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Food allergy is a significant public health problem troubling people, and the incidence has been on the rise in the past decade.
Emerging evidence suggests an influence of the gut microbiota in susceptibility to food allergies. Epidemiological studies have
shown an association between altered exposure to the microbiome and the risk of food allergies. Intervention of the gut
microbiota in germ-free mice or supplementation of probiotics can regulate the proliferation of regulatory T (Treg) cells in
mice and inhibit food allergy by promoting the expression of receptor-associated orphan yt* (RORyt") regulatory T (Treg)
cells and inhibiting the proliferation of T helper 2 (Th2) and Th17 cells. This paper reviews the current research progress on
how the gut microbiota enhances immune tolerance to prevent food allergy through RORyt" Treg, hoping to provide some
new ideas and effective targets for the prophylaxis of food allergy.

1. Introduction

Common allergic disorders include food allergy (FA),
asthma, allergic rhinitis, atopic dermatitis, Henoch-
Schonlein purpura, urticaria, eczema, and drug allergy [1].
After asthma and allergic rhinitis, food allergy has become
a new public health issue [2, 3]. In recent years, many epide-
miological reports on FA have painted a grim picture [4]. A
great deal of data show that the prevalence of FAs is increas-
ing [5]. Many studies report that FAs are becoming more
common, increasingly children and adults are being diag-
nosed with FAs, and it takes longer than previously thought
for people to build immune tolerance to no longer be allergic
to food [4] and hospitalizations for FAs are increasing [5]. In
addition, FAs were once thought to be more common in
developed countries, but they may now be more prevalent
in developing countries, which is thought to be because of
genetic factors [6].

The mucosal surface is often invaded by a variety of
microorganisms, so it has a strong intestinal mucosal
immune system and various immune cells with potent activ-
ity [7]. There are many different populations of lymphocytes

in the mucosal lamina propria, such as IgA-secreting plasma
cells, 8 T cells, dendritic cells (DC), and innate lymphocytes
(ILC). They play an important role in resistance to pathogen
infection and maintenance of mucosal barrier function.
Among them, regulatory T (Treg) cells play a central part
in maintaining immune tolerance and homeostasis in the
whole body, especially intestines [8]. Treg cells expressing
receptor-associated orphan pt" (RORyt) are a specialized
subset of CD4"Foxp3™ cells in the gut. Studies have shown
that the expression of RORyt in Tregs is beneficial to
improve its inhibitory ability during intestinal specific
immune response, making Foxp3"RORyt" T cells become
an important effector Treg subset in the intestinal system
[9, 10]. Lochner et al. [11] found that 20-30% of Foxp3™ T
cells express RORyt in the gut lamina propria (LP), and such
a high proportion depends on the complex gut microbiota.

In recent years, people have become increasingly inter-
ested in studying the function of the gut microbiota and its
role in intestinal mucosal immunity [12]. In the situation
of urbanization and industrialization, the increasing inci-
dence of allergic diseases worldwide has led to research into
the influence of corresponding environmental and dietary


https://orcid.org/0000-0001-9001-2336
https://orcid.org/0000-0002-4420-9039
https://orcid.org/0000-0002-6904-7689
https://orcid.org/0000-0002-4570-7478
https://orcid.org/0000-0002-4923-1964
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8529578

factors that may be associated with the development of aller-
gies [10]. Epidemiologic studies demonstrate that changes in
the commensal microbiota act an important role in FA sus-
ceptibility. Human cohort studies suggested that individuals
with FAs had a different gut microbiome compared to
healthy control subjects, and dysbiosis preceded the develop-
ment of FAs [13]. This article mainly reviews the potential
part of the gut microbiota in the evolution of FA and dis-
cusses how the gut microbiota affects the immune tolerance
through the regulation of RORyt" Treg cells.

2. Gut Microbiota and Food Allergies

FA is one of the most common allergic diseases characterized
by adverse immune reactions and hypersensitivity to food
proteins [14, 15]. In recent years, the prevalence of FA has
risen worldwide. It has been confirmed that the imbalance of
the gut microbiome during infancy is one of the most impor-
tant factors causing FA [16-18]. Gut microbiota may play a
significant role in the pathogenesis of FA [18].

