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Tissue-resident memory T cells (TRMs) are plentiful in the memory T cell pool and persist in barrier sites without recirculating.
Increasing evidence has shown that some kinds of CD8+ TRMs and CD4+ TRMs are resident in the gastrointestinal tract (GI),
playing an important role in the context of microbiota-immune interactions, infections, maintenance of tissue homeostasis,
and tumor surveillance. Although sharing some similar phenotypes, functional properties, and transcriptional regulation with
other tissue-TRMs, gastrointestinal tract TRMs (GI-TRMs) have unique phenotypic and functional characteristics reshaped by
the local microenvironment. In this review, we will summarize current knowledge on the regulation, maintenance, and
function of the CD8+ TRMs and CD4+ TRMs in GI, exploring how these cells contribute to local immune defense, tissue
homeostasis, and tumor surveillance.

1. Introduction

Memory T cells are mainly responsible for mediating an
immediate response to the recurrent incoming antigens that
are derived from pathogens, tumor, or tissue local proteins,
which limit the spread of infectious agents and finally pro-
vide effective protection for the host. They have been tradi-
tionally classified as central memory T cells (TCMs) and
effector memory T cells (TEMs). Once recognizing antigen,
TCMs undergo rapid and robust proliferation, differentiate
into effector cells, and then migrate from secondary lym-
phoid organs (SLOs) to the infectious site. TEMs recirculate
between the blood and peripheral tissues and are involved in
immune surveillance and protection [1–3]. In addition to
these conventional memory T cells, recent studies have con-
firmed that tissue-resident memory T cells (TRMs) occupy
in tissues (e.g., the gastrointestinal tract (GI) [4], brain [5],
and liver [6, 7]) without recirculating (Table 1). Their major
function is to prevent previously encountered pathogens
from accumulating and invading in tissues. Compared to

circulatory counterparts, TRMs show stronger and quicker
antigen-specific response to tissue infection.

Notably, GI is not only a place for metabolic activity and
nutrient storage, but it also contains a complicated immuno-
logical system. Enriched with abundant immune cells and a
myriad of commensal microbiota, GI acts as a habitat for the
dynamic interactions among the host mucosal nonimmune
system, immune system, commensal microbiota, and their
metabolites [8, 9]. It evolved highly specialized structures
and cellular components to support this balance. Structur-
ally, GI contains a mucus layer that acts as a physical barrier
to prevent the entry of foreign antigens. The mucus layer is
further classified with a single-cell thick epithelial layer and
lamina propria, enriching with a specialized immune net-
work [10]. CD4+ and CD8+ gastrointestinal tract TRMs
(GI-TRMs) play a dominant role in barrier homeostasis with
their potent cytotoxicity, functional plasticity, and robust
abilities to sense and respond to diverse signals derived from
food, commensals, and pathogens. This review will elaborate
the phenotypes and functional characteristics of GI-TRMs,

Hindawi
Advanced Gut & Microbiome Research
Volume 2022, Article ID 9157455, 12 pages
https://doi.org/10.1155/2022/9157455

https://orcid.org/0000-0002-6133-8676
https://orcid.org/0000-0002-6604-6867
https://orcid.org/0000-0001-6945-0593
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9157455


which let us better understand the role of GI-TRMs in phys-
iological and pathological situations in GI diseases.

1.1. General Background of TRMs. TRMs are widely spread
in the entire length of the intestine and are enriched in the
lamina propria (LP) and the epithelial layer. Following by
the primary infection of the tissues, TRMs have specifically
developed their functional features and resident mechanisms
by expressing some markers, such as CD103, CD49a, CD44,
and CD69 [11–13]. However, not all of these markers are
expressed in all populations of TRMs, indicating the nuance
among different TRM subsets (Figure 1).

