soy and soy products, rice, tea, seafood, noodles,
different kinds of mushrooms, and various oils from differ-
ent sources are part of the daily diet [57, 58, 64, 65]. Austra-
lians frequently consume various cereals, sausages, lamb,
poultry, and seafood [66, 67]. The geographical characteris-
tics of each country and the available food play an essential
role in the establishment of gut microbiota [68–70].

Although the delivery mode seems not to be definitive
for the compositing of meconium microbiota expressed as
relative abundance, when the correlation networks were ana-
lyzed, we found characteristics that differentiate both the CS
and V delivery modes. Networks contain similar genera.
However, the structure, conformation, edges, and nodes in
each network have shown that the correlation between dif-
ferent genera are delivery mode-dependent. The network
analysis information might contribute to the understanding
of the way microorganisms relate to each other, their influ-
ence on niche development, the community organization,
and the role of all microorganisms together, conforming
the ecosystem for developing the immunological system
and contributing to the susceptibility of several diseases.

Del Chierico et al. [10] reported a network analysis of
meconium microbiota. Their findings showed fewer correla-
tions in networks from vaginally delivered neonates than the
c-section-delivered ones [10]. In contrast, in our analysis of
the two datasets, the networks from vaginal delivery have
more correlations than those from c-section. However, they
obtained a lower proportion of negative correlations for the
V network (~12%) compared to CS networks (43% for 1–3
days and ~35% for 7–30 days following), as in our results.
Moreover, their V network looks more compact and poten-
tially dominated by only one community.

The most interesting finding from our results is a differ-
ent pattern of correlation in the networks between vaginal
and c-section delivery modes. C-section bacterial networks
have a lower number of total correlations; furthermore, a
larger diameter (see Table 1) may be due to the incomplete
colonization or important lack of bacteria, promoting that
the network is “susceptible” to receive new members, benefi-
cial or pathogens. Moreover, c-section networks have a
higher percentage of negative correlations than the vaginal
delivery mode analysis (see Table 1).

Accordingly, findings from the network analysis could
contribute to information about the interaction between dif-

ferent genera and species and the kind of roles, functions,
and activities of each one and all together in the niche.
Changes in abundance, associations, and niches may be
implicated in the susceptibility of individuals to the develop-
ment of different diseases during adult life Libertucci and
Young [71].

From the 16S data, we also predicted the metabolic path-
ways related to bacteria present in meconium samples.
Using the sPLS-DA, the pathways that contribute to the dif-
ference between birth modes were identified. For the CS
delivery, the xenobiotics biodegradation and metabolism
pathway was found; during CS delivery, prescribed drugs
are used; therefore, the xenobiotic pathways could be acti-
vated [72, 73]. Interestingly, differences at the genus level
between delivery modes (CS and V) and in this study were
found, but in the pathway analysis, we can observe some
characteristic pathways, like xenobiotic metabolism in CS
delivery and amino acid metabolism in the V delivery as
reported here. The differences between the pathways
reported could be due to the ability of different species from
diverse genera to perform the same metabolic tasks. The
characteristics of the bacteria present at the genus level
might be determined by the maternal conditions and habits
and the geographical location, but it is possible that in the
end, they perform similar and needed tasks inside the neo-
natal gut.

The treatment in the laboratory of meconium samples is
a challenging task. That could be the reason why few studies
have reported using this sample. Issues with the DNA yield,
extraction methods, and low biomass have been reported, as
well as the need for a standardized method to work with
these types of samples [74–76]. However, meconium is a less
invasive sample to analyze prebirth intestinal microbiota.
Altogether, these results indicate that the study of meconium
microbiota composition and the study of the first colonizers
should use a holistic analysis. We must apply abundance
compositions, diversity index, predictions of pathways and
functions, and the organization of the microbiota via net-
work analysis. All these analyses will help us to determine
not only the specificity per study but also the similarities
between studies coming from different populations and/or
environments.

5. Conclusion

The network analysis of the microbiota obtained from 16S
rRNA sequencing could contribute to important informa-
tion about the niche, composition, and role of each phylum,
genus, and species in the ecosystem, as well as the relation-
ship between them. Using normalization steps in the bioin-
formatic methodology, the results will be more
reproducible, and the comparisons are possible even with
different sequencing platforms. Meconium samples could
represent an accessible opportunity to study the in utero
environment effect on fetal development and bacterial pre-
birth colonization mainly. The findings show that the net-
works showed different kinds of important conformation
and are structure delivery mode dependent. However, more
studies incorporating and comparing meconium and feces
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samples from the same individuals in longitudinal studies
may give a better understanding of prebirth colonization,
the dynamics of the associations between taxa, and its
impact on adult health. Therefore, the network analysis
brings evidence of the niche and relationships between the
taxa present, increasing the knowledge about the function,
activity, and influence of the ecosystem even with similar rel-
ative abundances according to the delivery mode.
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