2.1. Characteristics of Gut Microbiota in People with Food
Allergies. FA is closely related to gut microbiota-related dis-
eases, and changes in the number and types of symbiotic
microbiota may lead to various diseases in and outside the
gastrointestinal tract. The gut microbiota directly partici-
pates in the development of innate and acquired mucosal
immune responses. The four major phyla in the human
gut microbiome are Firmicutes, Bacteroidetes, Proteobac-
teria, and Actinobacteria [19]. Bacteroidetes and Firmicutes
account for more than 90% of the total colonic bacteria,
and Actinomycetes and Proteobacteria are usually less abun-
dant (<1-5%) [20, 21]. Compared with healthy individuals,
allergic populations have reduced gut microbiota diversity
[17, 22], exhibiting relatively higher abundances of Firmi-
cutes, Proteobacteria, and Actinobacteria at the phylum level
[23]. At the genus level, the proportion of Clostridium
belonging to Firmicutes is more abundant, while the propor-
tion of Bacteroides belonging to Bacteroidetes is relatively
low in people with food allergies [22, 23]. In addition,
Enterococcus, Escherichia coli, Shigella, Staphylococcus, Fae-
calibacterium, Anaerobic bacteria, and Prevotella were more
frequently detected in people with food allergies than in
healthy people [22, 23]. Table 1 shows the specific changes
in intestinal microbiota between food allergic and normal
subjects shown in these studies.

2.2. Association between Gut Dysbiosis and Allergy Risk. The
pathways of gut microbiota affecting food allergy sensitivity
may include regulating type 2 immunity, affecting immune
system maturation and immune tolerance, modulating baso-
phil populations, and promoting intestinal barrier function
[21, 28]. The dynamics between immune tolerance and aller-
gic responses may be mediated by interactions between the
symbiotic microbiota and the innate and acquired mucosal
immune systems [29]. Treg responses and mucosal IgA
induced by symbiotic bacteria are essential for maintaining
host microbial homeostasis and preventing intestinal muco-
sal inflammation [30]. First, the gut microbiome promotes
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IgA secretion, which helps reduce the absorption of aller-
gens. Second, microbial colonization of Clostridia (mainly
clusters XIVa and IV) induced the production of IL-22 by
innate lymphocytes and CD4" T cells. The cytokine IL-22
protects the intestinal epithelial barrier by promoting goblet
cell mucus secretion and reduces intestinal permeability to
food allergens [31]. In addition, RORyt" Tregs express high
levels of interferon regulatory factor 4 (IRF4), conferring
Tregs the ability to inhibit T helper cell 2 (Th2) receptors
[32]. Studies have highlighted that infants with a significant
imbalance of microbiota among their gut (known as “dys-
biosis”) may be at increased risk of allergic diseases [33].
Many studies using animal models have described mecha-
nisms by which specific bacterial taxa within the gut micro-
biota may promote oral tolerance [34-36]. The dysbiosis of
gut microbiota, including Clostridium and Bacteroides [30],
impedes the differentiation of naive T cells into RORyt"
iTreg cells. iTreg cells with a Th2-cell-like phenotype
expanded, characterized by increased GATA3 expression
and IL-4 secretion [37]. These pathogenic Treg cells are
unable to inhibit mast cell activation or Th2 cell expansion,
resulting in a dysregulated FA response, accompanied by
dietary allergen-specific IgE responses, and impaired barrier
integrity [38] (Figure 1). These findings suggested that the
balance of gut microbiota could maintain immune tolerance
and prevent allergic inflammation. In turn, the imbalance of
gut microbiota may increase the risk of food allergy [39-41].

3. Immune Tolerance Mediated by
RORyt" Treg

3.1. Differentiation and Function of Treg Cells. Tregs are
considered important regulators of a broad range of
immune responses, including allergic diseases, inflamma-
tion, autoimmunity, and responses to microorganisms
and tumors. As such, they command the activity of most
cell types of the innate and acquired immune system
[42]. Foxp3™ Treg cells consist of two distinct develop-
mental subpopulations: thymus-derived Treg cells (tTreg)
and peripheral derived Treg cells (pTreg), which derive
from naive T cells generated in the thymus and develop
into Foxp3 expressing cells [43, 44].

The differentiation program of thymus-derived regula-
tory T (tTreg) cells is initiated by T cell receptor (TCR) sig-
naling caused by thymic presentation of autoantigens,
allowing the transcription factor REL to enter the nucleus.
REL binds to the conserved noncoding sequence 3 (CNS3)
and Foxp3 promoter with several other transcription factors
to induce Foxp3 gene expression [45, 46]. The tTreg cells
move to the gut and experience further functional ripening
and respond to environmental incentives. pTreg cells differ-
entiate from naive CD4"T cells and occur in the gut in a
stepwise manner similar to tTreg cells. The differentiation
of pTregs is mediated by microbial antigen-induced TCR
signaling as well as transforming growth factor- (TGEp)
and retinoic acid-mediated signaling. These signals promote
the binding of REL to CNS3 and the binding of SMAD3 and
the retinoic acid receptor (RAR)-retinoic acid X receptor
(RXR) to CNS1 of Foxp3 [7, 47].
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TaBLE 1: Comparison of changes in intestinal microbiota between food allergic and normal subjects.