CD103 interacts with E-cadherin on epithelial cells to
facilitate the positioning, retention, and the shape of TRMs
within the epithelium. CD103– skin TRMs were observed
in decreased quantity and increased motility relative to the
wild-type counterparts [2, 14]. Moreover, CD103 signals
upregulate the chemokine receptors, such as CCR5, which
is a key chemokine receptor for CD8+ T cells to reach the

airways in the microenvironment of lung cancer [15]. In
addition, the interaction between CD103 and CCL25 via
chemokine receptor CCR9 promoted the expression of
CD103 on CD8+ T cells in the intestine [16]. CD49a, on
the other hand, plays a pivotal role in the development or
survival of TRMs in the gut intraepithelial layer through
binding to the extracellular matrix components, such as col-
lagen and laminin [17, 18]. The blockage of CD49a pre-
vented the lymphocytes adhesion to collagens and
subsequent tumor necrosis factor (TNF) release [19]. A
reduced TRM in gut infiltration and gut pathology was
observed in a murine model with graft-versus-host disease
(GVHD) by blocking CD49a [20]. CD44 may also be bene-
ficial for TRMs via interacting with hyaluronic acid, though
it is conventionally thought as the activation and memory
marker of newly generated TEMs [21–23]. CD69 is a marker
that indicates the T cell receptor (TCR) stimulation and is
quickly downregulated in active circulating T cells. However,
it consistently expresses on TRMs, resisting sphingosin-1-

Table 1: The subsets of memory T cells.

Subset Phenotype Location Circulation
Cytokine
secretion

TCM (central
memory T cell)

CD44+, CD62L+, CD27+, CD28+, CD127+,
CD69+/-, CD103-, CD11a+/-, KLRG1-,

CX3CR1-, CCR7+, perforin-, and granzyme B-
Lymph nodes, spleen, blood,

and bone marrow
High Poor

TEM (effector
memory T cell)

CD44+, CD62L-, CD127+/-, CD69-, CD103-,
CD11a+/-, KLRG1+, CX3CR1+, CCR7-, perforin+,
granzyme B+, CCR8&10+(skin), and CCR9+ (GI)

Spleen, lymph nodes, blood,
GI, lung, heart, liver, skin,
reproductive tract, and

adipose tissue

High Prompt

TRM (tissue-resident
memory T cell)

CD44+, CD62L-, CD127+/-, CD69+/-, CD103+/-,
CD11a+, KLRG1-, CX3CR1+/-, CCR7-, perforin+/-,
granzyme B+/-, CCR8+(skin), CCR9+ & LAMP+

(GI), and CCR6+ (lung)

Liver, lung, GI, skin,
reproductive tract, and brain

Low Prompt

Normal epithelial layer

Th2

Th17

Th1

A B C D E

Bacteria dysbiosis

TCM
TEM B cells

TCR PDI/
CTLA4/
TIM3

SIPR1 ↓
KLF2 ↓
CCR7 ↓

CD103

Tumor cell lysis

NKs Blood vessel

Cytokinesis: Perforin, IFN-γ,
GZMB, IL2

TRMs

CRC

Macrophage

Food antigen

TGFβ
IL33
ST2 NKG2D

CD8+

TRM
CD4

+

TRM

GATA3+

RORγt+
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Figure 1: Classification and features of GI-TRMs. Stimulated by antigens, T cells are primed in the draining lymph nodes by professional
antigen-presenting dendritic cells (DCs). Followed by GI recruitment and pathogen clearance, partial of them differentiates into memory
subsets and resident in local for a long time. Meanwhile, some subsets of TRMs exist at birth. The TRMs providing immediate and
potent immune response to the recurrent antigens or infection. GI-TRMs developed unique phenotypic and functional characteristics
reshaped by the local microenvironment such as surface marker and transcriptional regulation factors.
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phosphate- (S1P-) mediated tissue egress, and thereby con-
fers early tissue retention until TRM differentiation is com-
plete [24, 25]. The knockout of CD69 destroyed the
establishment of TRMs in herpes simplex virus-infected
mouse skin [26]. However, partial CD69+ T cells can return
to the circulation, which indicates CD69 might not be a
compulsory marker for residency. Besides, TRMs also lack
lymph node (LN) homing receptors (CD62L and CCR7)
that ensure their resident in local tissue [27].

