Supplementary material

This document provides supplementary information on the dynamic modelling of non-
photoconverted and photoconverted (green/red) neutrophils for describing cell migration,
using the drift-diffusion equation.

Model formulations

We make the assumption here that the neutrophil dynamics can be described by a random
walk process. Hence, the models of cell migration are derived from the drift-diffusion
equation,
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where p(z,t) is the proportion of cells found at position x at time ¢, b is the effective
diffusion coefficient of the cells and a is rate of drift (as would be due to any chemotactic
bias). We solve this equation in two cases, for green (non-photoconverted) and red
(photoconverted) cells, under separate conditions to yield models for the population
distribution of the neutrophils changing over time. From the resulting expressions we
estimate the drift and diffusion parameters using least-squares methods.

Model of green cell migration

If we assume that the green cells have an arbitrary distribution, which is far enough away
from the boundary that some time elapses before any cell reaches the boundary, then
using the method described in [1] we can multiply Eqn. (1) by « and integrate to yield,

E[z(t)] = at + 1, (2)

where the parameter a characterises the drift of the neutrophil population (see Eqn. 1)
and ¢; is an offset term. Eqn. (2) implies that the mean position of cells will be constant
if there is no bias - the drift rate parameter a = 0 (diffusion only), but will move linearly
with time in the direction of any bias for the case when a is non-zero.

The elements of the set of cell positions X(t) = {z1(t),...,zn,(t)} (where n; is the
number of observed cells at time t) are averaged to produce an observed value of mean
cell distance from the wound Zz(¢) for each t. This is the data derived version of the
theoretical quantity F [z(t)] found in the model equations. If Z(¢) is plotted against time
(see Figs. in main article) it decreases linearly up to a certain switching time, say t = tg.
A suitable value of tg was determined by visual inspection of the graph in each case.

In order to identify the bias parameter, a, that characterises the drift of the neutrophil
population, we used weighted least squares estimation (see for example [3]), where we
define,
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It should be noted here that in keeping with the experimental observation rate one time
unit (5 — tx—1) is 300 seconds. Then model (2) implies that

z = Pl + e, (6)

where e represents model error. In the case of the green cells, the variability in the
number of visible cells was due to cells entering and leaving the domain as well as cells



becoming indistinguishable at time from one another. We therefore defined a weighting
vector related to deviation from the mean number of visible cells, as follows:

W = diag([w; ... ws]), (7)
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where diag(.) is the diagonal matrix constructed from its vector argument and ny is the
number of cells visible at time ¢ = t;. Then the best estimate 6 of 8 is given by,

0= (@TWo) 'eTWa. (10)

To assess confidence in the estimated parameters we calculated the standard deviation
o from the residuals using,

e(j) = 2(t;) — (at; + 1), (11)
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where m is the number of parameters in the model. In this case m = 2.

Model of red cell migration

If we assume that the wound in the fish can be mathematically characterised as a reflect-
ing boundary and that the initial distribution of cells is a delta distribution at the origin,
then solving Eqn. (1) using the method of reflections [2] we can describe the evolution
of the distribution of red cells as
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Multiplying Eqn. (14) by 22 and then integrating over = € [0, 00) yields,
E [2(t)%] = a®t® + 2bt + co. (15)

Eqn. (15) describes E [z(t)] as a quadratic form if @ > 0 (bias present away from the
wound) and a linear form if @ = 0 (no bias / diffusion only).

For the purposes of linear estimation, in the a = 0 case we define the regression matrix

as,
T
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If @ is non zero we have
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Now, z = (z(1)* ... JE(N)Q)T and in this case we define W = diag([ny ...ng]) (this

is because variability in the number of visible red cells is only down cells becoming
obscured by proximity to each other. Very few if any leave the domain and no new cells



. AT
can enter. We can proceed analogously to the last section to find 6 = (26 k:) or
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03 = (d2 2b k) and the associated confidence interval.

A higher order model will always give a better fit to a data set. It will have a smaller
associated error function J(m) = ele (where m is the order of the model). We used
an F-test to evaluate the significance of the improvement [4]. The higher order model is

better with 1 — « certainty if f > x2(1), where x?(.) is the Chi-Squared distribution and

J(m—1) — J(m)
J(m)

f= (N —m). (18)

Typically, if an F-test returns a value f > 4 then the test implies that the more complex
model should be accepted - in this case that the quadratic model should be chosen over
the linear model [4].
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