Source Features of gut microbial community

. Reference
organism Decrease Increase

Firmicutes (P), Actinobacteria (P), Proteobacteria (P),
Sphingomonas (G), Sutterella (G), Bifidobacterium (G),
Bacteroidetes (P), Bacteroides (G), Parabacteroides (G), Collinsella (G), Clostridium sensu stricto (G), Clostridium
Human  Prevotella (G), Alistipes (G), Streptococcus (G), Veillonella IV (G), Enterococcus (G), Lactobacillus (G), Roseburia [19]
(G), Bacteroides (S), Prevotella (S), and Veillonella (S) (G), Faecalibacterium (G), Ruminococcus (G),
Subdoligranulum (G), Akkermansia (G), and
Subdoligranulum (S)

Human Bacteroidetes (P) Firmicutes (P) [22]
Bacteroidetes (P), Proteobacteria (P), Actinobacteria (P), Firmicutes (P), Fusobacteria (P), Enterococcus (G),
Verrucomicrobia (P), Bacteroides (G), Streptococcus (G), Escherichia/Shigella (G), Lactobacillus (G),

Human Veillonella (G), Klebsiella (G), Blautia (G), Clostridium  Staphylococcus (G), Faecalibacterium (G), Clostridium [18]

XI (G), Lachnospiracea incertae sedis (G), and XIVa (G), Anaerostipes (G), Prevotella (G), Clostridium
Megasphaera (G) XVIII (G), and Flavonifractor (G)

Firmicutes (P), Verrucomicrobia (P), Ruminococcus (G),

Human Leuconostoc (G) Lactococcus (G), and Leuconostoc (G) [24]

Human Bifidobacterial (G) and Enterobacteria (G) Lactobacilli (G) [13]

Human Leuconostoc (G), Weissella (G), and Veillonella (G) Clostridium (G) [25]

Mouse Firmicutes (F), Erysipelqtrichi .(C), Erysipelotrichales (O), Proteobacte'ria (P), Gammaproteobacte'ria (C), [26]
and Erysipelotrichaceae (F) Enterobacteriales (O), and Enterobacteriaceae (F)

Mouse Verrucomicrobia (P) and Proteobacteria (P) Bacteroidetes (P) and Patescibacteria (P) [27]

The increased/decreased microbiota in food allergic group when compared with normal group.
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FIGURE 1: Overview of RORyt+ Treg cells in food allergies.
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FiGure 2: The composition of gut microbiota influences the expression of RORyt+ Treg to foster immune tolerance.

Foxp3"CD4 " Treg cells are found in various organs of the
body, accounting for about 10% of the total number of CD4"
T cells [7]. In the intestinal lamina propria, they account for
a much higher proportion: more than 30% of CD4" T cells
in the colonic lamina propria and about 20% of the small
intestinal lamina propria [7]. Intestinal Foxp3™ Treg cells
regulate mucosal immune responses at various cellular levels
through multiple molecular mechanisms [32, 48]. They con-
stitutively express IL-10, CTLA4 [49], TGEFfB [50], and
inducible T-cell costimulatory factor (ICOS) and IL-35 [51,
52] and maintain control of dietary components and gut
microbiota immune tolerance.

3.2. Expression Regulation of Intestinal RORyt" Treg. Treg
cells further obtain function-specific features, such as
expression of RAR-RORyt, to adjust to the gut environment
[7, 53]. RORyt is expressed by 20-30% Foxp3™ T cells in the
lamella propria (LP) of the intestine and about 10% Foxp3*
T cells in the spleen and peripheral lymph nodes [9, 54].
Transcriptional activator 3 (STAT3), a signal transduction
molecule activated by interleukin 6 (IL-6) and IL-23, medi-
ates RORyt expression [7, 28], which enhances the suppres-
sor function of colonic Tregs [9]. RORyt" Treg cells express
high levels of IL-10 [52], interferon regulatory factor 4
(IRF4) [11], and CTLA4 [49], moreover promote to the inhi-
bition of spontaneous Th2 response and control of the
immune homeostasis of symbiotic microbes.