TRMs have been proved to express a unique pattern of
transcription factors (TFs) compared to their circulating
counterparts. As major transcriptional regulators of TCM
and TEM cells, T-bet expression is highest in short-lived
effector cells, but in terms of tissue-resident T cells, the over-
expression of T-bet hinders the formation of TRMs [28].
The downregulation of T-bet is necessary for the survival
and proliferation of CD8+CD103+ TRMs in the lung [29].
In addition, it has been shown thatT-betTFs control two
cytokines, transforming growth factor-β (TGF-β) and
interleukin-15 (IL-15), which are essential for the develop-
ment and survival of CD8+CD103+ TRMs [30]. These two
signaling pathways play an important role in the mainte-
nance of TRMs. The Hobit-Blimp1 transcriptional module
is selectively upregulated in TRMs of the skin, gut, liver,
and kidney in mice, compared to that in peripheral T cells
[31, 32]. By inhibiting tissue egress-associated genes, Hobit
enhances the maintenance of the TRMs. The deficiency of

Hobit almost completely abolished the establishment of
CD8+ TRMs in the gut [33]. Besides, Runx3 is an essential
factor for the formation of TRM populations, supports the
expression of critical tissue-residency genes, and inhibits
genes related to tissue egress and recirculation [34, 35]. In
addition, basic helix-loop-helix family member E40
(Bhlhe40) is reported as a critical regulator of TRM survival
and activity in the contexts of both infection and cancer, by
driving the expression of a myriad of residency-promoting
genes such as Itgae and Cxcr6 [36]. Finally, both the Notch
family of signaling receptors and the aryl hydrocarbon
receptor (AhR) transcription factors are involved in main-
taining the retention of TRM cells [26, 37, 38].

1.2. Phenotypic and Functional Characteristics of GI-TRMs.
The presence of TRMs is quite important in GI to provide
an immediate protection (Figure 2(a)). If TCMs and TEMs
are the only memory T cell subsets, several processes are
required including pathogen-derived antigens disseminat-
ing/presenting to the SLOs and immune cell recruitment
around inflammatory sites. Thus, the time-consuming pro-
cess is not able to provide an immediate protection after
the initial infection. On the contrary, TRMs can utilize the
advantage of tissue residency to respond quickly, which
may benefit for the cleaning of infection. TRM subsets can
be reshaped by GI local microenvironments and conse-
quently develop tissue-specific phenotypes and functions
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Figure 2: Functions of GI-TRMs. (a) GI-TRMs are capable of providing the front-line defenses against pathogens at the most vulnerable
entry port. (b) CD4+ TRMs are retained in the tissues and can be reactivated locally following reinfection. CD4+ TRMs are expanded
and can become effector Th1, Th17, or Th2-type cells that mediate rapid clearance of the infection. (c) Small intestine lamina propria
Tregs are differentiated into all three subtypes based on the expression of RORγt (Rorc), GATA3, and Helios: RORγt–Helios– Tregs
primarily generated in response to dietary macromolecules and are proposed to be helpful in containing childhood allergies.
GATA3+Helios+ Tregs expressed ST2 receptor that interacts with tissue damage-induced alarmin IL-33 to tissue repair. RORγt+Helios–

Tregs were involved in establishing tolerance towards local microbes. (d) Upon antigen resensitization or CRC, CD8+ TRMs could
express NK receptors (e.g., CD94 and NKG2D), exerting a NK-like function as well as producing granzyme B and inflammatory
cytokines. (e) GI-TRMs employed myriad mechanisms for CRC clearance such as constitutively expressed granzyme B, IFNγ, perforin,
and IL-2 and played a cytotoxic role. Meanwhile, GI-TRMs recruited circulating memory CD8+ T cells, B cells, and other lymphocytes to
the sites of tumor.
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[39]. Here, we focus on the unique properties of GI-resident
CD8+ TRMs, CD4+ TRMs, and their roles in GI-related
diseases.

1.3. CD8+ GI-TRMs. Normally, effector CD8+ T cells are
generated during infection with foreign antigens and
undergo an activation stage that allows their entry into var-
ious peripheral tissues. The migration of effector CD8+ T
cells into the intestinal mucosa might be associated with
local activation, due to the presence of intestinal homing
molecules induced by lymphoid tissue. Partial memory
CD8+ T cells stayed at the GI after the first infection and
can provide immediate response against the reinfection at
the same site. For example, following by the lymphocytic
choriomeningitis mammarenavirus (LCMV) infection, early
effector CD8+ T cells in the spleen upregulated the expres-
sion level of α4β7 integrin and CCR9 and migrated into
the intestinal epithelium. In the intestine, these T cells
reduced the expression of α4β7, and some of them differen-
tiated into CD8+ TRMs and exist in the tissue for a long
time. The whole process happened within a week of the ini-
tial LCMV infection [40].

There are two main subsets of CD8+ TRMs residing in
the intestine: TCRαβ+CD8αβ+ TRMs and TCRαβ+CD8αα+

TRMs. TCRαβ+CD8αβ+ TRMs can reside in the tissue for
a long time and are originated from antigen-experienced
peripheral CD8+ T cells. In comparison with the splenic
counterparts, TCRαβ+CD8αβ+ TRMs showed a constitutive
expression of granzyme B, CD69, CD103, and β7 integrin,
along with less secretion of TNF-α and interferon-γ (IFN-
γ) in LCMV-infected mice [41]. Moreover, resting TCRαβ+

CD8αβ+ TRMs in human can express natural killer (NK)
receptors (e.g., CD94 and NKG2D), exerting a NK-like func-
tion as well as producing granzyme B and inflammatory
cytokines [42]. Although the role of TCRαβ+CD8αβ+ TRMs
in mucosal immunity is less clear, they have been reported to
be associated with the pathogenesis of celiac disease in
human [43]. In the celiac disease progression, intestinal epi-
thelial cells (IECs) increase the expression levels of IL-15 and
the ligands of NKG2D. IL-15 subsequently upregulated
NKG2D on TCRαβ+CD8αβ+ TRMs, which induce TRMs
attacking IECs. The TCRs of TRMs are necessary for the
acquisition of NK cell receptor expression and killer activity;
however, the potential role of their antigen specificity in
such TRM-facilitated pathology awaits further exploration
(Figure 2(d)) [44, 45]. “Natural” TCRαβ+CD8αα+ TRMs
exist at birth, comprising one third of intraepithelial lym-
phocyte population but decreasing with advanced age [46,
47] . TCRαβ+CD8αα+ TRMs are highly heterogeneous with
diverse major histocompatibility complex (MHC) class I
restriction. Their development is significantly impaired in
β2-microglobulin-deficient mice and is partially affected in
classical (H2-K and H2-D) or nonclassical (Qa2 or CD1d)
MHC-deficient mice [1, 48, 49]. In the differentiation pro-
cess via responding to self-antigens, TCRαβ+CD8αα+ TRMs
acquire a cytotoxic phenotype and gut-homing capacity
without the stimulation of any foreign antigens [45].

The regulation of TRMs is associated with cytokines
such as TGF-β, TNF, and interleukin-33 (IL-33). TGF-β is

conventionally thought to induce the CD103 expression on
CD8+ T cells. It drives the development of TRMs in the lung
and gut by a SMAD4-independent signaling pathway [50].
However, recent researches showed that the developments
of CD103− CD8+ T cells in the lamina propria were more
affected by IL-12 and type I IFN rather than TGF-β [51].
Furthermore, IL-33, TNF, and TGF-β can integrately induce
the expression of CD69 and CD103 (a T cell-like phenotype)
of CD8+ T cells [52–54].

In the aspect of transcriptional regulation, GI-TRMs
share similar characteristics with TRMs from other tissues.
For instance, Hobit and Blimp-1 take part in the maturation
of TRMs, genetic deficiency of them almost completely abol-
ished the establishment of CD8+ TRMs in the gut [33]. KLF2
is a transcription factor that positively correlates to the genes
related to the recirculation of SLOs (e.g., S1P1). It is down-
regulated in TRMs, which further reduced the expression
of receptors for S1P in the aspect of gene regulation. Thus,
the residency of TRMs depends on the gene-regulated activ-
ity, rather than an antagonization by CD69 [55]. Besides
their generality, AhR is an important transcription factor
of CD8+ GI-TRMs and the activity of AhR is determined
by the aromatic hydrocarbon ligands from leafy vegetables
in food. This suggests the GI microenvironment may serve
as an important factor for the differentiation of TRMs [56].