3.3. Regulation of Food Allergy by RORyt" Treg Cells. Induc-
tion of RORyt" Treg cells in the small intestine draining
lymph nodes is critical for establishing intestinal luminal
antigen tolerance [55]. It has been reported that RORyt"
Treg cells are markedly reduced in peripheral lymph nodes

of human subjects with FA [56]. Moreover, Th2-like repro-
grammed Treg cells were unable to inhibit allergen-specific
T-cell responses and emergence, and the secreted IL-4 pro-
motes mast cell expansion and allergen-specific IgE
responses, which accelerate the progression of the dis-
ease [57].

The mechanism by which the symbiotic microbiome
generates protective RORyt" Treg cells is through a Treg
cell-specific common upstream pathway involved in the pri-
mary response 88 of myeloid differentiation (MyD88). This
pathway establishes the MyD88-RORyt signaling axis in
incipient Treg cells in the gut, which intermediates tolerance
induction in FA symbionts [58]. Previous studies have
shown that MyD88 signaling promoted the production of
iTreg cells at the mucosal interface, coordinate the regula-
tion of intestinal mucosal cells and humoral adaptive
immune responses, and facilitate tolerance [59] (Figure 2).
Additionally, it can promote IgA immunity to the commen-
sal microbiota, maintain a healthy commensal state by mod-
ulating follicular regulatory T cells (Tfr) and follicular helper
T cells (Tth) differentiation in Peyer’s patches [59], and sup-
press mucosal immune response caused by dysregulation of
microbiome.

4. Gut Microbiota Promotes Immune
Tolerance by Regulating RORyt" Treg Cells

4.1. Gut Microbiota Enhances Immune Tolerance by
Inducing Treg Cells. It is well known that the mammalian
colon contains a dense community of symbiotic microbes
that has a profound influence on immune system matura-
tion and tolerance acquisition [59, 60]. There is now grow-
ing evidence that the gut microbiome plays a key role in
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early host immune development and can alter the risk of
allergic disease [61]. This part of the function is achieved
by inducing the production of Treg cells. Treg cells inhibit
microbial-induced intestinal inflammation, while the CD4"
T cell compartment is formed by the existence of specific
microbiome [60]. Treg cell response induced by microbiome
colonization is the basic internal mechanism to induce and
maintain the symbiosis of host intestinal microbial T cells.

Previous studies have shown that gut microbiota coloni-
zation in germ-free mice results in an extension of Treg cell
populations in the gut lamina propria [60, 62]. Colonization
of Clostridium and Bacteroides (two important members of
the mammalian gut microbiome) leads to the induction
and maintenance of colonic Treg cells [63]. Atarashi et al.
[62] showed that oral intervention in germ-free mice with
a mixture of 46 strains of conventional murine derived Clos-
tridium resulted in strong induction of colonic Treg cells.
Round et al. [63] found that the immunomodulatory mole-
cule polysaccharide A (PSA) of Bifidobacterium fragilis
mediated the conversion of CD4" T cells into Foxp3™ Treg
cells, which produced IL-10 during symbiotic colonization.
IL-10 is mainly derived from Foxp3™ Treg cells [9, 60], and
the main role of IL-10 is to inhibit the response of Th2 cells
[64]. The forming of intestinal homeostasis during coloniza-
tion relies on IL-10, and studies have shown that blocking
IL-10R during colonization may lead to immune bias [56].
In contrast, Th2-mediated inflammatory responses were
exacerbated in Tregs-deficient mouse models [65]. Further-
more, animals with food allergy model also showed
enhanced Th2 cell response, inhibited Treg cell expansion,
and significantly increased Th17/Treg ratio [66]. These find-
ings confirm that early gut microbiota changes can affect the
proliferation and induction of Treg cells and thus the form-
ing of gut homeostasis.

4.2. Gut Microbiota Metabolites Short-Chain Fatty Acids
(SCFAs) Protect against Food Allergy. Dietary fiber is fermen-
ted in the colon by anaerobic bacteria into short chain fatty
acids (SCFA), mainly acetate, butyrate, and propionate. In a
model of enteropathogenic infection, acetate produced by pro-
tective Bifidobacterium promotes epithelial integrity, whereas
SCFA enhances intestinal integrity in vitro [67]. Tan et al.
[68] showed that high-fiber feeding increased the release of
short-chain fatty acids (SCFA), especially acetic and butyrate,
and protected against food allergy by enhancing retinal dehy-
drogenase activity in CD103"DC. This protection depends on
vitamin A in the diet. This intervention also promoted IgA
production and enhanced the response of T-follicle helper
cells and mucosal germinal centers. Mice lacking SCFA recep-
tors GPR43 or GPR109A showed increased food allergy and
decreased CD103"DC [69]. Thus, SCFA improves oral toler-
ance and prevents food allergies in mice.