CD8+ GI-TRMs produce a fast and effective protective
immune response against invading pathogens, avoid harm-
ful inflammation, and provide host protection.CD8+ TRMs
express high levels of Ki67 and granzyme B, showing their
proliferative and cytotoxic potential [57]. Thus, vaccines that
elicit TRMs yield higher immune response than do vaccines
that elicit systemic immunity. This phenomenon was con-
firmed in skin- and genital tract-related tumors [58, 59].
Besides, CD8+ GI-TRMs must have unique properties in
intestine transplantation, as the incidence of high ratio of
GVHD and bacterial infection in the first month after trans-
plantation (67.7% patients) [36, 60, 61]. In summary, further
exploration is required for the understanding of the exact
phenotypic or functional characteristics of GI-resident
CD8+ T cells.

1.4. CD4+ GI-TRMs. Like CD8+ TRMs, CD4+ TRMs also
provide immediate protection from recurrent antigens and
infections. However, the phenotype, function, and mainte-
nance of these subsets in infection remain unclear. There
are several differences between CD4+ and CD8+ TRMs in
the aspects of tissue localization, marker expression, and
cytokines that drive the establishment of TRMs. Further
exploration of these differences will benefit for understand-
ing the identification and differentiation of CD4+ TRMs.

Naive CD4+ T cells can expand and differentiate into dif-
ferent subsets of T helper (TH) cells after infection. These
different subsets of TH cells have varied functions in circula-
tion, SLOs, and infected tissues [62]. After clearing infection,
most of these effector cells undergo apoptosis process, while
a small part of them differentiate into memory cells and per-
sist in the tissue for a long time to provide immediate and
potent immune response to the recurrent antigens or infec-
tion [63].
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After migrating to tissues, effector-memory T cells
acquired the expression of integrins and adhesion molecules,
such as CD44 and/or CD103, thus to retain as CD4+ TRMs
[64]. CD4+ TRMs mainly reside in human large intestine
and murine intestinal regions close to the cecum, and vast
majority of them that are resident in the lamina propria
express CD69 [65]. Unlike the high expression level of
CD69, the expression of CD103 may vary in different tissues
[66–69]. The roles of IL-2, IL-15, and IL-7 have been well
documented in conventional CD4+ T cell biology [70]. IL-2
is an important driven factor for the primary proliferation
of activated effector CD4+ T cells [71]. Moreover, IL-2 is
an indispensable cytokine to maintain the residency of Tregs
and take part in the intestine immunologic homeostasis [72].
Besides, the IL-2 receptor (IL-2R) signaling pathway is
required for the establishment of CD4+ TRMs. The lack of
IL-2R signaling disables the migration of activated CD4+ T
cells into the lung in viral pulmonary infection and allergic
asthma settings [73–75]. The initial T cell activation requires
IL-15; however, the long-term survival of CD4+ TRMs
depends on late IL-15 signals. IL-7 signal interacts with
the intestinal extracellular matrix and is involved in the
recruitment or survival of CD4+ TRMs [76]. The incoming
pathogenic bacteria can drive the differentiation of CD4+

TRM populations within the lamina propria, such as Lis-
teria monocytogenes-driven CD4+ memory TRMs [77, 78].
The Th1 TRMs in a Listeria monocytogenes-infected model
can be induced and accumulated in the lamina propria and
epithelium. Of note, their residency is independent with IL-
15 [79]. Th2 TRMs can also be found in the lamina propria
and peritoneal cavity in a Heligmosomoides polygyrus-
infected model [80]. Segmented filamentous bacteria (SFB)
infection in mice can induce the differentiation of Th17
in the lamina propria and these Th17 cells respond to path-
ogens by producing IL-17 and IL-22 [81]. Commensal
microbiota can induce resident Tregs as well. Murine gut
resident Tregs can be driven by some specific strains of clos-
tridium located within murine intestine, although these bac-
teria are originated from humans (Figure 2(b)) [82, 83]. In
addition, skin-resident TRMs are induced by localized
Staphylococcus epidermidis, which specifically strengthens
the epithelial barrier function and prevents the overgrowth
of heterologous microorganisms, including Candida albicans
[84]. Similarly, Aspergillus fumigatus sensitization induces a
CD103loCD69hiCD4+ TRM population and increases IL-5
and IL-13 production in the lung to promote the allergic
process [85].

GI resident Tregs exert a suppressive function like
peripheral Tregs and can be differentiated into three subsets
based on the expression of RORγt (Rorc), GATA3, and
Helios: GATA3+ Helios+ Tregs, RORγt+ Helios– Tregs and
RORγt– Helios– Tregs (Figure 2(c)) [86]. GATA3+Helios+

Tregs express ST2 receptor that interacts with tissue
damage-induced alarmin IL-33 [87, 88]. Thus, they are
involved in the inflammatory suppression and tissue repair
by secreting amphiregulin. RORγt+Helios– Tregs involved
in the regulation of Th2 and Th1/Th17 mediated immunity
[89]. RORγt–Helios– Tregs have been identified as a novel
subset and may be related to dietary antigens, indicated by

their localization [90]. Furthermore, a novel function subset
of siTregs is identified from the intraepithelial lymphocyte
(IEL) population. Lamina propria Tregs move to epithelial
compartment, and some of them do not express Foxp3 any-
more, meanwhile with diminished expression of ThPOK
(encoded by Zbtb7b) to gain expression of CD8αα+. The fre-
quencies of CD4+CD8αα+ Tregs are decreased in chronic
intestinal inflammation patients, suggesting its potential reg-
ulatory function [91, 92].

Transcription factors such as Runx3, T-bet, and KLF2
are also involved in the regulation of CD4+ TRMs; however,
the regulation of them is comparatively less known. The PR
zinc finger domain 1 (PRDM1) was highly expressed by
intestinal CD4+ TRMs, which has been implicated in patho-
genic Th17 cell responses in Crohn’s disease [93]. Hobit and
Blimp-1 were found to drive CD4+ TRMs to control intesti-
nal inflammation [93–96]. As systemic and tissue-retained
memory CD4+ T cells are long-lived in tissues and exhibit
more polyclonality than CD8+ T cells, the immunization
approaches that are capable of inducing their differentiation
may play a significant role in persistent protection. Th1 cells
can provide the protection to the host against the viruses and
intracellular bacteria. Recent evidence has shown that IFN-
γ-secreting TRMs are important for providing long-term
protection against these insults. The same evidence was
shown in the parasite field, which indicated that Th2 and
Th1-type TRMs defend against extracellular and intracellu-
lar parasites, respectively [97–99]. However, there are several
questions to answer. Firstly, the underlying mechanism that
controls the development or specific activation of effector
Th1, Th2, and Th17 from CD4+ TRMs in GI followed by
reinfection with foreign pathogens has not been well docu-
mented. Secondly, the generation of Th1, Th2, and Th17
subtypes of CD4+ TRMs is controversial. It remains unclear
whether they are originally resident in GI, or they are
induced by the reinfection activity. Finally, the impact of
local microbiota on the differentiation of CD4+ TRMs
requires further exploration.

1.5. TRM Functionality in Local Diseases and Implications
for Immunotherapies. TRMs reside in GI for a long time;
more importantly, they express many TCM-like and effector
T cell-like markers that relate to the homeostatic prolifera-
tion and survival. Thus, it is not surprising to find that they
play important roles in immune regulation in the contexts of
chronic inflammation and tumor [100–102].