4.3. SCFAs Enhanced the Expression of RORyt" Treg Cells.
The generation of RORyt" Tregs was dependent on den-
dritic cells (DCs) and major histocompatibility complex
(MHC) class II [28] and expresses high levels of CTLA-4
and IL-10 to suppress Th2 responses [49, 64]. Microbiota
induces the production of intestinal dendritic cells and regu-

lates the proportion and function of colonic Tregs through
short-chain fatty acids (SCFA) and food antigens [29, 70].
Microbiome derivatives are transported from the lumen to
draining lymph nodes through CD103" DC and generate
RORyt" Treg cells [71].

Studies have shown that supplementation with SCFA or
propionate alone significantly raised the expression of Foxp3
and IL-10. The data of Smith et al. [65] suggest that SCFA
may have beneficial effects on SPF mice by increasing the
production of Foxp3*IL-10, Treg, and altering Treg GPR15
expression. G-coupled protein receptor (GPR) 43 (Ffar2 is
the gene encoding GPR43) binds to SCFA and mediates
the resolution of inflammatory responses through its expres-
sion on innate immune cells [72]. Xu et al. [73] reported that
the host regulates tolerance to potential pathogens by induc-
ing RORyt" Foxp3" Treg, which optionally inhibit Th17
cells in a function that rely on the transcription factor c-
Maf. Inactivation of c-Maf in the Treg compartment impairs
bacterial-specific iTreg induction and function, involving IL-
10 generation, leading to accumulation of Th17 cells and
spontaneous colitis.

Britton et al. [74] found that transferring the IBD micro-
biome into germ-free mice raised the number of Th17 and
Th2 cells and reduced the number of RORyt" Treg cells com-
pared with the microbiome from healthy donors. This implies
that the induction of RORyt" Treg cells depends on the intes-
tinal microbiota and has a strong inhibitory factor and a
steady phenotype. Studies have shown that mice selectively
deficient in RORyt in Treg cells are more susceptible to intes-
tinal inflammation, and microbial interventions that induce
RORyt" Treg cells can protect mice from colitis [53, 72].

Along these lines, RORyt" Tregs may be important fac-
tors in limiting microbial dysbiosis and intestinal inflamma-
tion [75], and the production of RORyt" Tregs depends on
the presence of gut microbes, including Clostridium, and
other members of Firmicutes, Bacteroidetes, and Proteobac-
teria support their differentiation [53, 58].

5. Gut Microbiota Protects against Food
Allergy by Modulating RORyt" Treg-
Mediated Immune Tolerance

5.1. Gut Microbiota Maintain Immune Tolerance by Driving
RORyt" Treg Cell Expression through the MYD88 Pathway.
Myeloid differentiation primary reactive protein 88
(MyDa88) is an intracellular adaptor protein that coordinates
proinflammatory signaling cascades [76]. Except for its part
in innate immune cells, MyD88 also plays a significant role
in T cell responses [77]. Several studies have demonstrated
the important roles of MyD88 in T cells. For example, T cell
expression of MyD88 is essential for Toxoplasma gondii
resistance [78], the emergence of MyD88-dependent signal-
ing pathway in CD4" T cells has been shown to improve
humoral immune response [79], and the development of
inflammatory bowel disease requires MyD88 to act as a T
cell effector [80]. TLR agonists signal through MyD88 to
increase T cell activation and cytokine generation [81, 82].
Abdel-Gadir et al. [58] reported that specific deletion of