Current researches reported that the numbers and per-
centages of CD8+ TRMs of IELs were significantly decreased
in inflammatory bowel disease (IBD) tissues compared
to that in human healthy controls [101]. CD8+ TRMs
expressed high intracellular levels of Ki67 and granzyme B,
showing their proliferative and cytotoxic potential, and are
increased in CD intestinal mucosa [57]. CD4+CD69+ cells
were observed to accumulate in the colon of IBD patients
compared to that in control donors [103]. Besides, com-
pared to circulating counterparts, microbiota-reactive
CD4+ TRMs were more inclined to display both Th17
and Th1 characteristics in IBD [33, 104]. In addition, there
was another unique subset of TNFα+ IL-17A+ CD4+ TRMs,
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which was enriched in Crohn’s disease and produced more
IL-17A and TNFα. This subset participated in the local
inflammation immunity and is mainly regulated by the
transcription factors PRDM1. Chronic inflammation is
caused by continued activating immune system as the inci-
dence of repeated antigens. Thus, TRMs act as gatekeepers
to alert the host once reinfection happened, as well as assist
the clearance of antigens.

As a typical digestive tract cancer, colorectal cancer
(CRC) is one of the third worldwide cancers. Many
researches reported the existence of TRMs in CRC tissues,
but the prognostic significance and clinical implications of
TRMs in CRC are still underexplored. There is a CD8+-

CD103+ population that accounts around one-third of
CD45+ cells, with the coexpression of CD69, fatty acid syn-
thase (FAS), human leukocyte antigen (HLA)-DR, and
CD38 in CRC tissues. The cell number of CD8+CD103+

TRMs in the tumor epithelium is 27-fold larger than that
in normal epithelium. Based on single-cell ribonucleic acid
(RNA) sequencing analysis, colorectal tumor-infiltrated
CD8+CD103+ T cells expressed cytolytic molecules (such
as GZMA, GZMB, GZMH, and recombinant perforin 1
(PRF1)), immune checkpoint molecules, activation- or
exhaustion- associated molecules (e.g., programmed cell
death-1 (PD-1), lymphocyte activation gene 3 protein
(LAG3), T cell immunoglobulin and mucin-containing
molecule-3 (TIM-3), and CD39), and proliferation markers
[105, 106].The underlying mechanism of how TRMs are
specifically associated with CRC has not been well docu-
mented. However, suggested by the mechanisms of how
TRMs control microbial infection, one speculation is that
the tissue-specific expression of homing and adhesion mole-
cules by TRMs may assist TRMs exerting the antitumor
effects [107–109]. This hypothesis is supported by the accu-
mulating evidences. Along this line, CD103 expression on T
cell clones contributes to their expression of E-cadherin in
infiltrated tumor islets. Moreover, colon carcinoma-specific
T cell that was extracted from tumor-infiltrating lympho-
cytes (TILs) of a colon carcinoma patient could enhance
the secretion of TGF-β by the stimulation of antigen. And
the tumor-derived TGF-β subsequently promoted the
CD103 expression on T cells [110]. In another model,
CD103 expression on CD8+ T cells which was induced by
TGF-β promoted the lysis of E-cadherin-transduced pancre-
atic tumor cells (Figure 2(e)) [50, 111]. Consistently, the
knockout of CD103 prevented the T cell infiltration and
diminished tumor rejection in murine models [112, 113].

In addition, with persistent infection, GI-TRMs con-
tinue to express mucosal-homing α4β7 integrin, which can
interact with mucosal address in cell adhesion molecule-1
(MAdCAM-1), a molecule that was a marker of vascular
endothelial cells in the intestinal lamina propria. The
interconnection was very important for the positioning of
TRMs in the gut wall and subsequent immune protection
[114].The deficiency of α4β7 integrin impacted the subset
composition of TRMs in gut-associated lymphoid tissues,
further showing an altered immune response against CRC
[16, 115–118]. Furthermore, deleting CD49a impaired the
tumor control in several mouse cancer models [113, 119].

On the other hand, CD8+ TRM-secreted IFN-γ also
exerted suppressed tumor cell division, improved the activa-
tion of other population of lymphocytes, and inhibited the
resistance to the chemotherapy that resulted from tumor-
associated fibroblast [120, 121]. Additionally, CD8+ TRM-
secreted IFN-γ affected the tumor architecture and pre-
vented the metastatic spread, by triggering the formation
of fibronectin [122]. Moreover, by the secretion of chemo-
kines and cytokines, GI-TRMs recruited other immune cells,
as well as initiated the activation of local resident dendritic
cells (DCs) and macrophages [11, 123, 124]. In this way,
GI-TRMs could prime tumor-specific T cells in draining
lymph nodes to control the development of tumor.

As shown by the correlation of TRMs, virus, chronic
infection, and cancers, TRMs may be ideal candidates for
the diagnosis and treatment of related diseases. One poten-
tial application is vaccine. Traditional vaccine normally trig-
gers the responses of circulating T cells, rather than tissue-
resident T cells. The activation of tissue-resident T cells
depends on the route of immunization [59, 125, 126]. Vacci-
nation by direct intracolorectal (i.c.r.) administration
showed enhancing immunity of large intestinal mucosa in
animal models. However, the delivery method was not
impractical in human. Oral administration is the most fre-
quently used with advantages of safety, simplicity, and con-
venience. However, the efficacy may be significantly
abolished by the upper gastrointestinal tract [127–129].
Therefore, researches aiming the delivery of vaccine in GI
to activate the local TRMs need further exploration. In addi-
tion, the complicated intestinal microbiome might affect the
vaccination response in different individuals. At the end of
this line, the poor understanding of the correlation of local
microbiome, resident T cells, and vaccine immune response
significantly hinders the development of vaccination.

Another application for TRMs is tumor immunotherapy.
Many attentions have been paid to expand TRMs in vitro for
adoptive cellular therapies or assist the immune cells in
developing TRM-like characteristics [130, 131]. However,
due to the poor proliferation of CD103+ TRMs in vitro and
loss of the therapeutic properties of TRMs, the strategy of
transferring TRMs into tumor tissue might not show a satis-
factory result in cancer treatment and there is still a long way
to go [132]. One potential solution is to use tumor-derived
DCs that do impart TRM properties to T cells, and it would
be useful to exploit this property for DC inducing TRM
expansion in vitro [113, 133]. Finally, as TRMs express some
typical inhibitory receptors (e.g., PD-1, Lag3, and Tim3),
they might be a potential target in checkpoint inhibition
therapy. Clinical trials have shown the efficacy of PD1-
blocking antibodies in metastatic CRC, and two of them
(pembrolizumab and nivolumab) have been approved by
the Food and Drug Administration (FDA) [134–136].

2. Conclusion

As discussed above, GI-TRMs are capable of providing the
front-line defenses against pathogens at the most vulnerable
entry port. They are additionally responsible for the integrity
of the mucosal border, as they can prevent the uncontrolled
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infiltration of immune cells and unwanted immune
responses. In addition, GI-TRMs and GI-microbiota may
be involved in the homeostasis of other tissues, such as the
liver [137], brain [138, 139] by gut-liver axis, and gut-brain
axis. Moreover, GI-TRMs may be associated with Coronavi-
rus disease 2019 (COVID-19), as the acute respiratory syn-
drome shows GI-dependent local immune system
imbalance [140, 141]. A deeper and more comprehensive
understanding of GI-TRMs may shed light on the potential
therapeutic strategies for diverse diseases.

Although the biological characteristics of TRMs may be
beneficial in multiple diseases, there still exist several ques-
tions. The first challenge is that the criteria of sampling
and related analytical methods are hard to make out, due
to the complexity of GI. The markers that are frequently
analyzed in current human CRC are not uniquely expressed
in TRMs, which makes it difficult to define a genuine TRM
subset in TILs [142, 143]. In animal models, it is still not
applicable to construct an appropriate mouse model that tar-
geted TRM-specific genes and completely depleted already
differentiated TRMs. The paucity of mouse model leads to
difficulties in obtaining detailed preclinical and clinical
details. Therefore, it is hard to gain a deeper understanding
of TRM biology and its function in disease, which might
hinder the development of its application such as in IBD
and CRC treatment. However, these problems might be
solved by recent emerging technology such as single-cell
RNA sequencing [144] and cytometry by time-of-flight
(CyTOF) [145] which may provide a more accurate insight.
Besides, since chronic inflammation is associated with CRC,
a deeper understanding of what specific role in IBD and the
possible physiological consequences of TRM persistence is
required.
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