the TLR adapter MyD88 in Treg cells led to a deficiency of
intestinal Treg cells, an increase in Th17 cells, and a raise
in IL-17-dependent inflammatory response. The promotion
of Treg cell formation by gut microbiota includes TLR signal
transduction, which was demonstrated by the double defi-
ciency of TLR connector molecules MyD88 and TRIF in
germ-free mice during Schaedler flora colonization, and
the inability to dilate colonic lamina Treg cells [59]. Further-
more, MyD88 signaling in Treg cells supports the antimicro-
bial IgA antibody response through a STAT3-dependent
mechanism, thereby inhibiting the overgrowth of segmental
filamentous bacteria (SFB) and the response of Th17 cells to
promote healthy symbiosis [83]. In conclusion, MyD88 in
Treg cells combines various signals from the gut microbiota
to enhance the function of mucosal Treg cells and symbiosis
by regulating the antimicrobial IgA response [84]. The loss
of MyD88 or Rorc in Treg cells counteracts the protective
effects of bacterial therapy. Therefore, the symbiote activates
the MyD88/ROR-yt pathway in newborn Treg cells to pre-
vent FA. Ecological imbalance in FA disrupts the MyD88-
ROR-yt regulatory axis, resulting in decreased IgA and
increased IgE responses to the gut microbiota, which is con-
sistent with Treg cell-specific deletion of Rorc [58].

5.2.  Supplementation of Probiotics Promotes Early
Colonization of the Gut Microbiota and Enhances Immune
Tolerance. Changes in members of the gut microbiota pre-
dispose children to food allergies, possibly through changing
Toll-like receptor signaling and intestinal epithelial cell
integrity [83]. Colonizing the gut of germ-free mice with
Clostridium-containing microbiota prevents food allergies
by activating innate lymphocytes, producing IL-22, and
enhancing intestinal permeability [34, 62]. Probiotics are
considered living bacteria that inhabit the gastrointestinal
tract, and their number and function are related to the
health benefits of the host [85]. Restoring a healthy gut
microbiome through supplementation of probiotics and pre-
biotics is a potential pathway for inducing intestinal toler-
ance [86]. In the colon, anaerobic bacteria ferment dietary
fiber to produce short-chain fatty acids (SCFA), mainly rep-
resented by acetate, butyrate, and propionate. Research by
Tan et al. [68] found that a high-fiber dietary intervention
in mice improved the microecological balance of the gut
and increased the production of SCFA, particularly acetate
and butyrate. High-fiber dietary interventions enhance oral
tolerance and prevent food allergies by improving retinal
dehydrogenase vitality in CD103" DCs [68]. Many probiotic
species are capable of stimulating the production of secre-
tory IgA by antigen-bound B cells, thereby limiting their
entry into epithelial cells [87]. Probiotics increase the cyto-
toxic potentiality of NK cells and the phagocytic capacity
of macrophages and have antiviral performance. Macro-
phages are very important for initiating the acquired
immune response, which can protect against food allergy
to a certain extent. In the study by Schiavi et al. [88], oral
treatment with a probiotic mixture was reported to be bene-
ficial to redirect allergen-specific Th2-polarized immune
responses to Thl-T regulatory responses and prevent
allergen-induced allergic reactions. Studies have shown that
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raising serum IgE levels lead to elevated mast cell surface
binding IgE levels, and germ-free mice exhibit increased
antigen-induced oral allergic reactions compared to normal
mice [89], suggesting that immune response disorders such
as food allergies may be extremely relying on the acquisition
of sufficient bacterial consortia at an early stage. It has been
shown that to set a baseline immunomodulatory state of life,
it is necessary to be exposed to multiple microbiota during
crucial time windows of early life [90].

6. Conclusions and Future Directions

In the present, a large number of studies have confirmed that
food allergy is closely correlated with the structural changes of
the gut microbiota. And one of the mechanisms could be that
the gut microbiota promotes the establishment of immune tol-
erance by regulating the expression of Treg and RORyt" Treg
to prevent food allergy. The gut microbiota and its metabolites
activate the MyD88 signaling pathway through TLR signaling
and STAT3-dependent mechanisms to enhance the expres-
sion of mucosal Tregs and RORyt" Treg. RORyt" Treg cells
express high levels of IL-10 and CTLA4, inhibit Th2 cellular
responses, maintain intestinal tolerance, and protect the body
from intestinal inflammation. Conversely, the MyD88-ROR-
pt regulatory axis is disrupted in dysbiosis, exacerbating intes-
tinal inflammation and allergic diseases. However, it was
unclear whether allergies to individual foods exhibit the obvi-
ous and overlapping regulatory mechanisms of RORyt" Treg
cells in all food allergic disorders.

More supporting data suggest that probiotics play a pro-
tective role against colonization of the gut microbiota, for
example, by stimulating epithelial cells to increase mucosal
integrity, increase mucin secretion and activity of NK cells,
and increase stimulation of IgA production [34, 86, 90,
91]. By supplementing probiotics or prebiotics to promote
the early colonization of gut microbiota and enhance
immune tolerance, it provides a new idea for the prevention
of food allergy in newborns.
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